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ABSTRACT

Cyclotomic sets and their distance anays lrere
studied by Patterson. Here the distance arrays are
treated as properties of self-images of cyclotomic
sets. Although the sets are one-dimensional their
self-images are two-dimensional. They have five
kinds of plane symmetries, one for each of tle
five kinds of complementary pairs. A cyclotomic
set is a simplification and a specialization of the
ordinary Patterson map. Accordingly the distances
in the cell of its self-image fall into three cate-
gories analogous to the three categories of vectors
in the cell of a Patterson map. The distances in a
cyclotomic set can be determined easily by in-
spection of its circular representation provided that
the number of its points is quite small. In all cases
the distances can be determined by making use
of one of the important properties of the self-
image array: all sets belonging to a specific cy-
clotomy can be constructed from any other such
set by an exchange of one or more points with its
complementary set. Such interchanges have applica-
tions in treating circular representations and espe-
cially in dealing with cyclotomic sets by the
methods of image algebra.

SouvrernB
Patterson 6tudia les ensembles cyclotomiques et

leurs distributions de distances. Nous traitons ici
ces distributions comme propri6t6s d'auto-images
des ensembles cyclotomiques. Quoique les ensem-
bles soient i une dimension, leurs auto-images sont
bidimensionnelles. Elles poss€dent cinq espices de
sym6tries planes, correspondant i cinq espices de
paires compl6mentaires. Un ensemble cyclotomique
repr6sente une simplification et sp6cialisation de
Ia projection Patt€rson habituelle. Il s,ensuit que
les distances i tint6rieur de la maille de l,auto-
image de I'ensemble se r6partissent en trois cat6-
gories analogues aux trois cat6gories de vecteurs
que I'on distingue dans la maille de patterson. Dans
un ensemble cyclotomique, pourvu que le nombre
de ses points soit petit, les distances se tirent i
simple we de sa repr6sentation oirculaire. Dans
tous les cas, on d6termine ces distances en se ser-
vant d'une des propri&6s importantes de la distri-
bution de l'auto-image: tout ensemble appartenant
i une cyclotomie donn€e peut se construire e
partir de n'importe quel autre ensemble semblable

*Dedicated to Professor J. D. H. Donnay on the
occasion of his 75th birthday.

par 6change d'un ou de plusieurs points entre ce
dernier et son compl6mentaire. Pareils 6changes
trouvent leur application dans le trartement des re-
pr6sentations circulaires et spdcialement dans
l'6tude des ensembles cyclotomiques par l'algdbre
des images.

(Iraduit par la R6daction)

INrnooucrroN

Homometric sets

In determining the structure of bixbyite,
Pauling & Shappell (1930) discovered two ar-
rangements of metal atoms which scattered
X-rays with the same intensities, yet were
neither congruent nor enantiomorphic to each
other. This implied that the two arrangements,
though different, had the same set of inter-
atomic vector distances. On learning of this
property of some pairs of arrangements of points,
Patterson (1939) referred to such pairs as
homomeffic.

Later Patterson (1944) began a systematic
study of periodic sets and demonstrated the
existence of many homometric pairs among
them. In this investigation he began by con-
sidering one-dimensional sets of points. He
found it convenient to deal with a set whose
translation was Z as if it were wrapped around
a circle whose circumference was T, as illus-
trated in Figure 1. This representation of a
one-dimensional set may be called its circular
representatior. It has the advantage that, in the
study of interpoint distances in the set, con-
sideration is limited to those distances within
one translation period. The interpoint distances
tlen appear as arcs. To avoid the superposition
of arcs in drawings, Patterson found it con-
venient to represent each arc by the chord it
intercepts.

