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ABSTRACT

Cyclotomic sets and their distance arrays were
studied by Patterson. Here the distance arrays are
treated as properties of self-images of cyclotomic
sets. Although the sets are one-dimensiomal their
self-images are two-dimensional. They have five
kinds of plane symmetries, one for each of the
five kinds of complementary pairs. A cyclotomic
set is a simplification and a specialization of the
ordinary Patterson map. Accordingly the distances
in the cell of its self-image fall into three cate-
gories analogous to the three categories of vectors
in the cell of a Patterson map. The distances in a
cyclotomic set can be determined easily by in-
spection of its circular representation provided that
the number of its points is quite small. In all cases
the distances can be determined by making use
of one of the important properties of the self-
image array: all sets belonging to a specific cy-
clotomy can be constructed from any other such
set by an exchange of one or more points with its
complementary set. Such interchanges have applica-
tions in treating circular representations and espe-
cially in dealing with cyclotomic sets by the
methods of image algebra.

SOMMAIRE

Patterson étudia les ensembles cyclotomiques et
leurs distributions de distances. Nous traitons ici
ces distributions comme propriétés d’auto-images
des ensembles cyclotomiques. Quoique les ensem-
bles soient & une dimension, leurs auto-images sont
bidimensionnelles. Elles possédent cing espdces de
symétries planes, correspondant 3 cing espdces de
paires complémentaires. Un ensemble cyclotomique
représente une simplification et spécialisation de
la projection Patterson habituelle. Il s’ensuit que
les distances & Pintérieur de la maille de lauto-
image de lensemble se répartissent en trois caté-
gories analogues aux trois catégories de vecteurs
que l'on distingue dans la maille de Patterson. Dans
un ensemble cyclotomique, pourvu que le nombre
de ses points soit petit, les distances se tirent 3
simple vue de sa représentation circulaire. Dans
tous les cas, on détermine ces distances en se ser-
vant d’'une des propriétés importantes de la distri-
bution de Pauto-image: tout ensemble appartenant
2 upe cyclotomie donnée peut se construire 3
partir de n’importe quel autre ensemble semblable
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par échange d’'un ou de plusieurs points entre ce
dernier et son complémentaire. Pareils échanges
trouvent leur application dans le traitement des re-
présentations circulaires et spécialement dans
I’étude des ensembles cyclotomiques par Ialgébre
des images.

(Traduit par la Rédaction)

INTRODUCTION

Homometric sets

In determining the structure of bixbyite,
Pauling & Shappell (1930) discovered two ar-
rangements of metal atoms which scattered
X-rays with the same intensities, yet were
neither congruent nor enantiomorphic to each
other. This implied that the two arrangements,
though different, had the same set of inter-
atomic vector distances. On learning of this
property of some pairs of arrangements of points,
Patterson (1939) referred to such pairs as
homometric.,

Later Patterson (1944) began a systematic
study of periodic sets and demonstrated the
existence of many homometric pairs among
them. In this investigation he began by con-
sidering one-dimensional sets of points. He
found it convenient to deal with a set whose
translation was T as if it were wrapped around
a circle whose circumference was T, as illus-
trated in Figure 1. This representation of a
one-dimensional set may be called its circular
representation. It has the advantage that, in the
study of interpoint distances in the set, con-
sideration is limited to those distances within
one translation period. The interpoint distances
then appear as arcs. To avoid the superposition
of arcs in drawings, Patterson found it con-
venient to represent each arc by the chord it
intercepts.

Patterson’s initial search was among sefs
whose points were restricted to r of the N
points which divided the translation T into N
parts of equal length, z. Thus

t=T/N (N an integer). 1

The set of points which divides T into these
N segments is called a multiple lattice (Buerger
1976). Patterson called the set of points which
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Fic. 1. The small circles on the horizontal line constitute a periodic one-dimensional set whose trans-
lation period is T. The set shown is specialized in that its points are restricted to some of the points
of a lattice, called a multiple lattice, whose period ¢ is a submultiple of 7. In studying distances in a
one-dimensional set it is convenient to wrap the set around a circle whose circumference is equal to
T, as shown in the upper part of the illustration. This arrangement is called the circular representa-

tion of the set.

occupy r of the N points of the multiple lattice
a cyclotomic set.

