NEW DATA FOR KÖTTIGITE AND PARASYMPLESITE

B. D. STURMAN

Dept. of Mineralogy and Geology, Royal Ontario Museum, 100 Queen's Park, Toronto, Ontario, M5S 2C6

Abstract

Microprobe analysis of köttigite from the type locality (Schneeberg, Germany) gave the formula $(Zn_{2.44}Co_{0.42}Ni_{0.14})_{\Sigma=3}(AsO_4)_2 \cdot 8H_2O$. The mineral is light red to carmine red, streak reddish, perfect $\{010\}$ cleavage, hardness 2-3, D_{esle} 3.24g/cm³. It is biaxial (+), $2V = 85^{\circ}$, n_{α} 1.619, n_{β} 1.645, n_{γ} 1.681, X = b, $Z\Lambda c = + 32^{\circ}$. Pleochroism is weak, absorption Z < Y = X. Unit-cell dimensions calculated from powder diffraction data are a 10.240, b 13.401, c 4.752Å, β 105°07', Z = 2.

Blue crystals of supposed köttigite from the Ojuela mine, Mexico (Larsen 1921) are parasymplesite. Microprobe analysis gave a formula $(Fe_{1.88} Zn_{1.32})_{Z=3}$ (AsO₄)₂·8H₂O. Crystals are pale blue, with very pale blue streak, perfect {010} cleavage, hardness 2-3, D_{calc} 3.13g/cm³, D_{mass} 3.12g/cm³. The mineral is biaxial (+), $2V = 86^{\circ}$, n_{α} 1.620, n_{β} 1.648, n_{γ} 1.685, X = b, $Z\Lambda c = +29^{\circ}$. Pleochroism is weak, absorption X > Y = Z. Unit-cell dimensions calculated from the powder pattern are *a* 10.276, *b* 13.480, *c* 4.771Å, β 105°01', space group C2/m; Z = 2.

SOMMAIRE

La köttigite type de Schneeberg (Allemagne) donne, à la microsonde, la formule $(Zn_{2.44}Co_{0.42} Ni_{0.14})_{\Sigma=3}$ $(AsO_4)_2 \cdot 8H_2O$. De couleur rouge pâle à rouge carmin, rougeâtre dans la rayure, elle possède un clivage parfait {010} et la dureté 2-3. Sa densité calculée est $D_x = 3.24$. Elle est biaxe positive, avec $2V = 85^\circ$, n_{α} 1.619, n_{β} 1.645, n_{γ} 1.681; X = b, $Z \wedge c = +32^\circ$; faiblement pléochroïque, absorption Z > Y = X. Les dimensions de la maille, calculées à partir des données de diffraction (méthode des poudres), sont: a 10.240, b 13.401, c 4.752Å, β 105°7', d'où Z = 2.

Des cristaux bleus de la mine Ojuela (Mexique), identifiés comme köttigite (Larsen 1921) sont en fait de la parasymplésite. La microsonde donne la formule (Fe_{1.68}Zn_{1.32})_{Z=3}(AsO₄)₂.8H₂O. De couleur bleu pâle, très pâle dans la rayure, à clivage parfait {010} et de dureté 2-3, cette parasymplésite a pour densité calculée $D_x = 3.13$, mesurée $D_m = 3.12$. Elle est biaxe positive, avec $2V = 86^\circ$, n_{α} 1.620, n_{β} 1.648, n_{γ} 1.685, X = b, $Z\Lambda c = +29^\circ$; faiblement pléochroïque, absorption X > Y = Z. Les dimensions de la maille, calculées à partir du diagramme de poudre, sont: a 10.276, b 13.480, c 4.771Å, β 105° 01', d'où Z = 2; le groupe spatial est C2/m.

(Traduit par la Rédaction)

INTRODUCTION

The Royal Ontario Museum recently acquired a beautiful specimen of blue crystals, labelled köttigite, from Ojuela mine, Mapimi, Mexico. During routine examination of the crystals, it became evident that data for köttigite, available in the literature, are either incomplete or are not reliable. For example, the two sets of optical data available (Larsen 1921; Wolfe 1940) are not in agreement and both were determined on unanalyzed specimens. Also, the two strong lines characteristic for the vivianite group are missing in the köttigite powder diffraction pattern (JCPDS card #1-744). Consequently, the blue crystals from Mexico, and a Royal Ontario Museum specimen of köttigite from the type locality (Schneeberg, Germany) were analyzed. Microprobe analysis of the crystals from Mexico showed these to be parasymplesite Fe₃(AsO₄)₂• 8H₂O, with large amounts of Fe replaced by Zn. The Museum specimen from Schneeberg is köttigite, Zn₃(AsO₄)₂•8H₂O, with only a small amount of Co and Ni.