Patterson's initial search was among sets
whoso points were restricted to r of the N
points which divided the translation T into N
parts of equal length, t. Thus

, : T/N ($ an inteser). (1)

The set of points which divides T into these
N segments is called a multiple lattice @uerger
1976). Patterson called the set of points which
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T
Frc. 1. The small circles on the horizontal line constitute a periodic one-dimensional set whose trans'

lation period is ?. The set shown is specialized in that its points are restricted to some of the points
of a la:ttice, called a multiple lattice, wiow period r is a submultiple of ?. In studying distances in a
one-dimensional set it is cbnvenient'to wraplhe set around a circle whose circumference is equal to
?, as shown in tle upper part of tle illusiration. This arrangement is called the circular representa'
tion of the set.

occupy r of the N points of the multiple lattice
a cyclotomic set,

Tautoeikonic sets

It is convenient to have an adjective to sharac-
terize two or more sets which have the same
interpoint distances without specifying whether
the sets are congruent, enantiomorphic or homo-
metric. For tlis more general relationship the
adjective tautoeikonic ('having the same self-
image') has been proposed (Buerger 1976).

DrsteNcs ARRAYs aNo SsLn-IMAcss
FOR CYCLOTOMIC SETS

The notion ol images

The vector from a point a to a point b may
be designated ab. (It cannot be represented by
a pair of letters in boldface type since this is
the standard designation of a dyadic.) The ap-
pearance of point D as seen from point a mlY
be called the image of D from a, and may be
designated by the label ab. If the set A con-
sists of points a, b, c, . . o the vectors between
the points may be neatly displayed by writing
the vectors in an ordered square array:

When all these vectors are transferred to the

same origin, the set of images between the poiqts

is represented by a gimilal squarE array:

aa ab ac

ba bb bc

ca cb cc (3)

+ + +
aa, ab ac

--+ + --t
ba bb bc

+ + +
ca cb cc

By obvious extension of tle notion of the image
oi one point from another point, array (3) is
seen to represent the collestion of images of
the points 6f the set A fuon each other, inslud-
ing ihe self-image of each point. This collection
is called the self-image of set A, and may be
said to occur in image sPace.

The construction of ordeted arrays

From diagrams (2) and (3) it is clear that
each item in the distance array or self-image is
the result of an interaction between points a,
b, c, . . with each other. In constructing an
array this can be aided by arranging a vertical
margin with the characters a, b, c, . some-
whal to the left of the array to provide the first
character of the line of pairs, and a horizontal
margin with characters Q, b, c, . . somewhat
above the array to provide the second character
to the column of Pairs, thus:

(2)
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(4)bc

ab

bb

cb

ba

where the subscripts indicate that the points
are enumerated in an ordered sequence from
the origin. The self-image of this set is

'lr"h 'ft^fz "fr'Ys "ft"Ytt

This scheme is readily adapted to sketching
diagrams of arrays in which some points of
the multiple lattice are occupied by a subset
while others axe not. Only interactions between
occupied points in a particular subset give rise
to distance entries in the self-image.

Distmces in cyclotornic sets

As cyclotomic sets are one-dimensional, all
points of the set lie on a single straight line,
so the vectors of (2) degenerate into positive
and negative distances in image space. Further-
more the points are located at some of the
points of a one-dimensional multiple lattice, as
in Figure 2. Let the set of all such possible
point locations be

M :  " l t ,^ lz ,^ |a, . . . "yy ,  (5)

v
5

T
7

Y, l

Ftc. 2. The circular representation of the points of
a one-dimensional multiple lattice with T/t = 8.
The set consists of the points in equation (5)
in ordered sequence L, 2, 3, . . N. Here the first
point 11 is placed at an origin at tle bottom of
tle circle.

'Yz^h 'Yz^ts ^lz^fa

MM : "fa"ft ^la'yz ^ta'Ys

"fz"Yg

^ta'yn (6)

"fn^lr ^ltr'fz ^lv'Ye 'Yv'tn

All these points are at distances from the origin
which are multiples of the multiple-cell transla-
tion t = p/r+r. Because of this simplicity, the
points of (6) need not necessarily be labeled,
but may often be represented sirnFly by a square
array of dots.