Tautoeikonic sets

It is convenient to have an adjective to charac-
terize two or more sets which have the same
interpoint distances without specifying whether
the sets are congruent, enantiomorphic or homo-
metric. For this more general relationship the
adjective tautoeikonic (“having the same self-
image™) has been proposed (Buerger 1976).

DISTANCE ARRAYS AND SELF-IMAGES
FOR CYCLOTOMIC SETS

The notion of images

The vector from a point @ to a point b may
be designated ab. (It cannot be represented by
a pair of letters in boldface type since this is
the standard designation of a dyadic.) The ap-
pearance of point b as seen from point a may
be called the image of b from g, and may be
designated by the label ab. If the set 4 con-
sists of points a, b, ¢, . . , the vectors between
the points may be neatly displayed by writing
the vectors in an ordered square array:

— — -
aa ab ac

— — -
ba bb bc

— —_

—
ca ch cc . . 2)

When all these vectors are transferred to the
same origin, the set of images between the points
is represented by a similar square array:

aa ab ac
ba bb be

ca ch cc . . 3)

By obvious extension of the notion of the image
of one point from another point, array Q@A) is
seen to represent the collection of images of
the points of the set 4 from each other, includ-
ing the self-image of each point. This collection
is called the self-image of set 4, and may be
said to occur in image space.

The construction of ordered arrays

From diagrams (2) and (3) it is clear that
each item in the distance array or self-image is
the result of an interaction between points a,
b, ¢, . . with each other. In constructing an
array this can be aided by arranging a vertical
margin with the characters a, b, ¢, . . some-
what to the left of the array to provide the first
character of the line of pairs, and a horizontal
margin with characters a, b, ¢, . . somewhat
above the array to provide the second character
to the column of pairs, thus:
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b be b6 b . . @

This scheme is readily adapted to sketching
diagrams of arrays in which some points of
the multiple lattice are occupied by a subset
while others are not. Only interactions between
occupied points in a particular subset give rise
to distance entries in the self-image.

Distances in cyclotomic sets

As cyclotomic sets are one-dimensional, all
points of the set lie on a single straight line,
so the vectors of (2) degenerate into positive
and negative distances in image space. Further-
more the points are located at some of the
points of a one-dimensional multiple lattice, as
in Figure 2. Let the set of all such possible
point locations be

M = Y1,%2 s, ...Y¥, )]

F16. 2. The circular representation of the points of
a one-dimensional multiple lattice with T/¢ — 8.
The set consists of the points in equation (5)
in ordered sequence 1, 2, 3, . . N. Here the first
point ¥, is placed at an origin at the bottom of
the circle.
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where the subscripts indicate that the points
are enumerated in an ordered sequence from
the origin. The self-image of this set is

YY1 V1Y Y1iYs VYN
YY1 YeY:  Y2Ys Y'YV

MM = Ysv1 YsY2 YaYa Yavw  (6)
YNY:L YNYz YNYs YNYN

All these points are at distances from the origin
which are multiples of the multiple-cell transla-
tion t = <yryi+s. Because of this simplicity, the
points of (6) need not necessarily be labeled,
but may often be represented simply by a square
array of dots.

For a particular cyclotomic set 4 whose
points are located at » of the N points of the set
M, the distances in (2) are, in general, different
for different arrangements of the r occupied
points. Thus the sclf-image A4 of a set 4 is,
in general, different from the self-image BB
of a different set B. Examples of two simple
but different sets and their distance arrays are
shown in Figure 3, where the points of the dis-
tance arrays are indicated by dots whereas the
points occupied in sets 4 and B are indicated
by small circles.

Some properties of distance arrays

When the points in M are ordered, then the
distance array for the self-image in (6) has
some useful properties. Any specific row con-
tains the distances from a specific point to all
points in M (including the null distance from
the specific point to itself), whereas the corre-
sponding column contajns the distances from
all points in M to that specific point. Corre-
sponding row and column cross at the distance
from the specific point to itself. Any correspond-
ing row and column contain, point-by-point,
distances that have the same magnitudes but
opposite directions. Thus, the sequence of dis-
tances in a column are the negative equivalents
of the sequence of distances in the correspond-
ing row. The main diagonal of the distance
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FI1G. 3. The upper part of the illustration shows the circular representations of two different cyclotomic
sets 4 and B, both with N — 8, r — 4. The lower part of the illustration shows the self-image A4
of set 4 and the self-image BB of set B. From these diagrams the interpoint distances in sets 4 and
B can be determined.

array, therefore, behaves like a line of mirror
symmetry between the magnitudes in the col-
umns and rows.