KÖTTIGITE

Köttigite crystals on the Schneeberg specimen in the Royal Ontario Museum (ROM specimen No. M15537) are less than 0.3 mm in size. Most of the köttigite is a crust over altered rock; a few small crystals which protrude through the crust in several areas give signals too poor to allow measurements on the optical goniometer. The forms listed in Table 1 were observed, with the universal stage, on three crystals.

Köttigite crystals are elongate parallel to [001] and flattened on $\{010\}$. The most common habit is shown in Figure 1a.

TABLE 1. ANGLE TABLE FOR KÖTTIGITE, SCHNEEBERG, GERMANY

monoclin	ic, <i>a</i> =10.240	b=13.401	a=4.752Å	β¤105°07'
Form obse		rved	calcula	ated
	ф	ρ	φ	ρ
b 010 m 110	0 55°	90° 90°	0°00' 53°35'	90°00' 90°00'
$\frac{n}{201}$	-47°	50 1/2° 44°	-44°16'	50°55' 44°43'

FIG. 1. (a) The common shape of köttigite crystals from Schneeberg, Germany; (b) the orientation of the optical and crystallographic elements for köttigite crystals lying on {010}.

^Iest

70

dobs

7.87

Physical and optical properties

Köttigite is light red to carmine red, with the streak being reddish white. Hardness is 2-3. There is a perfect {010} cleavage. Density was not determined because of the small amount of clean sample available. The calculated density, 3.24 g/cm^3 , is smaller than the value of 3.32given by Wolfe (1940) because the unit-cell dimensions, calculated from the powder diffraction pattern, are larger.

Orientation of the principal vibration direc-

TABLE	2.	-UNJ	T-CELI	DIMENSIONS,	OPTICAL	AND	PHYSICAL	CONSTANTS	OF
			. Ki	OTTIGITE FROM	SCHNEEBE	RG,	GERMANY		

-	This study*	Larsen (1921)	Wolfe, (1940)
α b σ Space group Z	10.240(6) 13.401(8) 4.752(2) 105°07'(2) C2/m 2		10.11 13.31 4.70 103°50' C2/m 2
Dealc Dealc	3.24 g/cm ³ 2-3	3.1 g/cm ³ 2.5-3	3.33 g/cm ³ 3.32 g/cm ³ 2.5-3
n _α nβ nγ	1.619 (1) 1.645 (1) 1.681 (1)	1.662 1.683 1.717	1.622 1.638 1.671
2V _B meas. 2V _B calc. dispersion	85° (1) 83° r <v< td=""><td>77° 2*<v< td=""><td>74° 72° imperceptible</td></v<></td></v<>	77° 2* <v< td=""><td>74° 72° imperceptible</td></v<>	74° 72° imperceptible
pleochroism X Y z absorption	weak colorless colorless f le red f = X	nonpleochroic	
orientation of the indicatrix	= b 2 = + 32° (1)	x = b ZA $a = 37^{\circ}$	$\begin{array}{l} x = b \\ z \Lambda \sigma = 37^{\circ} \end{array}$
*For (Zn2, 44Co0	0,14) _{Σ=3} (As0 ₄)	2·8H20	

