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ABSTRAcT

The reason why axes of order n=5 and z)6
cannot occur in lattices is that, in a semi-circle,
only one chord can be equal in length to the radius
and parallel to the diameter.

Sourvrenn

L'inexistence d'axes d'ordre n-5 et n)6 dans
les r6seaux d6coule du fait que, dans un demi-
cercle, une seule corde de longueur 6gale au rayon
est parallble au diamdtre.

INTRoDUcrroN

The proof that the only rotation a:res of
symmetry that are possible in crystals are of
order 1, 2, 3, 4, 6 need not postulate tle
existence of a lattice: this so-called crystal'
Iographic rcstriction is a consequence of Haii/s
law of Rationalityl, which is less restrictive than
the lattice. For this reason, as was pointed out
by G. Friedel (L926), it is erroneous to conclude
that the fact of the non-existence of rotation
axes of order 5 or greater than 6 prwes the
existence of a lattice2.

Nowadays, since the existence of a lattice in
every crystal is a datum of observation, we are
justified in using it as the basis of the mathe-
matical proof, which is thereby considerably

lThe proof that is based on Haiiy's law of Ration-
ality, available in Friedel (1920, Hilton (1903) and
de Jong (1959), leads to the condition tlat eos o,
u-36A"/n rrith n an integer, must be rational.
The proof that 0, :LYz, ll are the only rational
values of cos a, was fi$t "given by N Eudaiev to
Gadolin, read March 19, 1867, and published ia
1871." It can be found in Ostvalds Klas,viter No
75 (Anhang B). Richmond's later proof is given
by Coxeter (1969, p.443).

lThis fallacy is found, for rnstance, h P. Niggli
(198): "Di€se! Satz ermiielicht uns die erste Nach-
prtifung der Annahme die Kristalle . . . seien aus
Raumgittern aufgebaut."

simplified. The following derivation postulates
thelattice and recognizes the fact that any lat-
tice has a symmetry center at every node (by
lattice construction every row through a given
node is centrosymmetric in it). The proof also
accepts the lemma that the order n of a rota-
tion axis must be an integer (an n-fold axis
acting on a node outside the axis generates t?
nodes in all, which lie at the vertices of a regu-
lar polygon, an n-gon, in a net plane normal,
to the axis).

Tlu Pnoor

Let an n-fold rotation axis of the crystal be
perpendicular to the plane of the paper (Fig. 1)
and intersect it at B. Consider the crystal lat-
tice constructed on B, which is taken as the
initial node. (fhe httice, being the geometrical
representation of the translation grouP, can in-
deed begin anywhere.) Let C be one of the
nodes closest to B in the net. Set BC=c. No
row in the net can have an internodal spacing
shorter than a. Since C is translation equivalent
to B, there must pass an a-fold axis through C.
It follows that no node other than B and C
can exist inside the semi-circles of radius a
drawn around B and C, on the same side of BC.
For convenience let al designate the smallest
rotation 360" / n that can be performed around
an n-fold axis.

I. The permissible cases

Consider n=6. Rotate node C around B
througb a=60o, both counterclockwise to nods
F and clockwise to node B (not shown, but
centrosymmetrical of E with respect to node B"
so that as B is a node so is E). Likewise rotate
B around C through 60o in both senses, thus
determining two rows CF and CG. The triangles
BCR EFB and FGC are equilateral, the nodes
E, F, G form a row parallel to BC, and thE
construction has yielded an hexagonal net, thus
showing that the 6-fold axis is compatible witb
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Frc. 1. Net plane perpendicular to which z-fold axes are considered at B and C. BC=a is the shortest
internodal distance. Rotations of 4,,,, o=360o /n, yield new nodes (white circlets) on rows parallel to
BC: row EFG for n-6 and. n:3, tow HJ for n=4, row ABCD for n-2 and n-1. Black circlets
are points generated for z=5 and z)6; they lie on lines, PQRS and KLMN, that are nol rows.

the lattiqe. Note that the same hexagonal net
would also be generated for n:3, so that the
3-fold axis is also possible.

Fot n=4, a similu construction with crl-90"
leads to row HJ parallel to BC and the square
BCHJ is the mesh of a tetragonal net: the 4-
fold axis is thus permissible.

Fot n=2 the rotations through o-180o
around B and C bring C onto A and B onto
D. The two new nodes being part of row BC,
the 2-fold axis is permissible.