The main diagonal contains distances be-
tween points with labels like yiyi, yayz ysys « o
which are the self-images of vyi, ¥z, s, - 5 . NN N N N N
these correspond to positive an):i nZgati);le dis- \\\\\\\\\\

tances which are identical and so must be zero. : ’ 7
are iden! and so mus Zi \ \\\ \ \\\\s

This feature of ordered arrays corresponds to

the origin peak of the Patterson function. But . \\ \\\\ \ \
for cyclotomic sets the array has another proper- : \\\ \ \\\\\5
. B 4 P

ty not shared with the general Patterson func- .

tion, Because of the restriction of points of a ) \\\\\\ AN
cyclotomic set to some of the locations of the . R N N N
points of the multiple lattice M whose primitive \ \ \ \ \ \ \\2
translation is ¢, any line parallel to the main ’ NN N NN

diagonal but separated from it by a spacing of \ \ \ \ \\\ N\ 1

p lines can contain only distances between N\ \ NN N\ \ \
points like ysya+» for a line above the main -7 -6 -5 -4 -3 -2 -1 0
diagonal, but can contain only distances between p

points like ynya-p for a line below the main Fi . .
. K . . . G. 4. A diagram of the self-image MM of the
diagonal, as illustrated in Figure 4. This prop- points of a multiple lattice M within the range

erty permits determining the collection of dis- T. All points which lie on a particular line
tances in a cyclotomic set by a quick Inspection parallel to the main diagonal of the self-image
of the occupied points in the several lines paral- array correspond to the same interpoint distance

lel to the main diagonal. The collection of these p-
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Figs. 5 and 6. Consideration of adjacent cells of the self-image in Figure 4 make it evident that a line
parallel to the main diagonal may refer to both posmve and negatlve distances. The distribution of
these distances is different depending on whether N is even, shown in Figure 5, or odd, shown in

Figure 6.

distances is a characteristic of the self-image of
the cyclotomic set.

From the appearance of Figure 4 the im-
pression might be gained that, in the distance
array of M, the number of points in a line
parallel to the main diagonal decreases with p.
But when these lines are drawn for adjacent
cells, as in Figure 5i, it becomes evident that
p, as referred to one cell, is the same as N-p
referred to the adjacent cell; this is a conse-
quence of the modular nature of translation
repetitions. Thus, for set M, lines drawn parallel
to the main diagonal all contain the same num-
ber of points, namely N, and each such line of

points corresponds to N distances, each of p
times the unit translation t.

The relation of numbered points to the dis-
tances from one of them is displayed on a cir-
cular diagram in Figure 5ii. The distribution of
distances is somewhat different for N even,
illustrated in Figure 5ii, and for N odd, shown
in Figure 6ii. For N odd, all chords occur in
pairs that are symmetrical about a diameter,
but for N even, one singular chord lies along
the symmetry diameter and corresponds to
the distance +N/2 and -N/2.

Some of this information can be expressed
as follows:
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Lemma 1: In the distance array of a multiple-
lattice set, the nth row contains the distances
from the point which occurs at a distance of
nt = nT/N from the origin of the original set
to all points of the set, and the rth column
contajns the distances from all points of the
set to the point at a distance of nt = nIT/N
from the origin of the original set. Thus suc-
cessive rows (and corresponding columns)
contain the same distances in cyclical permuta-
tion.

Theorem I: A multiple lattice M, described by
N ordered points with translation interval ¢, has
a self-image MM consisting of N points ar-
ranged in a square array. These points are also
aligned along N equally spaced lines parallel
to the main diagonal. Any line located p spac-
ings from the main diagonal contains N points,
each of which occurs at the same distance pt
from the origin of image space, where p runs
from 0 to N-I1.

The self-image array thus provides a useful
device for permitting the counting of interpoint
distances by inspection.

