THE ELECTRICAL CONDUCTIVITY OF LOW AND HIGH ALBITE THROUGHOUT ITS MELTING INTERVAL AT 100 kPa

A. J. PIWINSKII, A. DUBA, AND P. HO

Lawrence Livermore Laboratory, University of California, Livermore, California 94550

The electrical conductivity (σ) of single-crystal Amelia albite has been measured parallel to the *b* axis under controlled oxygen fugacity near the QFM buffer up to 1406K. Two specimens were used in the investigation. One was held at temperatures between 1353 and 1384K for a total of 3200 hours in order to produce maximum-disordered monoclinic albite (Piwinskii & Duba 1974). These temperatures were below the reported melting point of albite, 1391K (Grieg & Barth 1938). The other sample, triclinic ordered albite, was cycled between 673 and 1223K, temperatures below the triclinicmonoclinic inversion (Duba & Piwinskii 1974).

The σ of high albite (monoclinic) during melting at 1406K as a function of time and frequency (v) is shown in Figure 1. It is clear that the σ of high albite *increases* on melting by approximately half an order of magnitude at 1 to 10 kHz, but *decreases* at all v's below 1 kHz during the first hundred hours.

The σ of low albite (triclinic) during melting at 1406K as a function of time and frequency is shown in Figure 2. The σ was found to *increase* at all v's. The σ measured at 1 and 10 kHz increased by approximately 2.5 orders of magnitude, and the σ measured at 200 Hz increased by approximately two orders of magnitude.

These results indicate that the crystal structures of low and high albite preceding melting exert a control over both the v-dependence of the σ obseved on melting and the magnitude and direction of the conductivity change. These new data further qualify the observation of Khitarov & Slutskii (1965) regarding the sharp increase (approximately two decades) in σ at-

F10. 1. The electrical conductivity (σ) of high albite as a function of time at 1406K.

FIG. 2. The electrical conductivity (σ) of low albite as a function of time at 1406K.

tributed to melting in albite. In systems such as NaAlSi₃O₈ which exhibit order-disorder phenomena, the degree of disorder attained prior to melting may control the σ change upon melting. Thus, we may expect to observe such features, upon melting, in rocks such as basalt which contain plagioclase feldspar as a major constituent.

ACKNOWLEDGEMENTS

This work was performed under the auspices of the U.S. Energy Research and Development Administration under contract No. W-7405-Eng-48. We thank H. Weed for a review and B. Hornady for typing the manuscript.

·• .

. . .

ند . ۱۹۹۹ - ۱۹۹۹ ۱۹۹۹ - ۱۹۹۹

References

- DUBA, A. & PIWINSKII, A. J. (1974): Electrical conductivity and the monoclinic-triclinic inversion in albite. *Trans. Amer. Geophys. Union*, EOS 56, 1201.
- GRIEG, J. & BARTH, T. F. W. (1938): The system Na₂O•Al₂O₃•2SiO₂ (nepheline carnegieite) — Na₂O•Al₂O₃•6SiO₂ (albite). Amer. J. Sci. 35A, 5th Ser., 93-112.
- KHITAROV, N. & SLUTSKII, A. (1965): Melting and crystallization of albite at pressures up to ten thousand atmospheres. *Geokhimiya*, No. 9, 1292-1299 (in Russ.).
- PIWINSKII, A. J. & DUBA, A. (1974): High temperature electrical conductivity of albite. *Geophys. Res. Letters* 1, 209-211.

Received November, 1976.