For a particular cyclotomic set ,4 whose
points are located at r of the N points of the set
M, the distances in (2) are, in general, different,
for different arrangements of the r occupied
points. Thus the self-image AA of. a set z{ is,
in general, different from the self-image BB
of a different set B. Examples of two simple
but different sets and their distance arrays are
sbown in Figure 3, where the points of the dis-
tance arrays are indicated by dots whereas the
points occupied in sets A and, B are indicated
by small circles.

Some properties of distance afitys

When the points in M are ordered, then the
distance array for the self-image in (6) has
some useful properties. Any specific row con-
tains the distances from a specific point to all
points in M (including the null distance from
the specific point to itself), whereas the corre-
sponding column contains the distances from
all poins in M to that specific point. Corre-
sponding row and column cross at the distance
from the specific point to itsel'f. Any correspond-
ing row and column contain, point-by-point,
distances that have the same magnitudes but
opposite directions. Thus, the sequence of dis'
tances in a column are the negative equivalents
of the sequence of distances in the correspond-
ing row. The main diagonal of the distance

v
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Frc. 3. The upper part of tle illustration shows the circular representations of two different cyclotomic
sets I and 

-d, 
both with N - 8, r = 4. The lower part of the illustration shows the self-image lz{

of set z{ and tle s€U-image BB of set B. From tlese diagtams the interpoint distances in sets I and

B can be determined.

array, therefore, behaves like a line of mirror
symmetry between the magnitudes in the col-
umns and rows.

The main diagonal contains distances be-
tween points with labels like yryr, yz'fl, ysys, . .,
which are the self-imagos of yr, T4 !s, . .i
these correspoud to positive and negative dis-
tances which are identical and so must be zero.
This feature of ordered arrays corresponds to
the origin peak of the Patterson function. But
for cyclotomic sets the array has another proper-
ty not shared w.ith the general Patterson func-
tion. Because of the restriction of points of a
cyclotomic set to some of the locations of the
points of the multiple latttce M whose primitive
iranslation is t, any line parallel to the main
diagonal but separated from it by a spacing of
p lines can sontain only distances bet'wee.n
points like yaya+p for a line above fts main
ilagonal, but'can contain only distances between
points like y'ya-o for a line below the main
diagonal, as'iliustrated in Figure 4. This prop-
erty permits determining the collection of dis-
tances in a cyclotomic set by a quick inspection
of the occupied points ln the several lines paral-
lel to the main diagonal. The collection of these

' \ \ \ \ \ ' \ ' \ ' \ "

\ ' \ ' \ \ \ ' \ \ ' \ .

\ \ \ \ \ \ \ \ "

\ \ \ \ \ \ \ \ ,  D' \ \ \ ' \ \ ' \ \ \ "

\ \ \ \ \ \ \ \ "' \ ' \ ' \ ' \ ' \ \ ' \ ' \ "

' \  ' \ ' \ ' \  ' \ ' \ ' \ ' \ '

-7 -6-  -5 -4 -3 -2 -1 0

p

Frc. 4. A diagram of the self-image MM of the
points of a multiple latnce M witlin ttre range
?. an points which lie on a particular line
parallel to tle main diagonal of the self-image
array correspond to the same interpoint distancs
p.
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0 - 7 - 6 - 5 - 4 - 3 - 2 - 1 0

! r g . 5 r

M7

3 4 5 6 7 L 2 3 4 5 6 7

1 -

2 -
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t \ 4 '

5 '

6 .

7 .

0 - 6 - 5 - 4 - 3 - 2 - L 0

Fig.  6 i

Frcs. 5 and 6. Consideration of adjacent cells of the self-image in Figure 4 make it evident that a line
parallel to the main diagonal may refer to both positive and negalive distances. The distribution of
these distances is different depending on whether N is even, shown in Figure 5, or odd, shown in
Figure 6.

Fig .  5 i i

I

F i g . 6 i i

points corresponds to N distances, each of p
times the unit translation t.