10	Ö	6.	66	(5.70		020		30		1.95	6	1.9	56	510	
2	U F	4.	93		1.94		200		25		1 01		1.9	04 10	402	
	5	4.	205		1.59		111		20		1.91	4	1.9	12	202	
- 4	5	4.	080		1.071		130		5		1 83	á	1.5	00	202	
	1		000		1.071		220		15		1 69	â				
3	'n	3.	903		3,909	-	201		iñ		1.67	7				
1	5	3.	652		3.656		iii ·		iõ		1.66	2				
5	õ	3.	220		3.221	-	131		15		1.65	j.				
20	ō	3.	195		3.200		310		1		1.62	3				
50	0	3.	006	:	3.006		311		2		1.61	4				
90	0 .	2.	994	. :	2.995	;	201		10		1.60	1				
	1 ·	2.	771	- 1	2.773		240		20		1.56	1				
6	0	2.	734		2.734	;	221		10		1.54	4				
2	0	2.	706		2.705	1	041		5		1.53	1				
3	0	2.	651		2.652	14 - L	330		2		1.51	6				
	5	2.	546		2.544		241		30		1.49	9				
51	0	2.	462		2.460	1	401		1		1.48	4				
20	U	2.	338		2.338		112		5		1.46	ž				
2	5	2.	325		2.325		202		5		1.45	0				
	^	0	212		2.322	-	101		2		1.42	ວ ວ				
11	U	۷.	312		2.309		461 060		÷.		1.41	0				
	1	2.	235		2.234		241		÷		1 36	1				
2	5	2	196		2 106	÷	222		i		1 34	6				
- î	5	2	089		2,090		112		5		1.26	ă				
	~		005				••		ĭ		1.21	ģ				
									5		1.18	8				
Gui	inier	ca	nera	Cu	α rac	liati	ion,	inten	siti	ies	est	ima	ted	vis	ually	, ,
1	TABLE	4.	CHEMI	CAL	COMPO	SITIC	N OF	KÖTTIG	ITE	FRO	M SC	HNE	EBER	G, G	ERMAN	1
-						1			2					3		-
7	Zn0				30	.52		3	3.6					32.	32	
ļ	1s205				[37	.17]		3	89.5					37.	42	
	40.0					'.			1 70	,				1	70	

TABLE 3. X-RAY POWDER DIFFRACTION DATA FOR KÖTTIGITE

^Iest

15

^dmeas

2.078

^dcalc

2.079

hkl

350

510 402

hkl

110

^dcalc

7.95

As205	[37.17]	39.5	37.42
N10	2.00	1.78	1.70
CoO	6.91	5.39	5.12
н ₂ 0	23.40	n.d.	23.44
-	[100.00]		100.00
atomic ratio	Zn:Co:Ni = 2.28:0.56:0.16	Zn:Co:Ni ≓ 2.44:0.42:0.14	Zn:Co:N1 = 2.44:0.42:0.14

1. Köttig (1849) in Palache *et al.* (1951). 2. This study; microprobe analysis by G. Springer. 3. Theoretical $(Zn_{2.44}Co_{0.42}Ni_{0.14})_{\Sigma=3}(AsO_4)_2$.^{8H}₂O.

monoclinic,	a¤10.276	b=13.480	<i>o</i> =4.771Å	β=105°01
Form	measu	red	calculated	
				p
b 010	359°40'	89°55'	0°00'	90°00'
a 100	89°10'	90°18'	90°00'	90°00'
m 110	54°19'	90°04'	53°38'	90°00'
w 201	-90°30'	34°22'	-90°00'	34°44'
v 221	-44°55'	44°12'	-44°24'	44°441

	This	Ito et al. (1954) $Fe_3(As0_4)_2 \cdot 8H_20$		
	Ojuela min single crystal	ne, Mexico powder data	Kiuva, Japan single crystal	
a b B Space group Z	10.30 (2) 13.45 (2) 4.78 (2) 104°45'(15') <i>C</i> 2/m 2	10.276 (4) 13.480 (5) 4.771 (2) 105°01' (3') - 2	10.25Å 13.48 4.71 103°50' <i>C</i> 2/ <i>m</i> 2	
Dmeas. Dcalc. Hardness	3.12 g/cm ³ 3.13 g/cm ³ 2-3		3.07 g/cm ³ 3.097 g/cm ³ 2	
$\begin{array}{c} n_{\alpha} \\ n_{\beta} \\ n_{\gamma} \\ \text{Optic Sign} \\ 2V_{\beta} \text{ meas.} \\ 2V_{\beta} \text{ calc.} \end{array}$	1.620 (2) 1.648 (1) 1.685 (1) positive 86° (1) 85°		1.628 1.660 1.705 neg.?	
Dispersion Pleochroism	r≺v weak X pale blue Y colorless Z colorless		weak X bluish green Y yellowish S brownish yellow	
Absorption Orientation of the indicatrix	x > y = z x = b $z A a = + 29^{\circ}$ (1)		$\overline{X} = b$ $Z\Lambda \sigma = 31^{\circ}20^{\circ}$	

For (Fe1.68Zn1.32) 2=3 (As04) - 8H20

tions and optic axial angle were determined on the universal stage. Refractive indices were determined by the immersion method on crystals lying on (010) and (201) faces in sodium light. Pleochroism is weak, but was easily observed on most grains lying on (010). The absorption is greatest for vibration direction Z, as in erythrite. Optical data and some physical properties are listed in Table 2 together with data previously reported by Larsen (1921) and Wolfe (1940). The optical orientation is shown in Figure 1b.

