THE CRYSTAL STRUCTURES OF THREE CANADIAN VESUVIANITES

J. C. RUCKLIDGE AND V. KOCMAN Department of Geology, University of Toronto

S. H. WHITLOW

Department of Environment

E. J. GABE

National Research Council, Ottawa

Abstract

The crystal structures of vesuvianites from Great Slave Lake, N.W.T., Bancroft, Ontario, and Wakefield, Quebec, have been determined from data collected on four-circle diffractometers. The three samples belong to the space group P4/nnc and have similar chemistry and cell parameters (a = 15.516, 15.558, 15.543; c = 11.769, 11.810, 11.791 Å). Full-matrix least-squares refinement of the structures, including anisotropic temperature factors, gave conventional R values of 0.039, 0.047 and 0.05.

The structures are virtually identical, and very similar to that proposed by Coda *et al.* (1970). There are four more oxygen atoms in the unit cell than proposed by Warren & Modell (1931) in their original determination. The formula which most correctly describes the contents of one unit cell is

2[Ca₁₈Al₄Fe(Al,Mg,Fe)₈Si₁₈O₇₀(OH)₈]

INTRODUCTION

The crystal structure of vesuvianite from Bric Camula, Italy was recently described by Coda *et al.* (1970), who found significant differences when compared with the original structure of Warren & Modell (1931). Before the recent work was published, the present studies were underway, and independently almost identical structures were found.

There has been much discussion concerning the formula of vesuvianite (which was well summarized by Ito & Arem, 1970). The cell content proposed by Warren & Modell (1931) was

2[Ca20Al8(Mg,Fe)4Si18O68(OH)8]

and this fitted into the structure which they ingeniously derived from that of grossular garnet. Their proposed structure was checked by comparison of 41 observed and calculated structure factors, which gave fair agreement. Study of this structure suggests that the atoms lying on the 4-fold axis, the only part not included in the garnet analogy, should be the subject of further investigation. Warren & Modell suggested that the only atoms on the 4-fold axis were 2 Ca

atoms separated by 2.84Å, each coordinated by square antiprisms which shared one of their square faces. Coda et al. have determined a structure which is similar to that of Warren & Modell but has a new distribution of atoms along the 4-fold axis. They propose an additional two oxygens (4 per cell) between which they favour a hydrogen bond, and four cation positions (8 per cell) which are statistically occupied by two Ca and two Fe atoms (with minor Ti and Mn). The disordered occupancy of one-half atom per site still has Ca in an 8-fold square antiprism coordination, but the Fe is in 5-fold coordination in a square pyramid. This model, which gave satisfactory agreement of observed and calculated structure factors, led them to suggest the formula

 $2[Ca_{18}(Mg,Fe,Al,Ti,Mn)_{5}Al_{8}(O,OH)_{10}(SiO_{4})_{10}$ (Si₂O₇)₄].

EXPERIMENTAL

In this work samples of vesuvianite from three Canadian localities were studied. Specimens from Turnback Lake near Great Slave Lake, N.W.T., previously described by Meen (1939), R.O.M. #M19485 kindly supplied by Dr. R. I. Gait, and #2 the Davis Pegmatite, York River complex, Bancroft, Ontario, kindly supplied by Dr. G. M. Anderson, were investigated at the University of Toronto. Sample #3 (cat. #4-555, National Mineral Collection, from Wakefield, Quebec, Geological Survey of Canada) was studied at the National Research Council.

All three samples were brown in colour with chemical and crystal data as listed in Table 1. Analyses for samples #1 and #2 were performed with an ARL-EMX electron probe using the method described by Rucklidge et al. (1970). The analysis for sample #3 was performed at the Mines Branch, Dept. of Energy Mines and Resources, Ottawa. The actual crys-

(metal data	#1 Gt. Slave L.	#2 Bancroft	#3 Wakefield
ujstal udid			
Space_group	P4/nno	P4/ma	Plima
a(A)	15.516(3)	15,558(4)	15 5430/121
o(Ă)	11.769(2)	11.810(3)	11 7905(7)
V(Å)3	2833.3	2858.6	2848 4
Dmeas	3.432* g/cm ³		201014
Dcalc	3.443 g/cm3	3.431 g/cm ³	3.430 g/cm ³
Electron prob	<u>e analysis</u>		
Si02	36.6	36.4	37 0
A1202	15.7	14.1	17.0
BeŪ*	1.07		
T102	0.19	4.59	0 95
Fe2Özt	5.16	5.54	4 05
MnŪ	0.50	0.26	n.d
MgO	2.17	0.81	1.79
Ca0	35.6	33.6	37.5
Na ₂ 0	0.04	1.17	n.d.
F -	2.03		
H20++	1.48	2.38	2.46
	100.5	99.6	100.8
-0 ≡ F	0.85		
	99.7		