For re=1 aad 6=360", the construction
brings B onto itself and C onto itself, thus
yielding the same row as for n-2. Both the
2-fold axis and the (triviaD l-fold axis are thus
shown to be possible.

II. The forbidden cases

For n=5, a=72", the above construction
yields points P and Q, by rotations of C around
B, and points R and S, by rotations of B around
C. The points PQRS are seen to be collinear on
a line parallel with BC, but they do not form
a row because they are not equidistant and their
spacings are less than a. @R-QS-a whence
PQ*RS(a and QRca).

For n16, co<60o, the construction generates,
on a line parallel with BC, points such as.
KLMN, which are collinear but not equidistant.
(KL=MN-c, but LM(a).

Cases n=5 and a)6 are thus ruled ouL
Geometrically the ultimate teason why these

cases are eliminated is thus that, in a semi-cilrcle,
there exists only one chord that is equal to the
ladius and parallel to the diameter.

Remark

The treatment of the forbidden cases acquires
more unity (as suggested to us by Dr. Yvon
Le Page) if one takes advantage of the centro-
symmetry of a net in any node. A penlagon of
points related by a 5-fold axis passing through
a node B, for instance, thus generates a decagon
by inversion through B, and the 5*axis turns
into a l0-axis. The case rz=5 is simply ruled
out because it implies n:l0, which is impos-
sible as n)6.

ADvANTAcEs oF THE Pnorossp PR@F

The proof given here does more tlan elimi-
nate the forbidden cases: it shows the geo-
metrical outcome in the permitted cases' and
enables the different nets that are possible in
the plane to be enumetated and visualized. In
addition to the hexagonal net and the tetragonal
net shown on the drawing, three more nets can
be derived from the only condition that each
one must contain row BC. This row Drovides
tle shortest vector BC=a; vector D, defined as
the next shortest in the net" can be taken:
either (i) perpendicular to a (along BID or (ii)
oblique to a, in whieh case its projection onto 4
is either (1) of length a/2 or (2) of any other
length. The additional nets thus found are'
respectively, the rectangular net, the prtmifive
rhombic (or centered-rectangular) net and the
parallelogrammic net.

HISToRICAL STIRVBY

This historical survey does not claim to be
exhaustive. Its purpose is simply to trace the
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origin of a number of proofs, some of which
are encountered in presentday literature with-
out any reference to their source. We shall
consider two londs of proofs: geometrical and
analytical.

Geometrical proofs

Among the geometrical proofs, that of Bar-
low (1901) is particularly attractive. It can be
explained by means of our Figure 1. TWo n'
fold axes, perpendicular to the plane of the pa-
per at Q and B, ate situated at minimum
distance a aparl. Axis Q, rotated through
6:27r/n clockwise around B, gives C; B,
rotated through co around C, gives R. If R coin-
cides with Q (in D, we have n=6. If R does
not coincide with Q, line QR is parallel to BC
and the distance QR must be equal to ka, k an
integer. Case ft=1 corresponds to HJ=a, which
requires a=rr/2, whence n-4. Case k)2 de'
mands alrr/Z, whence n14 @G=24 yields
n=3; AD=3 a, n=2 and n=t.) This proof has
been used in English text-books, such as Wells
(1956). Coxeter (1961) gives "Barlow's elegant
proof' with its reference. Fejes T6th (1964)
iredits William Barlow for a "simple direct
proof of the crystallographic restriction'', gives
the proof but omits the bibliographic leference.

Popov & Shafranovskii (1964) prove the in-
compatibility of a 5-axis with a lattice by form-
ing the pentagon of "equivalent atoms" nearest
to a given S-axis and constructing, on two con-
secutive sides of the pentagon, a parallelogram
which generates a sixth atom; this atom is closer
to the given 5-axis than the postulated minimum
distance. The cases n)7 ate ruled out in like
manner. This proof is found in Shafranovskii
(1968) and Flint (1968).

Coxeter (1.969, p. 207) points out that the
crystallographic restriction is, in a lense, a
theorem of affine geometry: the only affinely
regular n-gons that are affinely constructible
(i.i., with the "parallel ruler") are those with
n=20 3, 4, 6. It thus appears that the two
distinct crystallographic constraints, the exist'
ence of a lattice versus the law of Rationality'
correspond to two different geometries, the
Euclidean geometry, with its five postulates'
versus the affine geometry, which has no circles
and no right angles.