X-ray crystallography

The X-ray powder diffraction pattern of köttigite is similar to those of the vivianite group. The computer program of Evans *et al.* (1963) was used to refine the unit-cell dimensions given in Table 2. The data from the powder diffraction pattern (Table 3) are in agreement with the space group C2/m proposed by Wolfe (1940).

Chemical composition

Dr. G. Springer of the Metallurgical Laboratories, Falconbridge Nickel Mines Ltd., kindly agreed to do a microprobe analysis of the

FIG. 2. (a) The common shape of parasymplesite crystals from Ojuela mine, Mexico; (b) the orientation of the optical and crystallographic elements for parasymplesite crystals lying on {010}.

Schneeberg köttigite. The result is compared in Table 4 to that given in Palache *et al.* (1951) and to the composition calculated for the same Zn:Ni:Co atomic ratio as determined with the microprobe.

PARASYMPLESITE

Radiating sprays of light blue crystals of parasymplesite up to 5x1x0.2 mm are present on altered rock from the Ojuela mine, Mapimi, Mexico (ROM specimen M 34013). A drawing of a typical crystal is shown in Figure 2a. Most parasymplesite crystals are elongate parallel to [001] and flattened on {010}. The following forms were observed with the optical goniometer on two crystals: {010}, {100}, {110}, ${\overline{201}}$ and ${\overline{221}}$. Measured and calculated values of Φ and ρ for these forms are given in Table 5.

Physical and optical properties

The crystals are pale blue, with a very pale

TABLE 7. X-RAY POWDER DIFFRACTION DATA FOR PARASYMPLESITE

Ojue	la min	e, Mex	ico*	Kiuva Ito	, Japan et al.	Ojue	ela min	ie, Mex	tco	Ki	uva, Ipan
				'	954						
⁷ est	dobs	dcalc	hkl	rest	dobs	rest	dobs	^d calc	hkl	^I est	dobs
-70 -100 20 5 40 5 1 30 5 20 90 -1 50 5 5 5 40	7.91 - - - - - - - - - - - - -		110 200 200 200 111 130 220 201 111 131 310 - 201 311 310 - 201 311 310 - 240 221 330 221 330 221	118 12 17 38 9 - 7 10 9 - 10 - 10 - 10 - 10 - 10 - 10 - 10	9.006 8.119 7.499 7.063 6.830 5.051 - 4.429 4.051 3.991 3.723 3.425 3.423 3.423 3.423 3.423 3.423 3.423 3.423 3.423 3.423 3.425 3.423 3.425 3.423 3.425 3.423 3.425 3.423 3.425 3.4555 3.4555 3.4555 3.4555 3.4555 3.4555 3.4555 3.45555 3.45555 3.45555 3.45555555555	25 10 - 5 10 - 5 10 - 5 10 - 5 10 - 5 10 - 5 10 - 5 10 - 5 10 - 5 5 15 - 5 5 15 - 5 5 15 - 5 5 15 - 5 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - - - - - - - - - - - - -	2.205 2.107 2.092 1.964 1.925 1.914 1.925 1.914 1.673 1.662 1.667 1.620 1.660 1.569 1.549 1.538 1.521 1.507 1.491 1.455	2.205 2.202 2.107 1.964 - - - - - - - - - - - - - - - - - - -	Ž222 151 132 350 510		2.099 2.059 - - - - 1.694 1.694 1.688 - -
10	2.349	2.348	<u>1</u> 12	-	2.4]1	1	1.439	2	-		
20	2.338	2.334 2.333	151 202	9 9	2.335	1 1	1.394 1.367	Ξ	-		
10	2.317	2.317	421 060	6	2.306	15	1.352	2	-		
1	2.246	2.245	241	6	2.252	5			-		

* Guinier camera, CuXα radiation, intensities estimated visually.

TABLE 8. CHEMICAL COMPOSITION OF PARASYMPLESITE, OJUELA MINE, MEXICO

	microprobe	$(Fe_{1.68}^{Zn}_{2.32})_{\Sigma=3}^{(As0_4)_2 \cdot 8H_2^0}$
ZnO	16.86	17.84
Fe0	18.98	20.55
As205	38.12	38.18
H20	n.d.	23.43
<u> </u>		100.00
atomic ratio	Fe:Zn ≓ 1.68:1.32	Fe:Zn ≕ 1.68:1.32

blue streak. The $\{010\}$ cleavage is perfect, and crystals can be bent easily. Hardness is about 2-3. The density determined with a Berman microbalance is 3.12 g/cm³, which compares well with $D_{eale}=3.13$ g/cm³.