TABLE 1. CRYSTAL AND CHEMICAL DATA FOR VESUVIANITES

Cell content

#1. 2[Ca_{18.8}Fe(Fe.11^{Ti}.01^{Mn}.03^{Mg}.20^{A1}.65)7.88^{A1}4^{Si}18⁰70.5 -(OH.61^F.39)8^{·Be}1.27] #2. 2[(Ca_{.94}Na_{.06})_{19.0}Fe(Fe.14^{Ti}.21^{Mn}.01^{Mg}.07^{A1}.57)8.13 -A¹4^{S1}18⁰70.6(OH)8] #3. 2[Ca_{19.5}Fe(Fe.06^{Ti}.04^{Mg}.17^{A1}.73)7.88^{A1}4^{S1}18⁰70.4(OH)8] *Taken from Meen (1939). +Fe calculated as Fe₂0₃ -- not determined; n.d. not detected

++Calculated to give 16(OH,F) per cell

tals used for x-ray analysis were different from those on which the probe analyses were performed, but are believed to be representative.

All three samples contain more than 4% Fe₂O₃ (total Fe calculated as Fe₂O₃) and may therefore be classed as 'high Fe' vesuvianites, when compared with the variety of analyses given by Deer *et al.* (1962). The differences between the analyses are unremarkable except that #2 contains a relatively high TiO₂ content. The dark brown colour of the crystals is presumably related to the high Fe content. The 3 cell contents correspond closely to the 'ideal' one of Coda *et al.* (1970), which we have chosen to rearrange slightly as:

2[Ca19Fe(Fe,Ti,Mn,Mg,Al)8Al4Si18O70(OH,F)8]

All three crystals belong to the space group P4/nnc, as was unambiguously determined from long-exposure Weissenberg and precession photographs taken with MoK α and CuK α radiations. No extra reflections violating P4/nnc extinction requirements were observed.

Crystal #1 was a rather irregular tetragonal prism, crystal #2 an irregular rectangular prism flattened in the c direction, and crystal #3 from Wakefield, Quebec, was ground into a sphere in a Nonius crystal grinder. All three crystals were mounted separately on Picker four-circle diffractometers for intensity data collection. MoK α radiation was used for data collection on all three crystals and several standard reflections were monitored during this process to check for stability of the electronic system and possible crystal misalignment. A summary of the experimental methods employed is given in Table 2. The data were reduced in the usual way and corrected for Lp factors.

Scattering factors used in the least-squares refinement of data from all crystals were those reported by Cromer & Mann (1968). Anomalous dispersion corrections were made for all atoms except oxygen and corresponding f' and f''values were taken from Cromer & Lieberman (1970).

TABLE 2. SUM	MARY OF EXPERIMENT	AL METHODS AND RES	ULTS
	#1 Gt. Slave Lake	#2 Bancroft	#3 Wakefield
Crystal size	0.24x0.24x0.30mm	0.36x0.21x0.17mm	0.17mm radius
Radiation used	Zr-filtered MoKa	Zr-filtered MoKa	monochromatized
Instrument	Picker FACS-1	Picker FACS-1	automated Picker
20-0 scan speed	1°/min	l°/min	2°/mrin
Background	2 x 40 sec	2 x 20 sec	2 x 30 sec
Std. reflections meas.	2 every 60 refl.	2 every 60 refl.	3 every 25 refl.
Data up to (sin θ/λ) max.	0.70	0.70	0.80
No. of independent reflections measured	2082	2045	4281
No. of 'observed' refl.	1727 (3o)	1701 (3o)	3390(1.65 ₀)
Absorption corrections	not applied	not applied	spherical
Weighting scheme	unit weights	unit weights	statistical
Final R value	0.039	0.047	0.050
Final R.	0.050	0.059	0.044

Despite initial problems of fitting the data to the structure model of Warren & Modell (1931), who had used a left-handed system of axes, it became clear that their model was essentially correct, though the electron density distribution along the 4-fold axes indicated serious discrepancies. The interpretation of this distribution is somewhat subjective, but it can be satisfactorily explained by the model of Coda et al. (1970), that there is a statistical distribution of $\frac{1}{2}$ cations over 2 sets of positions with 4-fold multiplicity, and 4 oxygens, O(10). As there are many different possibilities for assigning the Ca, Al,Fe,Mg,Mn and Ti cations to the various sites, least-squares refinement of site occupancies, as well as positional coordinates, was undertaken using the program of Finger (1967), for crystals #1 and #2. This program allows two atom types to be assigned to each site whose occupancy is to be refined, and it will then indicate the best combination of these atoms in the site. Where more than two elements may be accommodated in a single site, as for instance Fe,Ti, Mn,Mg and Al which may occur together in an octahedral site, a composite of two major elements of contrasting atomic number was chosen, e.g. Fe and Al to give the same average scattering factor as the complete set. The result, while not absolute, indicates where the heavier and lighter elements should be placed. For samples