The relation of numbered points to the dis-
tances from one of them is displayed on a cir-
cular diagram in Figure 5ii. The distribution of
distances is somewhat different for N even,
illustrated in Figure 5ii, and for N odd, shown
in Figure 6ii. For N odd, all chords occur in
pairs that are symmetrical about a diameter,
but for N even, one singular chord lies hlong
the symmetry diameter and corresponds to
the distance *N/2 and -N/2.

Some of this information can be expressed
as follows:

\ \ \ \ \ \ \ \' \ \ ' \ \ \ \ \

: \ : \ : \ \ \ \
\ \ \ \ \

\ \ ' \ \

: : :  : \ \ \
0 t

\

2 3 5 6

distances is a characteristic of the self-image of
the cyclotomic set.

From the appearance of Figure 4 the im-
pression might be gained that, in the distance
array of M, the number of points in a line
parallel to the main diagonal decreases with p.
But when these lines are drawn for adjacent
cells, as in Figure 5i, it becomes evident that
p, as referred to one cell, is the same as N-p
referred to the adjacent cell; this is a conse-
quence of the modular nature of translation
repetitions. Thus, for set M, lines drawn parallel
to the main diagonal all contain the same num-
ber of points, namely N, and each such line of

- 2 \ / - s
s  \ /  2
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Lemma l.'In the distance array of a multiple-
lattice set, the nttr row contains the distances
from the point which occurs at a distance of
nt = nT/N from the origin of the original set
to all points of the set, and the nth column
contains the distances from all points of the
set to the point at a distance of nt = nT/N
from the origin of the original set. Thus suc-
cessive rows (and corresponding columns)
contain the same distances in cyclical permuta-
tion.

Theorem /: A multiple lattice M, described by
N ordered points with translation interval /, has
a self-image MM consisting o,f N points ar-
ranged in a square array. These points are also
aligned along N equally spaced lines parallel
to the main diagonal. Any line located p spac-
ings from the main diagonal contains N points,
each of which occurs at the same distance pt
from tle o.rigin of image space, where p runs
from 0 to N-1.

The self-image array thus provides a useful
device for permitting the counting of interpoint
distances by inspection.

Unoccupied points

In cyclotomic sets, some points of the mul-
tiple-lattice set are, in general, occupied; others
are not. If a point is occupied, there are inter-

ooo oooo
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point distances between that point and other
occupied points of the set. I.f any point of the
set is unoccupied there are no msaningful dis-
tances within the set, between that point and
any other points of the set. This is illustrated in
Figure 7, where set ,4 lacks the 4th point in M.
This situation leads to

Lemrna 2: If. any point of a multiple-lattice set
is unoccupied the entire row and entire column
corresponding to the unoccupied point are ab-
sent in the self-image array.

Lemma 3: If. a row or column of a distance
array contains the points of one subset, it can'
not contain the points of another subset.

Lemma 4: The self-images of subsets are dis-
tinct. No subset shares a row or column with
any other subset.

Complementary sets

If a cyclotomic set I occupies r of the N
points of the multiple-lattice set, a set consist-
ing of the remaining N - r points is called the
set complementary to A. The complementary
set is labeled .,{/, following a practice by Patter-
son (1944). Complementary sets play an im-
portant role in the study of tautoeikonic sets.

A pair of complementary sets constitutes a
special case of two subsets forn whereas two
subsets do not necessarily exhaust the points of
the multiple lattice, the sum of the points of
any pair of complementary sets is equal to all
the N points of the multiple lattice, giving the
important relation

A + A ' : B + B ' : M .  ( 7 )

More specific statements for Lemmas 2 and 3
as applied to complementary sets are:

Theorem 2: If a row or column of the self-
image array contains the points of a set, it
cannot contain points of the complementary
set.

Theorem 3.' Every row or column of the self-
image array contains either the r points of a
set or the N - r points of its complementary
set.

In most applications the set and its comple-
ment are distinct so that distances between the
two sets are unimportant. The number of points
occupied in the distance array by the set and
its complement depends on both N and r.'