The optical properties are listed in Table 6 and are compared to those given by Ito *et al.* (1954). Indices of refraction were determined by the immersion method, and the orientation of the principal vibration directions (Figure 2b) and optic axial angle were determined on the universal stage. The crystals are pale blue to colorless under the microscope. Pleochroism is weak, with absorption being strongest for X.

X-ray crystallography

Powder diffraction data are given in Table 7. The pattern reported by Ito *et al.* (1954) has more lines because some are CuK β lines, and because some symplesite is present. All lines observed in this study are in agreement with powder data for other minerals of the vivianite group, except for differences in the intensities of the strong lines.

Refined unit-cell dimensions (Table 6) were calculated from the powder diffraction pattern with the computer program of Evans *et al.* (1963). Single-crystal study with Weisenberg and precession cameras gave the possible space groups C2, Cm, C2/m. Because the crystals bend easily, unit-cell values from the single-crystal study are inferior to those calculated from the powder pattern.

Chemical composition

D. R. Owens, Mineralogy Section, CANMET, Ottawa, kindly performed a microprobe analysis of parasymplesite (Table 8). The Zn/Fe ratio varies slightly from spot to spot over the surface of the crystals, indicating weak zoning. Ni Co, Sb or P were not detected.

It is impossible to calculate the exact formula from the microprobe analysis, since the water content was not determined. The values for ZnO and FeO probably represent the true Fe/Zn ratio in the crystals, and give an atomic ratio of 1.27 for Fe/Zn so that the formula may be written as $(Fe_{1.68}Zn_{1.33})_{\Sigma=3}(AsO_4)_2 \cdot 8H_2O$. The calculated chemical composition for a mineral with this Fe/Zn ratio is given in Table 8.

CONCLUSIONS

The new data for köttigite, determined on the analyzed crystals from Schneeberg, Germany, are in good agreement with the results obtained by Wolfe (1940) from Schneeberg material which he analyzed with a blow-pipe test. Small differences are probably attributable to minor variations in chemical composition. Larsen (1921) obtained optical properties for köttigite on material which was not analyzed, and it may be speculated that his data were determined on some other mineral.

The blue crystals from the Ojuela mine, Mexico, are intermediate members in the parasymplesite-köttigite series. For the crystals on the Royal Ontario Museum specimen, the ratio between Fe and Zn varies slightly, but is clearly on the parasymplesite side of the series.

There are small but distinct differences in the refractive indices and unit-cell dimensions among köttigite from Germany, parasymplesite from Japan, and parasymplesite from Mexico. The differences do not seem to be linearly related to changes in chemical composition. Intermediate members of the series should be examined to establish the relationships among chemical composition, optics, and crystallography.

ACKNOWLEDGEMENTS

The author would like to thank Dr. G. Springer for the microprobe analysis of the

köttigite, and D. R. Owens for the microprobe analysis of parasymplesite. Mrs. Cynthia Peat prepared films with the Guinier camera, and Miss Helen Driver typed the manuscript. Special thanks are due to Dr. J. A. Mandarino for his help in the preparation of this manuscript.

REFERENCES

- EVANS, H. T. JR., APPLEMAN, D. E. & HAND-WERKER, D. S. (1963): The least-squares refinement of crystal unit cells with powder diffraction data by an automatic computer indexing method. *Program Abst. Amer. Cryst. Assoc. Ann. Meet.*, Cambridge, Mass., 42-43.
- PALACHE, C., BERMAN, H. & FRONDEL, C. (1951): The System of Mineralogy 2, 7th ed., John Wiley & Sons, New York.
- ITO, T., MINATO, H. & SAKURAI, K. (1954): Parasymplesite, a new mineral polymorphous with symplesite. *Proc. Jap. Acad.* **30**, 318-324.
- LARSEN, E. S. (1921): Microscopic determination of the nonopaque minerals. U. S. Geol. Surv. Bull. 679.
- WOLFE, C. W. (1970): Classification of the minerals of the type $A_3(XO_4)_2 \cdot nH_2O$. Amer. Mineral. 40, 787-809.

Manuscript received April 1976, emended June 1976.