#1 and #2 this site occupancy refinement unambiguously assigned Al alone to the 8-fold centrosymmetric A site, Fe alone to the 4-fold disordered half-occupied B site, Ca alone to the 4-fold disordered half-occupied C site, and the balance of cations Al,Fe,Mg,Mn to the 16-fold general AlFe site.

For crystal #3, the XRAY (Stewart et al. 1972) system of programs was used, and in this case site occupancies of one atomic species were refined. The refinement was therefore an attempt to match the observed and calculated electron density, and no significance was attached to the particular scattering factors used. The final electron distribution, however, agrees well with the analyses of crystals #1 and #2. Table 3 shows the final atomic coordinates for the three vesuvianites. The nomenclature of the atoms and the coordinates given are chosen so as to be easily compared with the data of Warren & Modell (1931), but because we used a right-handed system the signs for the x coordinates are opposite. Anisotropic temperature factors are given in Table 4, and Table 5 shows some of the more important interatomic distances in various coordination polyhedra. The table containing observed and calculated structure factors, has been deposited with the National Science Library.*

Figure 1 is a stereodiagram of one unit cell. In Figure 2 the details of atoms on the 4-fold axis are shown. Figure 2a shows the two complete sets of occupied C and B positions for crystal #3, while Figure 2b shows a possible real arrangement of singly occupied C and Bsites as they must exist in one part of the disorder.

DISCUSSION

The anions OH and O(10) are the only ones in the structure which are not bonded to Si atoms and this is the reason that OH was so assigned. Our attempts to locate the H atoms were unsuccessful, and for this reason we cannot say whether there is H associated with O(10) as Coda *et al.* (1970) suggest.

Our assignment of pure Al to the centrosymmetric A site depends upon the mean octahedral

^{*}This table has been deposited with the Depository of Unpublished Data. Copies may be obtained on request to: Depository of Unpublished Data, National Science Library, National Research Council of Canada, Ottawa, Ontario, Canada.

