

J. A. MANDARINO

Department of Mineralogy and Geology, Royal Ontario Museum, Toronto, Ontario

Abstract

Using the data for Tutton's salts, and other pure synthetic compounds, new constants were derived for 106 constituents. For the constituents derived from Tutton's salts, the new constants are more accurate than those given by Larsen.

Sommaire

De nouvelles constantes ont été établies pour 106 constituants à l'aide des données sur les sels de Tutton et autres composés synthétiques purs. Ces constantes sont plus justes que celles de Larsen.

(Traduit par la Rédaction)

INTRODUCTION

Many mathematical expressions relating refractive index, density, and chemical composition have been derived. It is not the purpose of this paper to compare these different relationships. In fact, the writer is extremely biased in favor of the Gladstone-Dale relationship because: (1) it involves a very simple calculation and (2) it affords a fairly reliable check on mineralogical data.

The Gladstone-Dale relationship was formulated by Gladstone & Dale (1864). It was introduced to mineralogists by Larsen (1921) who also derived many of the constants currently in use. The relationship is best explained by the equation

$$K = \frac{n-1}{d} = \frac{k_1 p_1}{100} + \frac{k_2 p_2}{100} + \dots + \frac{k_n p_n}{100}$$

In the equation: K is the specific refractive energy of a substance, n is its refractive index, d is its density, k_1 , k_2 , etc. are the specific refractive energies of its various components, p_1 , p_2 , etc. are the weight percentages of its components.

In applying the relationship to optically anisotropic substances, the mean refractive index \bar{n} should be used. The value of \bar{n} is $(2\omega + \epsilon)/3$ for uniaxial substances and $(\alpha + \beta + \gamma)/3$ for biaxial substances.

Larsen's constants for various components have been in use since 1921. Jaffe (1956) recal-

culated some of Larsen's constants, but found that most of them required no revision. New constants for CuO and Sc2O3 were proposed by Mrose (1965). Faust & Schaller (1971) gave a new constant for SnO₂. More recently Trzcienski et al. (1974) proposed a new constant for P_2O_5 . The writer first became aware that some of Larsen's constants probably were in error while working on some tellurites and selenites in 1961. Larsen's k values for SeO₂ and TeO₂ seemed to be in error, and the k value for TeO₃ seemed incredibly high. In fact, this last constant was calculated from the very sketchy data for the poorly-defined mineral "montanite". It is not surprising that Larsen's constant for TeO₃ is about four times the value of the constant calculated in this study. Several other constants given by Larsen obviously were calculated from unsatisfactory data. Larsen (1921) himself pointed out the unreliability of some of the density values and the inadequate knowledge of the chemical compositions of certain minerals. In a preliminary study, the present writer found that a number of the constants were in error, and some of these were reported (Mandarino 1964).

The present writer decided that a complete recalculation of k values for all components should be undertaken. In order to avoid poor sets of data the following approach was taken. Calculations would start with a group of compounds which had been thoroughly studied and for which the data seemed most reliable. If possible, these compounds should be pure synthetic materials to avoid the impurities usually present in most minerals. A group of compounds which fits these requirements is "Tutton's salts". Between 1893 and 1928 Tutton studied 75 compounds of the general formula $R'_2 R''(XO_4)_2^{\bullet}$ $6H_2O$, where R' is K, NH₄, Rb, Cs, or Tl; R" is Mg, Mn, Fe, Co, Ni, Cu, Zn, or Cd; and X is S, Se, or Cr. For specific references to Tutton's papers see Winchell et al. (1964). These compounds provided data for the calculation of constants for 17 oxide components.

To begin the calculations it was assumed that Larsen's k values for SO₃ and H₂O were sound. The other constants were calculated by a trial

Compound

and error method. After they were calculated, they were refined by recycling the calculations until the standard deviation for each constant was relatively small. These constants were then applied to other pure synthetic compounds which contained additional components in order to calculate k values for those components. Eventually, constants for all of the usual components of minerals and for many rare components were derived. The relationships which exist among the various constants will be discussed in another part of this series.