Analytical proofs

ttre existence of a lattice, on the other handn
establhh (after Bravais.1850) the condition that
cos o must be equal to half an integer or'
equivalently, that sin (arl2) must be equal to
nalf tne square root.:of an integer. Finally two
proofs were found (Fedorov 1891; Cesiro 1902)
that apparently were not followed by later text-
book authors.

Bravais (1850) considers two z-axes B and C'
perpendicular to the plane of the paper (Fig. 1)
ind separated by the minimu6 distance a. He
rotates B around C tlrough BCS : -ro to S
and through *<rt to S' (S', not shown on the
Figure, is the mirror-image of S in the r9w
SCl. ft follows that BS and BS are lattice
vectors. whose vectot sum BT determines a node
T (not shown) on row BC. Distance BT must
be equal to ka, k an integer, but BT is equal
to 2o(l-cos a) or 4a sn'(at/Z)' The condition
thus expressed immediately yields the desired
values of n. The method has been widely used
in French text-books; e.g., Mallard (1879), Butt-
genbach (1953), M6lon (1949) and Brasseur
(r967).

Whereas Bravais and his followers make use
of two rotations of opposite senses, through an
angle rrr, around a single n-axis C to get two
latiice vectors whose sum will yield the addi-
tional node on the original row BC, later
authors (Niggli 1920; Buerger 1956; Az{roft
1960) use the rotations .I-6-CBQ and -at:

BCR around two distinct axes, B and C re-
spectively, to generate a new row QR, parallel
to the original row. The condition that QR=a
(1-2 cos ar) must be euqal to k'a yields cos
a=k"/2, wrth ktt=l-k' and both ld and l{o
integers.

Sinds (1969) modifies the figure by consider-
ing a string of equivalent n-axes in a row AB
. . . CD and letting the rotations througb *rrl
and -trr be performed around A and D re-
spectively to generate E and G (Fig. 1). The
condition that EG=AD-2o cos ot must bo a
multiple of a becomes, by letting EG=/a and
AD=ma, sss 6-Qn-l/2, m atd I integers.

.Buerger (1970) offers the simplest variant:
three axes A, B, C are considered (Fig. 1); rota-
tions tlrough -'rrr and *al around a single axis
B carry A to P and C to Q. PQ is parallel to
AB; it must be a row, so that PQ=24 cos crl
must be equal to fta, whence cos a=k/Z; k an
integer.

As mentioned above, the proof based on the Fedorov (1891) considers a series of z-aJres

law of Rationality (Gadolin-1871) rests on the A, E, F, C, ... . as occupying. the i veqlircef

condition that cos 1io 6=2d/n, must be ra- a regular polygon around an'i-axis" * F. ry
tional, thereby requiring finding which rational that ABF,=hrli (Fig. 1). Axis d rotatedr.
values of cos 61 correslpond tJintegral values through 6=2n/n around axis B, generates:ilcis

of n (a non-trivial task)i Most proofi based on F; likewise, E rotated around F, creates C, etc.
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Triangle ABE yield br/i)*(n/n)=rrl2, whence
n=2i/(i-2),

where i and n must be integers. Fot i = 2, 3,
4, (5), 6, oo, one finds z = 2, 6, 4, (lO/3),
3, 2, so than r?=5 is ruled out. For 6<i<co,
set i=6*/c, k a positive integer; this givesa

n - (r2{2k)/(4+k) = 3-[k/(4+k)),
which requires 2qnq3, so that n cannot be
an integer.

An original proof, somewhat aqalogous to
that of Fedorov, was proposed by Ceslro (1,902),'Two n-axes, B and C, are separated by minimum
distance 4 (Fig. 1). Rotate C around B, through
a=CBQ=2n/n; further rotations tlrough ar
would generate additional r?-al(es whose traces
would lie on the circle of radius a drawn around
B. Now rotate Q through o around C; this
rotation will bring Q onto a new axis Qr.
Foint Q' cannot lie inside the circle, except at
its center B, when {-qCn must equal o, e is
at F, and n equals 6. If Q' lies oa the circle,
it will be symmetrical of Q in the row BC, thus
requiring o=QCQ, to be equal to 2$; bisecting
QBC, we eet (o/2)*6:r/2 or srf2g:v, in
which we replace 26'by or and obtain 2a=o
ar n=4, in which case Q is at H. Finally if Q,
fies outside the circle, or=QCQ, must exceed
2Q, which gives ru(4.
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