		TABL	E 3. ATOMIC	FRACTIONAL C	OORDINATES	5, STAND	ARD DEV	ATIONS AND	ISOTROP	IC TEMPE	RATURE F	ACTORS FO	R VESUV	IANITE			
		fl Gre	at Slave La	e				#2 Bancro	oft					#3 Wakef1	eld		· - ·
	Position	* #	¥	8	B(Å)2		c	y	2	ž	3(Å)2	æ		¥	R		<i>в</i> (Å)2
S1(1) S1(2) S1(3) Ca(1) Ca(2) Ca(3) C B AlFe	4d 16k 16k 4o 16k 16k 4o 4o 16k	-0.25 -0.18095(8) -0.08263(9) -0.25 -0.18933(6) -0.10647(6) -0.25 -0.25 -0.11319(8)	0.25 0.04039(8) 0.15099(8) 0.25 0.04379(6) -0.17982(6) -0.25 -0.25 0.12107(8)	0 0.87113(8) 0.36485(11 0.25 0.37938(8) 0.88629(9) 0.14092(39 0.05702(42 0.12631(11	0.59(5) 0.46(3) 0.58(3) 0.78(4) 0.60(2) 0.88(2) 1.44(10) 1.67(11)	-0.25 -0.18(-0.08; -0.25 -0.18(-0.10(-0.25 -0.25 -0.11(077(10) 349(11) 007(8) 067(8) 095(9)	0.25 0.03960(1 -0.15075(1 0.25 0.04441(8 -0.17941(8 -0.25 -0.25 0.12038(9	0 0) 0.871 0) 0.364 0.25 0.379 0.885 0.141 0.045 1) 0.127	42(13) (62(13) (62(13) (36(10) (98(11) 1 23(53) 1 21(46) 1 75(12) (0.55(5) 0.58(3) 0.63(3) .47(5) 0.78(2) .08(2) .35(13) .35(10) 0.55(3)	-0.25 -0.18083 -0.08275 -0.25 -0.18903 -0.10024 -0.25 -0.25 -0.25 -0.11252	(5) 0 (5) -0 (3) 0 (4) -0 (4) -0 (5) 0	.25 .04058(5) .15068(5) .25 .04377(4) .17980(4) .25 .25 .25 .12111(5)	0 0.8711 0.3644 0.25 0.3795 0.8855 0.1395 0.1395 0.0484 0.1264	17(8) 81(7) 59(6) 84(6) 59(27) 12(29) 15(8)	0.71(3) 0.66(2) 0.81(2) 0.81(3) 0.63(1) 1.22(2) 0.90(6) 2.50(7) 0.70(3)
A 0(1) 0(2) 0(3) 0(4) 0(5) 0(5) 0(6) 0(7) 0(8) 0(9) 0(10) 0H	57 16k 16k 16k 16k 16k 16k 16k 8h 40 16k	U -0.22040(23) -0.11681(22) -0.04907(22) -0.06169(22) -0.16969(22) -0.11719(26) 0.05622(23) -0.06063(22) -0.14457(22) -0.25 -0.00425(21)	0.17294(2: 0.15937(2: 0.22158(2) 0.10677(2: 0.01546(24 -0.27076(2: 0.17440(2: -0.14457(2: -0.14457(2: -0.25 0.06216(2)	0.08628(29) 0.27910(29) 0.07539(28) 0.47056(28) 0.17907(30) 0.05942(31) 0.32233(31) 0.06655(29) 0.25 0.86625(73) 0.13628(27)	0.55(5) 0.85(7) 0.75(6) 0.79(7) 1.02(7) 1.02(7) 1.45(8) 0.91(7) 0.83(7) 1.01(9) 1.17(14) 0.71(6)	0 -0.219 -0.110 -0.048 -0.961 -0.179 0.056 -0.060 -0.144 -0.25 -0.004	967(28) 503(28) 376(28) 110(27) 954(27) 913(31) 580(29) 983(27) 182(28)	0 0.17240(2 0.15938(2 0.22176(2 0.10669(2 0.10669(2 0.01480(2 -0.27181(2 0.17486(3 -0.09074(2 -0.14482(2 -0.25 0.06174(2	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 74(36) 0 42(35) 0 60(35) 0 51(34) 0 36(38) 0 90(39) 1 39(40) 1 83(40) 1 83(40) 1 0 38(87) 1 21(34) 0	222(6) .88(8) .73(7) .73(7) .96(8) .28(9) .03(8) .92(10) .12(16) .79(7)	0 -0.22031 -0.11715 -0.04932 -0.06174 -0.16955 -0.11777 0.05603 -0.06090 -0.14406 -0.25 -0.00441	$\begin{array}{c} 0\\(12) & 0\\(12) & 0\\(13) & 0\\(13) & 0\\(12) & 0\\(12) & 0\\(13) & -0\\(13) & -0\\(13) & -0\\(13) & -0\\(12) & 0$.17320(12 .15951(12 .22170(12 .10611(12 .01587(13) .27110(13 .17329(13) .09017(12 .14406(13) .25	0 0.0858 0.2783 0.0768 0.4707 0.1787 0.3219 0.6587 0.3219 0.25 0.8606 0.1359	33(19) 37(19) 39(19) 74(18) 79(20) 77(19) 95(21) 10(19) 56(60) 14(17)	0.76(3) 0.84(4) 0.96(4) 0.87(4) 0.83(3) 1.09(4) 1.54(5) 1.11(4) 0.92(4) 1.09(6) 3.24(14) 0.68(3)