CONSTANTS FROM TUTTON'S SALTS

The constants derived from the data for Tutton's salts are given in Table 1. The diffe-

TADIE 1

COMPADIEON OF & VALUES OF THE COMPONENTS OF

INDLL I.	TUTTON'S SALTS						
Component	(a) k (this study)	(b) k (Larsen 1921)	∆k (b—a)				
H ₂ 0	0.340	0.340 average					
(NH ₄) ₂ 0	0.483	0.503	+0.020				
к ₂ 0	0.196	0.189	-0.007				
Rb ₂ 0	0.123	0.129	+0.001				
Cs ₂ 0	0.119	0.124	+0.005				
т1 ₂ 0	C.115	0.120	40.005				
1'.g0	0.225*	0.200	-0.025				
MnO	0.197	0.191	-0.006				
Fe0	0.138	0.187	-0.001				
CoO	0.179	0.184	+0.005				
NiO	0.176	0.184	+0.008				
Cu0	0.170	0.191	+0.021				
ZnO	0.153	0.153	-0.005				
CdO	0.130	0.134	+0.004				
^{SO} 3	0.177	0.177					
Cr03	0.335	0.36	+0.025				
Se03	0.164	0.165	+0.001				

* This value for MgO should be used only for sulfates.

rences between Larsen's constants and those obtained in this study are apparent. A test was carried out to determine which set of constants gave better results. The test consisted of calculating the specific refractive energy (K) of each of Tutton's salts three different ways. First, the K values were calculated from Tutton's measured refractive indices and densities

$R'2^R$	"(x0 ₄) ₂	-6H20	(a)	(b)	(c)	(a-b)	(a-c)
R' .	R#	x	obs. data	this study	Larsen k		
ĸ	Mg	S	0.2297	0.2299	0.2258	-0.0002	0.0039
ĸ	Fe	S	0.2235	0.2235	0.2233	0.0000	0.0002
ĸ	NÍ	ŝ	0.2213	0.2212	0.2210	0.0003	0.0004
K	Cu	S	0.2200	0.2197	0.2220	0.0003	-0.0020
K ·	Zn	S	0.2169	0.2173	0.2149	-0.0004	0.0020
NH4	Mn	s	0.2651	0.2757	0.2680	-0.0013	-0.0029
NH,	Fe	S	0.2648	0.2645	0.2669	0.0003	-0.0021
NH	Co	S	0.2612	0.2623	0.2659	-0.0011	-0.0047
NH	Ni	S	0.2611	0.2618	0.2659	-0.0007	-0.0048
NH4	Cu	S	0.2586	0.2594	0.2662	-0.0008	-0.0076
NH4	Zn	S	0.2558	0.2566	0.2582	-0.0008	-0.0024
^{NH} 4	Cd	S	0.2378	0.2383	0.2418	-0.0005	-0.0040
Rb	Mg	S	0.1980	0.1979	0.1963	0.0001	0.0017
Rb	Fe	5	0.1962	0.1958	0.1952	-0.0004	0.0010
Rb	Co	ŝ	0.1926	0.1932	0.1943	-0.0006	-0.0017
Rb	Ni	S	0.1926	0.1928	0.1942	-0.0002	-0.0016
Rb	Zn	S	0.1923	0.1917	0.1894	-0.0005	-0.0029
Rb	Cd	ŝ	0.1822	0.1811	0.1823	0.0011	-0.0001
Cs	Mg	S	0.1827	0.1824	0.1830	0.0003	-0.0003
Cs Cs	Mn Fe	s	0.1817	0.1813	0.1829	0.0004	-0.0012
Čs	Co	š	0.1793	0.1794	0.1822	-0.0002	-0.0029
Cs	Ni	S	0.1786	0.1789	0.1821	-0.0003	-0.0035
US Ce	Cu Zn	S	0.1779	0.1781	0.1831	-0.0002	-0.0052
Cs	Cd	Š	0.1693	0.1699	0.1728	-0.0004	-0.0035
<u>T</u>]	Mg	S	0.1638	0.1678	0.1693	-0.0040	-0.0055
11	Mn Fo	S	0.1623	0.1674	0.1696	-0.0051	-0.0073
τi	Co	S	0.1625	0.1658	0.1693	-0.0033	-0.0032
<u>11</u>	Ni	S	0.1632	0.1654	0.1690	-0.0022	-0.0058
11 T1	Cu 7n	s	0.1634	0.1649	0.1699	-0.0015	-0.0065
ĸ	Mg	Se	0.2133	0.2138	0.2109	-0.0005	0.0021
ĸ	Fe	Se	0.2091	0.2090	0.2080	0.0001	0.0011
ĸ	Nt	Se	0.2076	0.2075	0.2075	-0.0000	-0.0001
ĸ	Cu	Se	0.2057	0.2050	0.2082	-0.0003	-0.0025
K	Zn	Se	0.2044	0.2040	0.2026	0.0004	0.0018
1074 1014	riy Min	50	0.2401	0.2479	0.2484	0.0002	-0.0003
N'4 N'4	Fe	Se	0.2417	0.2400	0.2440	n nnna	-0.0025
NH,	Co	Se	0.2392	0.2391	0.2426	0.0001	-0.0034
NHA	Ni	Se	0.2398	0.2387	0.2425	0.0011	-0.0027
NH	Cu	Se	0.2392	0.2372	0.2432	0.0020	-0.0040
NH4	Zn	Se	0.2349	0.2350	0.2367	-0.0001	-0.0018
NH4	Cd	Se	0.2152	0.2217	0.2245	-0.0065	-0.0093
Rb	Mg	Se	0.1888	0.1890	0.1880	-0.0002	0.0008
RD	Mn	Se	0.1871	0.1875	0.1876	-0.0004	-0.0005
Rb	Co	Se	0.1857	0.1855	0.1868	0.0002	-0.0011
Rb	Ni	Se	0.1850	0.1852	0.1868	-0.0002	-0.0018
RD	Cu Zn	Se	0.1837	0.1843	0.1877	-0.0006	-0.0040
Cs	Mg	Se	0.1768	0.1769	0.1779	-0.0005	~0.0005
Cs	Mn	Se	0.1757	0.1761	0.1778	-0.0004	-0.0021
Cs	Fe	Se	0.1756	0.1753	0.1775	0.0003	-0.0019
Čs	Ní	Se	0.1751	0.1741	0.1771	0.0010	-0.0024
Cs	Cu	Se	0.1734	0.1735	0.1780	-0.0001	-0.0046
US T1	Zn	Se	0.1720	0.1719	0.1738	0.0001	-0.0018
Ť1	Mn	Se	0.1674	0.1646	0.1668	0.0053	0.0038
T)	Fe	Se	0.1646	0.1639	0.1666	0.0007	-0.0020
71	CO N4	Se	0.1631	0.1632	0.1663	-0.0001	-0.0032
τi	Cu	Se	0.1665	0.1625	0.1671	0.0040	~0.00041
TI	Zn	Se	0.1647	0.1614	0.1637	0.0033	0.0010
ⁿⁿ 4	rig Ma	0r Cw	0.3509	0.3445	0.30/0	0.0064	-0.0061
Cs	Mg	Cr	0.2344	0.2322	0.2632	0.0008	-0.00/0