Unoccupied points

In cyclotomic sets, some points of the mul-
tiple-lattice set are, in general, occupied; others
are not. If a point is occupied, there are inter-

A
O o o - 0 o O O
o O . o O
o O . o O
O O . o O
. .. - ..
O o O O 0 O O O
¢] 0 O O 0 O O O
@] o o O 0O 0O o ©
@] o 0 O - O O 0O O
A A

Fic. 7. Demonstration that if a node of the mul-
tiple lattice is unoccupied by a point in set 4,
the corresponding row and column of the self-
image A4 are empty.
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point distances between that point and other
occupied points of the set. If any point of the
set is unoccupied there are no meaningful dis-
tances within the set, between that point and
any other points of the set. This is illustrated in
Figure 7, where set 4 lacks the 4th point in M.
This situation leads to

Lemma 2: If any point of a multiple-lattice set
is unoccupied the entire row and entire column
corresponding to the unoccupied point are ab-
sent in the self-image array.

Lemma 3: If a row or column of a distance
array contains the points of one subset, it can-
not contain the points of another subset.

Lemma 4: The self-images of subsets are dis-
tinct. No subset shares a row or column with
any other subset.

Complementary sets

If a cyclotomic set 4 occupies r of the N
points of the multiple-lattice set, a set consist-
ing of the remaining N — r points is called the
set complementary to 4. The complementary
set is labeled A4’, following a practice by Patter-
son (1944). Complementary sets play an im-
portant role in the study of tautoeikonic sets.

A pair of complementary sets constitutes a
special case of two subsets for, whereas two
subsets do not necessarily exhaust the points of
the multiple lattice, the sum of the points of
any pair of complementary sets is equal to all
the N points of the multiple lattice, giving the
important relation

A+ A'=B+ B =M. 7

More specific statements for Lemmas 2 and 3
as applied to complementary sets are:

Theorem 2: If a row or column of the self-
image array contains the points of a set, it
cannot contain points of the complementary
set.

Theorem 3: Every row or column of the self-
image array contains either the r points of a
set or the N — r points of its complementary
set.

In most applications the set and its comple-
ment are distinct so that distances between the
two sets are unimportant. The number of points
occupied in the distance array by the set and
its complement depends on both N and r:

Theorem 4: The number of points in the self-
images of a set and its complement is N* —
2r(N - r). This is a minimum when r N,
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Fig. 8. Demonstration that the sum of the points
in the self-images of a set and its complement
is N> — 2¢(N — r). The minimum sum occurs
when r = N,

when the number of points in the two self-
images is Y2 N?,

This is illustrated in Figure 8.

A SyMBOLISM FOR CYCLOTOMIC SETS

When discussing cyclotomic sets it is desir-
able to have a symbolism for the purpose of
distinguishing one set from another. A simple
numerical basis for a suitable symbolism
(Buerger 1977) follows. In general, a cyclotomic
set consists of several sequences, each consist-
ing of several points occupied without a gap,
then each such sequence separated from the
next by a gap consisting of unoccupied points.
Each uninterrupted sequence can be repre-
sented by a numeral corresponding to the num-
ber of occupied points, and each gap can be
represented by a numeral corresponding to the
number of its unoccupied points. The symbol
of the set is then the alternating sequence of
these two kinds of numerals. To distinguish oc-
cupied points from unoccupied points, the
former are written at an elevated level and the
latter at a lower level. An example is ®'s%. It is
easy to see that the number of upper numerals
is equal to the number of lower numerals, and
that the sum of all the numbers is N.

SYMMETRIES OF SELF-IMAGE ARRAYS
Modular coordinate systems

Because the cells of a periodic structure are
repeated by translation, the points in the cells
can be referred to a modular coordinate system.
For cyclotomic sets this modulus is N. If N is
8, a point @ at x = 5 can be located equally
well by x = —3 because -3 = 5 mod 8, and
another point b at x = 7 can be located equally
well at x = ~1 because -1 = 7 mod 8. In these
statements it is assumed that an origin has
been chosen at one of the points of the mul-

FiG. 9. The relation of points in the self-image of
a set which consists of the two points « and b.
If the coordinates of the points of the self-image
are important the origin of the set is designated
ZET0.

tiple lattice M which has been assigned the
coordinate x = 0.

The set so defined is shown along the borders
of Figure 9. The self-image of the set is:
(@ + b) (@ + b) = aa + ab + ba + bb.
It is evident from Figure 9 that the coordinates
of these points in the self-image array are sym-
metrical with respect to a mirror line running
along the main diagonal.