*Numb e	er of posi	itions and Wy	koff notatio	n for space	group P4/m TABLE	no, orig	orropic	. Standa TEMPERAT	rd devia URE FACT	tions in ORS F OR	vesuvian	ises refe	r to la	st figure	s.		
	\$ ₁₁	β ₂₂	β ₂₂ β ₁ .	β ₁₃	β22	β11	β22	β ₂₂	βτο	βιο	βαα	β.,	βaa	Baa Baa	βια	81.0	Baa
Si(1) Si(2) Si(3) Ca(1) Ca(2) Ca(3) C B AlFe A 0(1) 0(2) 0(3) 0(4) 0(5) 0(4) 0(5) 0(6) 0(7) 0(8) 0(9) 0(10) 0(4)	62(46(86(127(55(55(62(62(64(122(78(89(85(85(85(85(73(72(134(111(111(5) 62(5) 4) 46(4) 5) 37(4) 5) 37(4) 7) 67(7) 3) 71(3) 3) 68(3) 68(8) 43(8) 13) 73(11) 12) 99(13) 12) 99(13) 12) 73(11) 13) 132(14) 16) 91(14) 16) 91(14) 16) 91(14) 17) 78(12) 12) 78(12) 11) 134(11) 16) 111(16	84(14) 86(7) -1 90(8) 4 63(10) 0 99(5) 6 212(6) 16 212(6) 16 212(8) -3 860(49) 0 112(8) -3 118(12) 13 118(12) 13 118(12) 13 118(12) -30 121(22) -4 138(21) 45 188(21) 11 177(21) -3 97(26) -57 422(59) 0 93(13) -13 3	$\begin{array}{c} & 0 \\ (3) & -4(5) \\ (4) & 0(5) \\ (3) & -4(4) \\ (3) & -4(4) \\ (5) & -7(4) \\ (3) & -4(4) \\ (5) & -1(8) \\ (10) & -3(13) \\ (10) & -28(13) \\ (10) & -28(13) \\ (10) & -28(14) \\$	$\begin{array}{c} 0\\ 7(5)\\ -3(5)\\ 0\\ 0(4)\\ -16(4)\\ 0\\ 0\\ -2(5)\\ 1(8)\\ 8(13)\\ -16(13)\\ -16(13)\\ -16(13)\\ -16(13)\\ 7(14)\\ 5(14)\\ 17(13)\\ 5(14)\\ 17(13)\\ 24(16)\\ 0\\ -7(12)\\ \end{array}$	64(6) 58(6) 97(6) 202(11) 91(4) 87(13) 32(9) 87(15) 94(16) 87(15) 94(16) 102(16) 78(16) 86(15) 169(19) 87(16) 86(15) 169(19) 87(16) 87(16) 87(16) 87(16) 87(16) 87(16) 121(14)	64(6) 62(6) 43(5) 128(10 93(4) 85(4) 85(4) 85(4) 85(7) 85(7) 85(7) 87(15) 87(15) 87(15) 87(15) 87(15) 87(15) 81(15) 90(17) 113(17) 75(15) 113(17) 75(15) 121(14) 113(17) 75(15) 121(14) 113(17) 75(15) 121(14) 113(17) 75(15) 121(14) 113(17) 75(15) 121(14) 113(17) 75(15) 121(14) 113(17) 75(15) 121(14) 113(17) 75(15) 121(14) 113(17) 75(15) 121(14) 113(15) 121(14) 113(15) 121(14) 113(15) 113(1	85(17) 95(9) 92(9) 130(15) 115(7) 271(9) 383(46) 76(9) 140(26) 140(26) 140(26) 140(26) 140(26) 140(27) 140(27) 146(27) 185(27) 185(27) 185(27) 175(27) 327(67).	0 1(4) 0(5) 0 5(3) 11(3) 0 -12(4) 10(6) -2(12) 14(12) 11(12) 23(13) 30(13) 12(13) 0(12) 22(12) 0 -2(12) -2(-1(5) -3(6) 0 -5(4) -54(5) 0 15(5) 4(9) -54(5) 0 15(5) 4(9) -13(17) -18(16) 23(17) -18(16) 23(17) 24(19) 7(18) 1(19) 0 0 0 -7(16)	23 0 3(6) -7(6) 0 2(5) 31(5) 0 -8(5) 6(9) 34(17) +12(17) +12(17) +12(17) +12(17) +12(17) +16(18) +-16(18) -16(1	46(3) 41(2) 80(3) 81(4) 37(2) 73(2) 32(5)	46 (3) 50 (2) 43 (2) 47 (4) 59 (2) 66 (2) 66 (2) 45 (4) 47 (3) 52 (4) 45 (4) 47 (3) 52 (4) 47 (3) 52 (4) 42 (6) 100 (7) 76 (7) 97 (7) 55 (6) 102 (6) 43 (8) 48 (8)	33 141(10) 124(5) 122(5) 122(8) 122(8) 123(8) 273(24) 273(24) 273(24) 273(24) 131(6) 131(6) 131(13) 136(14) 144(13) 156(14) 166(14) 166(14) 166(14) 166(14) 166(14) 17(15) 122(15) 107(15) 122(77) 112(12)	0 1(2) 5(2) 5(1) -21(1) 0 1(2) 3(3) -2(5)	-3(3) 5(3) 0 -5(2) -49(3) 0 0 11(3) -1(5) -27(8) 25(9) 34(9) -25(9) 34(9) -48(9) -22(9) 0 0	2,3 0 -7(3) -3(3) 0 1(2) 22(3) 0 -4(5) -12(9) 8(9) -6(9) 10(8) 11(9) -5(9) 10(8) 11(9) -6(8) 21(9) 0 0 0 0 0 0 0 0 0 0 0 0 0