Theorem 4: T:he number of points in the self-
images of a set and its complement is lf -

2r(N - r). This is a minimum when r - 7/zN,

o

r\

o

o

o

o

ooo

ooo

v v v
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ooo

ooo

ooo
/ . \ / " \ n

ooo

ooo

A A

Ftc. 7. Demonstration that if a node of the mul-
tiple lattice is unoccupied by a point in set ;{,
the corresponding row and column of the self-
image AA are empty.
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a b

0 L 2 3 4 5 6 7 0
N - r X " +

orlgln
a t 0

0

Frc. 8. Demonstration that the sum of the points
in tle self-images of a set atrd its complement
is Ns - 2;(N - r). The minimum su'n occurs
when / - t/zN.

when the number of points in the two self-
images is %I{2.

This is illustrated in Figure 8.

A Syrvrsor,rslvr FoR Cycr,orovtc Sgrs

When discussing cyclotomic sets it is desir-
able to have a synbolism for the purpose of
distinguishing one set from another. A simple
numerical basis for a suitable symbolism
@uerger 1977) follows. In general, a cyclotomic
set consists of several sequences, each consist-
ing of several points occupied without a gap,
then each such sequence separated from the
next by a gap consisting of unoccupied points.
Bnsfo uninterrupted sequence can be repre-
sented by a numeral corresponding to the num-
ber of occupied points, and each gap can be
represented by a numeral corresponding to the
number of its unoccupied points. The symbol
of the set is then the alternating sequence of
these two kinds of numerals. To distinguish oc-
cupied points from unoccupied points, the
former are written at an elevated level and the
latter at a lower level. An example is 5:1ssa. It is
easy to see that the number of upper numerals
is equal to the number of lower numerals, and
that the sum of all the numbers is N.

Svrvrvrprnrss oF SELF-IMAcg ARRAyS

Modular coordinate systetw

Because the qells of a periodic structure are
repeated by translation, the points in the cells
can be referred to a modular coo.rdinate system.
For cyclotomic sets this modulus is N. If N is
8, a point a at )c = 5 can be located equally
well by x = -3 because -3 - 5 mod 8, and
another point D at x = 7 can be located equally
well at x = -l because -l - 7 mod 8. In these
statements it is assumed that an origin has
been chosen at one of the points of the mul-

Frc. 9. The relation of points in the self-image of
a set which consists of the two points c and b.
If the coordinates of the points of the self-image
are important the origin of the set is designated
zero.

tiple lattice M which has been assigned the
coordinate r = 0.

The set so defined is shown along the borders
of Figure 9. The self-image of the set is:
(a * b) (a * b) = aa * ab * ba * bb-
It is evident from Figure 9 that the coordinates
of these points in the self-image array are sym-
metrical with respect to a mirror line running
along the main diagonal.

The symmetries of individual cyclotomic sets

An individual cyclotomic set, that is, a sin-
gle set occupying r or the N points of a mul-
tiple lattice, can fall into one of only two
classes with respect to symmetry: asymmetric
or symmetric @uerger L977). It the set is
asymmetric, its self-image array nevertheless
has a certain definite symmetry. An example for

0

L

3

4

b 7

0

. - 6

. _ 5

ba
o

- - 4

. - 3

. - 2

. -l-

. 0

\ o *

0 -7 -6 -5 -4 -3 -2 -1.  0
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Frc. 10. Demonstration that a set without sym-
metry has a s€lf-image whose symmetry is cm.
This symmetry is also a proper subgroup of a
symmetric set. The full line is a line of mirror
symmetry; the broken line is a line of glide
symmetry whose translation component is thN!2.

o l o

'  
, t  , u  ,  P  4  m  m

o  . 1 .  o  o l o

o

o

o

Frc. 11. Demonstration that a symmetric set has a
self-image array whose symmetry is p2mm-

N = E is shown in Figure 10. It can be seen
that the main diagonal relates points as a mirror

MINERALOGIST

line; the parallel line half-way between main
diagonals relates the points of the array as a
glide line whose translation component is
W/2) \/2. The resulting symmety of the self-
image array is that of plane grottp ctn.