TABLE 2. COMPARISON OF & VALUES FOR TUTTON'S SALTS Calculated K

Calculated K: (a) from Tutton's observed data; (b) calculated from k values of this study; (c) calculated from Larsen's (1921) k values.

using the relationship, $K = \frac{n-1}{d}$ where *n* is the mean refractive index. Then, K values were calculated using the k values of this study and the relationship, $K = \frac{k_1 p_1}{100} + \frac{k_2 p_2}{100}$

Δĸ

A K

 $\frac{k_n p_n}{100}$. Finally, Larsen's k values were used in the last equation to calculate K values. Table 2

compares the three K values for each compound. A quick examination of Table 2 shows that, in general, the K values calculated from Larsen's constants depart from the "observed" K values more than do the K values calculated from the constants derived in this study. This is not surprising since the latter constants were calculated from the data of these particular compounds. However, to continue the comparison, in 67 of the compounds (89%) Larsen's constants gave K values farther from the "observed" K values than did the constants from this study. The average "error" using Larsen's constants is 0.0027 compared to 0.0010 using the constants of this study. If all the figures in Table 2 are expressed to only three decimal places, as is normal, Larsen's values still give a greater "error" in 58 compounds (77%). The average "error" for Larsen's constants is 0.003 compared to 0.001 for the constants of this study.

Figure 1 illustrates some points that are not readily apparent from Table 2. In Figure 1, Larsen's "errors" have been plotted against the "errors" from this study. Of the 75 K values

K(OBSERVED) - K(LARSEN)

FIG. 1. Comparison of K(Observed) - K(Larsen) and K(Observed) - K(Mandarino) for Tutton's salts.