The values given in this table have been multiplied by 10^5 . Standard deviations are in parentheses.

		#1	Gt. Slave L.	#2 Bancroft #	3 Wakefield
Si(1)	-0(1) (4X)		1.635(4)	1.638(4)	1.632(2)
`Si(2)	-0(2) 0(3) 0(4) 0(7)	meaņ	1.639(5) 1.644(5) 1.674(5) 1.608(5) 1.641	1.645(5) 1.647(5) 1.676(4) 1.610(5) 1.644	1.650(2) 1.640(2) 1.684(2) 1.614(2) 1.614(2) 1.647
S†(3)	-0(5) 0(6) 0(8) 0(9)b	mean	1.633(5) 1.599(5) 1.622(4) 1.661(2) 1.629	1.644(5) 1.605(5) 1.620(5) 1.659(3) 1.632	1.643(2) 1.608(2) 1.624(2) 1.659(1) 1.634
Ca(1)	-0(1) (4X) 0(2) (4X)	mean	2.314(4) 2.519(5) 2.416	2.343(4) 2.540(4) 2.442	2.320(2) 2.521(2) 2.421
Ca(2)	-0(1) 0(2) 0(3) 0(5) 0(5) 0(5) 0(6) 0(8)	mean	2.482(5) 2.427(5) 2.363(4) 2.450(4) 2.417(5) 2.341(5) 2.893(6) 2.317(4) 2.468	2.482(5) 2.426(4) 2.374(4) 2.462(4) 2.424(5) 2.337(4) 2.943(5) 2.329(4) 2.472	2.490(2) 2.431(2) 2.383(2) 2.451(2) 2.426(2) 2.344(2) 2.308(2) 2.330(2) 2.470
Ca(3)	-0(3) 0(6) 0(7)5 0(7)7 0(7)13 0(8) 0(10) DH	mean	2.451(5) 2.492(5) 2.551(5) 2.481(5) 2.358(5) 2.609(5) 2.574(2) 2.458(5) 2.458(5) 2.497	2.459(5) 2.514(5) 2.555(5) 2.484(5) 2.353(5) 2.617(5) 2.579(2) 2.469(4) 2.504	2.454(2) 2.499(2) 2.547(2) 2.501(2) 2.357(2) 2.607(2) 2.588(2) 2.461(2) 2.502
C (Ca)	-0(6) (4X) 0(9) (4X)	mean	2.296(6) 2.646(6) 2.471	2.282(5) 2.647(5) 2.464	2.289(3) 2.668(2) 2.479
B (Fe)	-0(6) (4X) 0(10)(1X)	mean	2.086(5) 2.245(11) 2.118	2.070(5) 2.100(12) 2.080	2.085(2) 2.214(8) 2.111
Al Fe	-0(1) 0(2) 0(3) 0(4) 0(5) 0H	mean	1.907(5) 1.897(5) 1.944(5) 2.054(5) 1.960(5) 1.925(5) 1.948	1.943(5) 1.893(4) 1.950(4) 2.074(4) 1.982(5) 1.891(4) 1.956	1.921(2) 1.889(2) 1.937(2) 2.057(2) 1.960(2) 1.917(2) 1.947
A (Al)	-0(4) (2X) 0(8) (2X) 0H (2X)	mean	1.944(4) 1.862(4) 1.873(4) 1.893	1.944(4) 1.874(4) 1.865(3) 1.894	1.939(2) 1.859(2) 1.873(2) 1.890

Standard deviations in parentheses refer to last decimal place, b indicates bridging oxygen in Si $_{00}$ group. (nX) indicates multiplicity of bond. Superscripts refer to symmetry operation number. Equivalent positions in space group P4/mae (origin at T were numbered 1,2...16 from left to right, top to bottom as printed in International Tables for X-Ray Crystallography (1962). bond lengths of 1.893 (#1) and 1.894 (#2), (1.890 for #3), compared with 1.948 (#1) and 1.956 (#2), (1.947 for #3), in the general AlFe position, which presumably contains a higher proportion of larger ions. To support this view, site occupancy refinement indicated .998 Al, .002 Fe in A and .876 Al, .124 Fe in AlFe for #1, and 1.019 Al,-.019 Fe in A and .743 Al, .257 Fe in AlFe for #2. The negative atom fractions arise because the total occupancy was constrained to 1.000, and they thus appear to indicate ultra purity of one element species.

Perhaps it is significant that Fe is concentrated in the less symmetrical of the two octahedral sites. In this case, in a structure with such high symmetry, the distortion is very small, with the quadratic elongation parameters of Robinson *et al.* (1971) being 1.0065 for A and 1.0079 for AlFe in sample #1.