The symmetries of individual cyclotomic sets

An individual cyclotomic set, that is, a sin-
gle set occupying r or the N points of a mul-
tiple lattice, can fall into one of only two
classes with respect to symmetry: asymmetric
or symmetric (Buerger 1977). If the set is
asymmetric, its self-image array nevertheless
has a certain definite symmetry. An example for
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Fic. 10. Demonstration that a set without sym-
metry has a self-image whose symmetry is cm.
This symmetry is also a proper subgroup of a
symmetric set. The full line is a line of mirror
symmetry; the broken line is a line of glide
symmetry whose translation component is %2N~+/2.

p4dmm

Fic. 11. Demonstration that a symmetric set has a
self-image array whose symmetry is p2mm.

N = 8 is shown in Figure 10. It can be seen
that the main diagonal relates points as a mirror

THE CANADIAN MINERALOGIST

line; the parallel line half-way between main
diagonals relates the points of the array as a
glide line whose translation component is
(N/2) /2. The resulting symmetry of the self-
image array is that of plane group cm.

If the set is symmetric, the symmetry ele-
ments can be represented by inversion centres,
or by mirror lines normal to the translation di-
rection. In this case the symmetry of the self-
image of the set is that of the plane group
pAmm. An example is shown in Figure 11 for
N = 8. The new rotational symmetry elements
can be regarded as due to the projections of
the symmetry elements of the sets in the two
margins into the interior of the self-image array.
This projection occurs because, if the set in
the upper margin has a symmetry element at a
specific location, the image of the set from any
point in the left margin (and vice versa) has a
corresponding symmetry clement at the corre-
sponding location. Thus any mirror line in the
sets along the margins extends through the body
of the self-image array. They cross the mirror
lines along the main diagonals and the glide
lines half-way between them at angles of 45°.
At their intersections with the mirror lines they
generate 4-fold rotors, whereas at their inter-
sections with the glide lines they generate
2-fold rotors.

The symmetries of complementary pairs

It has been shown (Buerger 1977) that there
are five kinds of complementary pairs: asym-
metric homometric, symmetric homometric,
enantiomorphic, asymmetric congruent and
symmetric congruent. Bach of these varieties
has a characteristic self-image array with a
characteristic symmetry. The last three involve
antisymmetry, and so conform to certain of the
black-white symmetries. As the usual geometrical
representation of symmetry elements in dia-
grams of antisymmetries requires the use of two
colors, these symmetry elements are omitted in
illustrations accompanying the discussions of
such symmetries given below.

Homometric pairs. The least specialized of
the tautoeikonic complementary pairs are the
two homometric varieties. In neither of these
are the set and its complement related to one
another by a coincidence operation. According-
ly, there are no other symmetry relations than
those shown in Figures 10 and 11. Asymmetric
homometric pairs therefore have self-images
whose symmetries conform to the cm of Fig-
ure 10, and symmetric homometric pairs have
self-images whose symmetries conform to the
p2mm of Figure 11.
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Enantiomorphic pairs. Bach member of an
enantiomorphic pair must be asymmetric, so the
symmetry of the contribution of each set is that
of Figure 10. The two sets, however, are related
to one another by antireflection mirrors nor-
mal to the translation. The same antisymmetry
must also relate the corresponding points on
the main diagonal. This correspondence locates
the antisymmetry elements which relate the in-
dependent self-images of the two members of
the complementary pair. The resulting sym-
metry of the entire self-image of the pair is
c2’mm’. An example for N = 8 is shown in
Figure 12 for ;..

Asymmetric congruent pairs. Bach member
of the pair is asymmetric, so the contribution of
each set to the symmetry of the self-image is
that of Figure 10. The two sets, however, are
related to one another by a submultiple anti-
translation ¢#. This coincidence operation also
occurs mapped along the main diagonal. This
location is mentioned merely to reveal the
direction of the antitranslation in the self-image
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Fi6. 12. The symmetry of the self-images of a
complementary pair of cyclotomic sets that are
enantiomorphic. The sets are related by two
antireflection mirrors per translation; these are
indicated by short dotted lines orthogonal to
the translation. The projections of these into the
self-image array produces the four dotted crosses.
These lead to the symmetry c2’m’m for the self-
image array. The symmetry elements are omitted
for clarity.
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Fre. 13. The symmetry of the self-images of a
complementary pair of cyclotomic sets that are
asymmetric congruent. The symmetry elements
and translations of the resulting ¢’m are omitted
for clarity.