TABLE 3. GLADSTONE-DALE CONSTANTS*

Compo	- At	. Molecu	This study	k (1001)		Compo-	• At	. Molecu-		k (1001)	
u o	111	10 02		Larsen (1921)	Utners	nent	Wt	. lar wt.	0 127	ly Larsen (1921)	Uthers
* 2°		10.02	0.340	0.3355 water & ice		Ma203	60	330.48	(0.137		0.135
				0.354 alums, etc.		Pm203	61	342	(0.133)		0 141 J
Li20	3	29.88	0.307	0.31		511203	63	340.70	0.130		0.141
(NH ₄);	20 -	52.08	0.483	0.503		Gd 0	64	362 50	0.120		
Na20	1 1	61.98	0.190	0.181		Th 0	65	365 85	0.123		
κ ₂ õ	19	94.20	0.196	0.189		DV.0	56	373 00	0.115		
Cu20	29	143.09	0.234	0.250		Ho_0	67	377 86	0 112		
Rb20	37	186.94	0.128	0.129		Er_0.	68	382.52	0.108		
Ag20	47	231.74	0.168	0.154		Tm_0_	69	385.87	0.104		
^{Cs} 2 ⁰	55	281.81	0.119	0.124		Yb_0_	70	394.08	0.101		
Hg20	80	417.18	0.144	0.169 (Li)			71	397.94	0.097		
T120	81	424.74	0.115	0.120		T1_00_	81	456.74	0.053		
Be0	4	25.01	0.240	0.238		BioOn	83	465.96	0.153	0.163	
MgO	12	40.30	0.200	0.200		COn	6	44.01	0.211	0.217	<u> </u>
Cafi	20	56 08	0.225 Suitales	0.225		S10,	14	60.08	0.208	0.207	
vo	23	66 04	(0.207)	0.225		50,2	16	64.06	0.262		
Cr0	24	68.00	(0.202)			Tio,	22	79.90	0.393	0.397	
MnD	25	70 94	(0.202) n 197	0 191 compounds		٧٥,	23	82.94	0.393		
		10.54	0.157	0.224 oxide		Cr0,	24	83.99	(0.394)		
Fe0	26	71.85	0.188	0.187		Mn02	25	86.94	0.394		:
Co0	27	74.93	0.179	0.184		Ge0	32	104.59	0.167		
NiO	28	74.71	0.176	0.184		Se0	34	110.96	0.203	0.147	
Cu0	29	79.55	0.170	0.191 compounds	0.173 ^M	Zr0,	40	123.22	0.211	0.201	
				0.235 (Li) oxide		Sn0,	50	150.69	0.143	0.145	0.132 ^F
ZnU	30	81.37	0,158	0.153 compounds 0.183 oxide		Te0,	52	159.60	0.183	0.200 (Li) oxide	
Sr0	38	103.62	0.145	0.143		Hf0,	72	210.49	0.115		
CdD	48	128.40	0.130	0.134		Pb0,	82	239.19	0.105		
SnO	50	134.69	(0.140)	01104		Th0,	90	264.04	0.167	0.12	
Ba0	56	153.34	0.128	0.127		N205	7	108.01	0.242	0.240	
HgD	80	216.59	0.123	0.18		P205	15	141.94	0.176	0.190	0.170 ^T
Fb0	82	223.19	0.133	0.137 compounds		cī ₂ 0 ₅	17	150,90	0.220	0.218	
20	e	60.63	0.217	0.175 (Li) oxide		V205	23	181.88	0.340	0.43	
² 2 ³ 3	0 6	72 02	0.215	U.22U ISOM. OXIDE		As205	33	229.84	0.162	0.169	
²⁰ 3	7	76.02	(0.225)	0.205		Br205	35	239.81	0.180	0.183	
A1 0	, 12	101 06	0.207	0 102		^{Nb} 2 ⁰ 5	41	265.81	0.268	0.295	
		101.50	0.242 sulfates	0.214 feldspars, <i>stc</i> .		^{Sb} 2 ⁰ 5	51	323.50	(0.153)	0.152	
P203	15	109.95	(0.315)							0.222 (?)	
Sc203	21	137.91	0.257		0.248 ^J	205	53	333.81	0.195	0.1//	
T1203	22	143.80	(0.267)		0.264	1ª205	22	441.09	(0.120)	0.133	
v203	23	149.88	(0.279)			50	16	497.90	(0.139)	A 177	
Cr203	24	151.99	(0.290)	0.27		503 Cr0	24		0.177	0.177	
Mn203	25	157.87	0.301	0.300 compounds		Seft	24 24	126 06	0.335	0.30	
F		100 00	A 035	0.304 (Li) oxide	, 1	Mn0	42	143 04	0.104	0.241 (14)	0 224J
re2 ⁰ 3	26	159.69	0.315	0.308 compounds	0.290 silicator	Te0	74 52	175 60	0.237	0.607	U.234
			0.268 sili-	0.36 (11) oxide	o 210 ^J	W0	74	221 05	0.157	0.007	
			cates	0100 (21) 0x102	hyd. sulf.	"3 10	02	296 03	0.132	0.133	
C = 0	07	100 00	(0.000)		0.404 ⁰ oxide	5.0	16	176 12	0.110	0.134	
102 ⁰ 3	21	105.86	(0.329)			27 CL0	17	182.00	0.133		
"12 ⁰ 3	28	105.42	(0.339)			Mn.0-	25	221 .97	0.102		
⁰⁸ 2 ⁰ 3	31	107.04	0.170		1	Br. 0	35	271 80	(0.340		
^{AS} 2 ^U 3	33	197.84	0.235	0.202 isom. oxide 0.225 monocl. oxide		²⁰ 7	52	365.90	0.160		
Y_0.	39	225.81	0.170	0.144	0.170 ^J	<u>^2°7</u>			0.100		
23 In ₂ 0,	49	277.64	0.130		5.170	F ⁻ '	9	19.00	0.047	0.043	
23 Sb ₂ 0,	51	291.50	0.203	0.209 isom, oxide		C1 -1	17	35.45	0.318	0.303	
23				0.232 ortho. oxide		Br 1	35	79.90	0.217	0.214	
La203	57	325.82	0.148	0.149	0.142 ^J	<u>1</u> 2	53	126.90	0.227	0.226	
^{Ce} 2 ⁰ 3	58	328.24	0.144	0.16	0.149 ^J	0 -	8	16.00	0.203	0.203	
D 0	50	220 91	0 141		Lovi o						