The most irregular coordination polyhedron for medium-sized cations is the square pyramid around the B site. The site occupancy refinement indicates that this disordered site, which should theoretically contain .5 of an atom, appears to have .558 Fe and -.058 Ca while the C site contains .040 Fe and .460 Ca in #1. In #2, B contains .431 Fe and .068 Ca with -.024 Fe and .524 Ca in C. The bond lengths shown in Figure 2b are consistent with this distribution of Fe and Ca. Perhaps one could go a step further and assign the \overline{B} site to Fe^{3+} since this ion has been shown to be associated with the more distorted octahedral sites, e.g. in epidote (Burns & Strens 1967), or with 5-fold coordination sites as in yoderite (Fleet & Megaw 1962). This is not to say that Fe³⁺ is to be associated exclusively with the B site, but further discussion of this must await the results of Mössbauer measurements on this material. The B-O(10) distance seems quite variable with 2.245 in #1, 2.100 in #2 and 2.214 in #3. Coda et al. found B-O(6)

FIG. 1. A stereo view of the unit cell looking down the z-axis. Atom types are indicated by increasing radii: Si, O, OH, AlFe, A, B, C, Ca.

TABLE 5. INTERATOMIC DISTANCES IN CATION COORDINATION POLYHEDRA

FIG. 2. The atomic arrangement along the 4-fold axes. (a) Coordination with each of the B and C positions occupied. (b) An arrangement of singly occupied B- and C-sites showing bond lengths derived for samples 1, 2 and 3.

= 2.077 and B-O(10) = 1.978. The variation of the B-O(10) distance must arise from the peculiar bonding around the B site. B is almost in the plane of the square formed by 4 O(6) atoms, and so can vibrate freely perpendicular to this plane, *i.e.* strongly anisotropically along the 4fold axis. The B site could thus be viewed as having coordination rather like an octahedron with one corner missing. The occurrence of Be-bearing vesuvianite has been recorded from at least 3 localities (Hurlbut 1955) including that from Great Slave Lake (sample #1). Table 6 shows the structural formula which can be calculated for this sample, using electron probe analysis for all constituents except Be and H₂O, the former being determined by Meen (1939) and the latter calculated to give exactly 16 OH per cell. Fe³⁺

TABLE 6.	STRUCTURAL	FORMULA	0F	GREAT	SLAVE	LAKE	(#1)	VESUVIANITE

	Wt. %	Cation prop.	Cation sites
\$10 ₂	36.6	36.000	$\begin{array}{c} 4 & \text{Si}(1) \\ 16 & \text{Si}(2) \\ 16 & \text{Si}(3) \end{array} \end{array} \xrightarrow{36}$
CaO ^{Na} 2 ⁰	35.6 0.04	37.520 0.076 } 37.60	$\begin{array}{c} 4 & Ca(1) \\ 16 & Ca(2) \\ 16 & Ca(3) \\ 2 & Ca(4) = 4 \times 1^{1}C^{1} \end{array} > 38$
Fe ₂ 0 ₃ Fe0	2.70	2.000	$2 \text{ Fe}^{3+} = 4 \times \frac{1}{2} \text{'B'}$
Mn0 Mg0	0.19 0.50 2.17	0.417 > 15.75 3.181	16 A1Fe
A1 203	15.7	10.202	8 41 - 4
Be0 F	1.07	2.531	16 Be ???
н ₂ 0	1.48	9.688	16 H
0=E	100.2		
	99.3		
Total	cation	change 205 0	

Ideal anion charge (assuming 156 0,F) 305.7

Electron probe analysis except for Be and H₂O. For details of this and division of Fe^{2+} and Fe^{3+} see text. Cation proportions calculated assuming 36 Si atoms per cell.

and Fe²⁺ have been divided rather arbitrarily with all Fe^{3+} being assigned to the B site and Fe²⁺ to the AlFe site. Surprisingly, the ratio Fe³⁺/Fe²⁺ determined in this way, 1.10, does not differ too much from that of .85 measured in Meen's original analysis. The role of Be in the crystal structure is unclear, but the structural formula, calculated by assuming 36 Si atoms, indicates that Be is in excess of the required complement of cations, and serves merely to balance charges. It is unlikely to substitute for any of the cations, requiring as it does a tetrahedral site. There is a general set of tetrahedral positions in the structure at -0.512, -0.086, 0.088 where the mean bond length to O(4), O(8), and OH would be 1.645Å. However, if 2.5 atoms of Be were statistically distributed over 16 sites, there would be less than 1 electron at each site, which would be difficult to detect. This possible BeO4 tetrahedron has the disadvantage of sharing one of its faces with the AO₆ octahedron, and an edge with the $Si(3)O_4$ tetrahedron. There is no indication of any electron density in a difference Fourier map.