array, for indeed it occurs throughout the entire
self-image array; its length is half the period
of the main diagonal and its direction is that of
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Frc. 14. The symmetry of the self-images of a

complementary pair of cyclotomic sets that are
symmetric congruent. The symmetry eclements
and translations of the resulting p’.mm are
omitted for clarity.
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TABLE 1. CORRELATION OF THE FEATURES OF THE CELL OF THE SELF-IMAGE ARRAY
WITH THE FEATURES OF THE CELL OF THE PATTERSON MAP

Number of peaks in the cell of
the Patterson map

Number of distances in the cell of
the self-image array

2

Total number: n
Peaks coalescing at the origins n
Peaks at locations x y z: k(nz— n}
peaks at locations X ¥ z: a(n2~ n)

2

Total number: xr
Distances of magnitude zero: x
Obverse distances, 1t to iNt: k(rz- x)

Reverse distances, 4Nt to (N-1)t: k(rz- x)

the main diagonal. A second antitranslation of
equal magnitude occurs at right angles to the
first one. These antitranslations add to the mir-
ror along the main diagonal a coincident anti-
reflection glide line and to the glide line be-
tween main diagonals, an antireflection mirror
coincident with the original glide line. The re-
sulting symmetry is ¢m. An example for N =
12 is shown in Figure 13 for *:%s" ..

Symmetric congruent pairs. Each member of
the pair is symmetric, so the contribution of
each set to the symmetry of the self-image is
that of Figure 11. As in the case of the asym-
metric congruent pair, the two sets are related
by a submultiple antitranslation #. When this is
mapped along the main diagonal, as above, it is
evident that the self-images of the two inde-
pendent sets of the pair are related by two
orthogonal antitranslations whose lengths are
half the diagonal of the self-image cell. These
antitranslations augment the symmetries p4mm
of the independent parts of the self-image to the
antisymmetry p’/4mm. An example for N = 12

is shown in Figure 14 for %44

DISTANCE ARRAYS FOR COMPLEMENTARY SETS
Obverse and reverse distances

In determining distances from a self-image
array, it is sometimes useful to distinguish be-
tween two kinds of distances. It was pointed out
that the main diagonal separates positive dis-
tances on its upper right from negative distances
on its lower left. It was also noted that the same
relation occurs in adjacent cells, as a conse-
quence of which the positive and negative dis-
tances cover the same range between adjacept
cells in opposite directions. The distances in
the region from the main diagonal to the nearest
glide line on its upper right may be termed
obverse distances, whereas those from the main
diagonal to the nearest glide line on its lower
left may be termed reverse distances.

In discussing Figures 5 and 6 it was shown
that there is a difference in the arrangement
of distances for a multiple-lattice set M depend-
ing on whether N is odd or even. A similar

difference occurs for the distances of a set 4.
When r is odd, the distances in the array are
aligned along an even number of lines parallel
to the main diagonal; these occur in pairs of
lines, one with obverse, the other with reverse
distances, symmetrical about the glide line.
When r is even, the number of lines is odd, so
the middle line coincides with the glide line. In
this case both obverse and reverse distances
occur on this particular line. Attention to this
feature will be given again later.

Patterson maps and self-image arrays

The self-image array A4 is essentially a sim-
plification and a specialization of the familiar
Patterson map. It is a simplification because
cyclotomic sets are one-dimensional; it is a
specialization because the points of the set are
limited to a certain number of the N points of
the multiple lattice. Accordingly the distribu-
tion of points in the cell of the Patterson map
and of the points of the cell of a self-image
array fall into similar categories, shown in Ta-
ble 1. This brings out the fact that, for a set
of  points, the number of points in each of
the three categories of the cell of the array is
always r, Y2 (©* —r) and %5 (" — 1) regardless
of the pattern of distribution of the r points over
the N points of the multiple lattice. The only
variation between sets having the same values of
r and N is the distribution of distances over
the possible values ¢, 2¢, 3¢, . . (N - D)t.

Determination of interpoint distances

The distances in a cyclotomic set can be de-
termined in several ways. In sets with small
values of N they can be easily determined from
the circular representation by noting the lengths
of tha arcs intercepted by the collection of
chords drawn between all pairs of points of
the set. An example of these is given in Table
2, in which the distances between points are
derived from the sets of Figure 15. This proce-
dure becomes tedious for sets with any but
small values of N because the diagrams are
cluttered with criss-crossing chords.