* Constants given in brackets, such as VO (0.207) were derived either by extrapolation or by interpolation. $\pm M$ = Mrose (1965); J = Jaffe (1956); T = Trzcienski *et al.* (1974); F = Faust (1971). calculated from Larsen's constants only 19 (25%) are within ± 0.001 of the observed values, 37 (49%) are within ± 0.002 , and 38 (51%) differ from the observed values by more than 0.002. Of the K values calculated from the constants derived in this study, 58 (77%) are within ± 0.001 of the observed values, 64 (85%) are within ± 0.002 , and only 11 (15%) differ by more than 0.002.

The data for the thallium compounds show much greater errors than do the data for the other compounds. Analysis of these data indicated that some of Tutton's observed data for the thallium compounds might be in error. This is discussed in another part of this series.

THE NEW CONSTANTS

In addition to the 17 constants derived from the data of Tutton's salts, numerous other constants were calculated. Most of these were calculated from the data of pure synthetic compounds. Several constants were determined by interpolation and extrapolation after certain relationships among constants became apparent. A total of 109 constants for 106 constituents is given in Table 3. Of these, 15 constants were derived by interpolation or extrapolation. In addition to the constants derived in this study, Table 3 contains the following additional data: the atomic numbers of the elements of the components, the molecular weights of the components, Larsen's k values and the kvalues proposed by other writers.

In subsequent parts of this series, the following subjects will be covered: the relationships which exist among various constants, the evidence which supports the greater accuracy of the new constants, and some special applications of the Gladstone-Dale relationship.

ACKNOWLEDGEMENTS

Much of the work that went into the deriva-

tion of these constants took place while I was on a National Research Council of Canada Senior Research Fellowship in France. I am grateful to the NRC for the fellowship and to Dr. Claude Guillemin who allowed me to spend my fellowship at the B.R.G.M. in Orléans. My special thanks go to Dr. Roland Pierrot of the B.R.G.M. who was most helpful and encouraging during this project. My thanks also go to Miss Helen Driver who typed the manuscript and especially to Mrs. J. Galt who spent many hours typing the tables.

REFERENCES

- FAUST, G. T. & SCHALLER, W. T. (1971): Schoenfliesite, MgSn(OH)₆. Z. Krist. 134, 116-141.
- GLADSTONE, J. H. & DALE, T. P. (1864): Researches on the refraction, dispersion, and sensitiveness of liquids. *Philos. Trans. Roy. Soc. London* 153, 317-343.
- JAFFE, H. W. (1956): Application of the rule of Gladstone and Dale to minerals. Amer. Mineral. 41, 757-777.
- LARSEN, E. S. (1921): The microscopic determination of the nonopaque minerals. U. S. Geol. Surv. Bull. 679.
- & BERMAN, H. (1934): The microscopic determination of the nonopaque minerals. U.S. Geol. Surv. Bull. 848.
- MANDARINO, J. A. (1964): Critical analysis of the Gladstone-Dale rule and its constants. *Can. Mineral.* 8, 137 (Abstr.).
- MROSE, M. E. (1965): New specific refractive energy values for CuO and Sc₂O₃. *Amer. Mineral.* 50, 288 (Abstr.).
- TRZCIENSKI, W. E. JR., PERRAULT, G. & HEBERT, P. (1974): A note on apatite from Huddersfield Township, Quebec. Can. Mineral. 12, 289-291.
- WINCHELL, A. N. & WINCHELL, H. (1964): The Microscopic Characters of Artificial Inorganic Solid Substances: Optical Properties of Artificial Minerals. Academic Press, New York.
- Manuscript received March 1976, emended May 1976.