In conclusion it may be said the modified vesuvianite structure described here resolves some unsatisfactory aspects of the Warren & Modell structure. Firstly, the coordination of the Ca(3) atom, formerly [7] is now raised to [8] by the inclusion of the extra oxygen, O(10). This higher coordination number is also to be expected from the otherwise very compact nature of the structure. Secondly, the disordered arrangement of atoms along the 4-fold axis, which nevertheless allows a satisfactory refinement to be obtained, also permits one to speculate on the possible consequences of ordering the atoms

on this axis. Several ordered models are possible. where the 4 sites presently occupied by 1/2 atoms are reduced to 2 fully occupied sites. Such ordering necessarily reduces the symmetry of the structure forcing it into a sub-group of P4/ nnc, such as, for example P4/n. Certain violalations of P4/nnc extinction requirements would be observed, such as have been noted by Arem & Burnham (1969). Because the major part of the structure would conform to P4/nnc with only the ordered, special positions, on the 4fold axis, belonging to the sub-group, it might not be possible to identify the lower symmetry. Thus, a structure with true space group P4/nmight be expected to have diffraction symmetry of P4/nmm or P4 could appear to be P4/mmm, which were the space groups observed by Arem & Burnham. This would satisfactorily resolve the problem of fitting the vesuvianite structure into a space group containing an m symbol, but it is quite possible that an alternative explanation, such as submicroscopic twinning, exists. Until a satisfactory refinement is performed on a vesuvianite violating P4/nnc reflection conditions, we must reserve further speculation.

ACKNOWLEDGEMENTS

Two of us (J. C. R. and V. K.) acknowledge the National Research Council of Canada for support through operating grant A3549, and for capital grants assisting the purchase of the electron probe and x-ray diffractometer. We are grateful to Drs. R. G. Burns, K. Fawcett and N. Cameraman for stimulating discussions, to G. Patterson and O. Malik for help in experimental measurements, and to F. Jurgeneit and B. O'Donovan for preparing diagrams. S. H. Whitlow and E. J. Gabe thank Dr. P. G. Manning for suggesting the problem and Drs. L. Calvert and G. Davey for help with the data collection.

Finally, we are indebted to Dr. J. E. Arem who critically reviewed this manuscript.

REFERENCES

- AREM, J. E. & BURNHAM, C. W. (1969): Structural variations in idocrase. Amer. Mineral. 54, 1546-1550.
- BURNS, R. G. & STRENS, R. G. J. (1967): Structural interpretation of the polarized absorption spectra of Al-Fe-Mn epidotes. *Mineral. Mag.* 36, 204-226.
- CODA, A., DELLA GIUSTA, A., ISETTI, G. & MAZZI, F. (1970): On the crystal structure of vesuvianite. *Atti Acad. Sci. Torino* 105, 1-22.
- CROMER, D. T. & MANN, J. B. (1968): X-ray scattering factors computed from numerical Hartree-Fock wave functions. Acta Cryst. A24, 321-324.

& LIEBERMAN, D. (1970): Relativistic calculation of anomalous scattering factors for x-rays. J. Chem. Phys. 53, 1891-1898.

- FINGER, L. (1967): Determination of cation distributions by least squares refinement. Carnegie Inst. Wash. Year Book 67, 216-217.
- FLEET, S. G. & MEGAW, H. D. (1962): The crystal structure of yoderite. Acta. Cryst. 15, 721-728.
- HURLBUT, C. S. (1955): Beryllian idocrase from Franklin, New Jersey. Amer. Mineral. 40, 118-120.
- ITO, J. & AREM, J. E. (1970): Idocrase: synthesis, phase relations and crystal chemistry. Amer. Mineral. 55, 880-912.
- MEEN, V. B. (1939): Vesuvianite from Great Slave Lake region, Canada. Univ. Toronto Stud. Geol. Series 42, 69-74.

- ROBINSON, K., GIBBS, G. V. & RIBBE, P. H. (1971): Quadratic elongation, a quantitative measure of distortion in coordination polyhedra. *Science* 172, 567-570.
- RUCKLIDGE, J. C., GIBB, F. G. F., FAWCETT, J. J. & GASPARRINI, E. L. (1970): Rapid rock analysis by electron probe. *Geochim. Cosmochim. Acta* 34, 243-247.
- STEWART, J. M., KRUGER, G. J., AMMON, H. L., DICKINSON, C. & HALL, S. R. (1972): The x-ray system-version of June 1972. Tech. Rept. TR-192. Computer Sci. Center, Univ. Maryland.
- WARREN, B. E. & MODELL, D. I. (1931): The structure of vesuvianite Ca₁₀Al₄(Mg,Fe)₂Si₉O₃₄(OH)₄ Z. Krist. 78, 422-432.

Manuscript received August 1974.