The distances in any set can also be deter-
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5,4 7,6 1,8

1 1 1 1
1 1 1 1

F16. 15. The circular representations of the 10 distinct cyclotomic sets with N = 8, r = 4. Below each rep-
resentation is given the symbol of the set. The pair of numbers between sets indicates the interchange of
points (as numbered in the upper left diagram) to transform a set into the neighboring set.
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TABLF, 2, THE TEN CYCLOTOMIC SETS HAVING ¥ = 8, r = 4;
THETR INTERREIATIONS AND ‘THEIR INTERPOINT DISTANCES

Complementary Relation of Number of distances of amount
pairs A to A' and
A A’ reciprocity ot 1t 2t 3t 4t
P
44 44 congruent 4 3 2 1
3113 3311 enantiomorphicy 4 2 2 1 1
3212 2321 homometric 4 2 1 2 1
3311 3113 enantiomorphicd 4 2 2 1 1
2321 3212 homonmetric 4 2 1 2 1
22 22 congruent 4 2 2 2
22 22
221111 211112 enantiomorphicy 4 1 2 2 1
211211 211211 congruent 4 1 2 3
211112 221111 enantiomorphicd 4 1 2 2 1
111 11111l congruent 4 4 2

11 1111

mined by inspection of the self-image array of
the set. The background for this method is sup-
plied by Theorem 1. The method is especially
useful in dealing with pairs of complementary
sets. In the context of such sets the distances
in a set A and the distances in its comple-

mentary set A’ are independent of each other,
and the self-images of these complementary
pairs are ordinarily considered as independent
features.

The application of self-image arrays to the
determination of distances is illustrated by the

0o -7 ~6 -5 -4 -3 -2 -l 0

Fic. 16. An example of how all distances within each of two complementary cyclotomic sets can b.e
determined by making use of the relation demonstrated in Figure 5. The distances derived from this
diagram and from the other distinct sets with N = 8, r — 4 are listed in Table 3.
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mUNI']SOI“r,]N'mElOC!C[m@lICSE]SHAVMH=B,r=4

From Symbol of set
polygon
yertex *a 1t P2t i 3%
number:
1 0123 .. 012.4... 012. 5 .. 01l2...686 01l. .56
2 0lr2.. .7 01 3...7 01l. .4 .7 c1...5.7 0. . 45 .
3 01 .. 6 7 0.2.. 6 7 0. .3 6 7 0 4.67 01 34. .
4 0. . 5§67 0. . 456 ., 0 . 345.. 0.234.. 0Q.23.
Number+4321.l23 42212122 42122212 42212122 4212221
Number§4321. 42211 42121 42211 42121
Frgm Symbol of set
polygon
vertex 2222 22111 211211 211112 1111111
number: 1
1 01L..45.,. 01 .4 .6 01.3..6. 01 .3.5 0.2.4.6.
2 0..34., .7 0..3.5.7 0.2..5.17 0 .2.4. 7 0.2.4.6.
3 01..45,., 0 2 .45, . 0..3.56. 0.2 .56 0.2.4.6.
4 0. .34. 7 0.23..6. 0 .23.5, 0. .34.686 0.2.4.6.
Number+42.242.2 41222221 4123,321 41222221 4 .4 .4, 4.
Number§42.22 41221 4123. 41221 4 .4, 2
y Number of distances from all four polygon vertices.
§Numbe:r of absolute magnitudes:
number of distances from all four polygon vertices for 0t, 1lt, 2¢, 3t,

but half the number for 4t.

self-image of one of the 10 sets of Figure 15;
this is shown in Figure 16. The distances de-
termined from similar arrays of all the 10 sets
of the N = 8, r = 4 cyclotomy are shown in
Table 3, where the sequence of sets is the
same as in Figure 15. The theory of the occur-
rence of these distances in self-image arrays
calls for a little explanation.

From Lemma I and Theorem 1 it is clear
that each horizontal line of the self-image array
is occupied by a series of distances from a
particular point to the r points of the set. The
total number of distances in the set is the sum
of these for each of the 7 lines, the total amount-
ing to r* distances. These include zero distances,
obverse distances and reverse distances as listed
in Table 1. The specific distances from each of
the r points to the » points of the set, in terms
of 0¢ 1t, 2t, . . (N — 1)t are given in the
interiors of the 10 blocks of numbers in Table
3, one block for each cyclotomic set. Immedi-
ately below the block is given the sum of the
number of distances in each category, as a line
of 8 numbers (where a dot implies that no dis-
tance was observed in that category). Below this
line of 8 numbers is a line of 5 numbers which
give the absolute distances (including the four
zero distances). For the first four categories
these absolute distances are the same as the
obverse distances above them, but the number
for category 4Nt = 4t of the line above the
number must be divided by two because r is
even, as explained in the last section.

TRANSFORMATIONS OF ORDER

Interchanges of points

For a specific pair of values of N and r

(provided N = 4 and r £ 1) there exists a num-
ber of distinct sets. Starting with any one of-
these, the others can be derived from it as
follows:
Lemma 5: Any possible cyclotomic set A and
its complement A’ can be derived from any
other set of the same cyclotomy N,r by inter-
changing one or more points of 4 with the
same number of points of A4’. If the transforma-
tion to the new set requires several interchanges,
the result is independent of the order in which
the interchanges are made, or whether they are
made together or separately.

This lemma is valid because it depends on
permutations of some of the N points of the
multiple lattice in which the interchange occurs
only between two independent fractions of N.
(An interchange of points contained in 4 with
each other, or an interchange of points con-
tained in 4’ with each other, obviously leaves
both 4 and A’ unchanged.)

Application to circular representations

Such interchanges provide a device for study-
ing changes in distances between sets of the
same N,r cyclotomy. A simple example is af-
forded by the sets having N = 8, r = 4. In
this cyclotomy there are 10 distinct sets A,
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shown in circular representation in Figure 15.
In these diagrams small empty circles are points
of the set 4 whereas large black dots are points
of the complementary set A’ In the upper-left
diagram the points of the multiple lattice M
are assigned numbers from 1 through 8. A
single interchange involves interchanging the
points at a pair of numbers. The arrangement
of the diagrams is such that, to transform a
particular set to one on its left or right, a sin-
gle interchange is made of the pair of points
whose numbers are noted between the original
and transformed sets. Transformations can be
performed toward the right or the left. Thus
the entire collection of 10 sets can be con-
structed step-by-step from any one of them by
a sequence of single interchanges. Alternatively,
any of the first four sets can also be trans-
formed into one another directly by a single
interchange, and any of the 10 sets of the
cyclotomy can be transformed into one another
by no more than two interchanges.

Some of the properties of the sets of Figure
15 are given in Table 2. The first (double) col-
umn gives the symbols for 4 and 4’; the second
column indicates by S which of the sets are
symmetric; the third column expresses the rela-
tion between the complementary sets and also
ties together the reciprocal pairs (Buerger 1977).
The remaining five columns give the absolute
distances for each set 4. For this cyclotomy,
N is small enough so that the chords (seen in
Fig. 15) do not make a serious clutter.

Application to image algebra

The proof of Patterson’s Theorem (i) with
the aid of image algebra (Buerger 1976) made
use of the transformations of order to construct
other sets of the same cyclotomy. The general
strategy of this application was that it is pos-
sible to begin the transformation with a set A
and its complement 4’ which are congruent and
which, therefore, have the same distances. If
an arbitrary point @ in 4 is interchanged with
an arbitrary point b in A4’, then 4 and A’ are
transformed into new sets B and B’ according
to Lemma 5. The relation of B and B to 4
and A’ are expressed in image algebra as

B=A—-a+b ®

MINERALOGIST

B =A'"+t+ae—b
from which the self-images of these sets are
BB=(A—-a+bA—a+bh 10)

&)

BB'=(A'"4+a—b) (A'"+ e — D). D

If B and B’ are tautoeikonic, that is, have the
same distances, then the difference between (10)
and (11) must be zero. By manipulating (10)
and (11) by the rules of image algebra and ap-
plying a simple but powerful theorem (Buerger
1976) it can be demonstrated that this is true,
so that B and B’ are tautoeikonic.

This procedure can be continued by inter-
changing an arbitrary point ¢ in B with an
arbitrary point d in B’ to produce a new pair
of complementary sets C and C’. The image-
algebra expression of this interchange is

C=B—c+d (12)

C'=B +c—d (13)

As (12) and (13) have the same form as )
and (9) their self-images are similar to (¢1V)]
and (11). These self-images can be reduced by
image algebra with the result that CC = cc,
so that C and C' are also tautoeikonic. This
procedure can obviously be continued until
every pair of complementary sets in the cyclo-
tomy are shown to be tautoeikonic.
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