If the set is symmetric, the symmetry ele-
ments can be represented by inversion centres,
or by mirror lines normal to the translation di-
rection. In this case the symmetry of the self-
image of the set is that of the plane group
p4mm. An example is shown in Figure 11 for
N = 8. The new rotational symmetry elements
can be regarded as due to the projections of
the symmetry elements of the sets in the two
margins into the interior of the self-image array.
This projection occrus becawe, if the set in
the upper margin has a symmetry element at a
specific location, the image of the set from any
point in the left margin (and vice versa) has a
corresponding symmetry element at the corre-
sponding location. Thus any mirror line in the
serc along the margins extends through the body
of the self-image artay. They cross the mirror
lines along the main diagonals and the glide
lines half-way between them at angles of 45o.
At their inteisections with the mirror lines they
generate 4--fold rotors, wheteas at their inter-
sections with the glide lines they generate
2-fold rotors.

The symmetries of complementwy pairs

It has been shorrn @uerger L977) that threrc
are five kinds of complementary pairs: asym-
metric homometric, symmetric homometric'
enantiomorphic, asymmetric congruent . and
symmetric congruent. Each of these varieties
has a characteristic self-image array with a
characteristic symmetry. The last three involve
antisymmetry, and so conform to certain of tlre

black-white symmetries. As the usual geometrical

representation of symmetry elements in^ dia-
gr-ams of antisymmetries requires the use.oJ two-colors, 

these symmetry elements are omitted in

illustrations accompanying the discussions of

such symmetries given below.
Hoiometric pairs. The least specialized of

the tautoeikonic complementary pairs are the

two homometric varieties. In neither of these

are the set and its complement related to,one

another by a coincidence operation', According-
ly, there ir" n" otler symmetry -relations than

iirtse shown in Figures i0 and 11' Asymmetric
homometric pairs therefore have self-images
whose symmeiries conform to the cm of Fig'

ure 10, and symmetric homometric pairs have

,"tt-i-ug"t whote .ymmetries conform to the
pLtnm of Figure 11.
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Enantiomorphic pairs, Each member of an
enantiomorphic pair must be asymmetric, so the
symmetry of the contribution of each set is that
of Figure 10. The two sets, however, are related
to one another by antireflection mirrors nor-
mal to the translation. The same antisymmetry
must also relate the corresponding points on
the main diagonal. This correspondence locates
the antisymmetry elements which relate the in-
dependent self-images of the two members of
the complementary pair. The resulting sym-
metry of the entire self-image of the pair is
c?jmm'. An example for N = 8 is shown in
F igu re  12 fo r tg t r .

Asymmetric congruent pairs. F;ach member
of the pair is asymmetric, so the contribution of
each set to the symmetry of the self-image is
that of Figure 10. The two sets, however, are
related to one another by a submultiple anti-
translation /. This coincidence operation also
ocqurs mapped along the main diagonal. This
location is mentioned merely to reveal the
direction of the antitranslation in the self-imaee

" t '  

c 2 ' m r m

o  o  o i .

o o o

o o o

3 2 1
I  3  2  . '  b

o O O r o O . O O o o

Frc. 13. The symmetry of the self-images of a
complementary pair of cyclotomic sets that are
asymmetric congruent. The symmetry elements
and translations of the resulting c,rt ate omitted
for clarity.

array, for indeed it occurs throughout the entire
' o i o o o o self-image array; its length is half the period

of the main diagonal and its direction is that of

o
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o o o o . o .

P ' -  m  E

. O . O O O O

4 t l
1 4

.:.

a

o o o o
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Flc. 12. The symmetry of the self-images of a
complementary pair of cyclotomic sets that are
enantiomorphic. ThE sets are related bv two
antireflection mirrors per translation; tleie are
indicated by short dotted lines orthogonal to
the translation. The projections of these into the
self-image array produces the four dotted crosses.
These lead to the symmetry c2'm'm for the self-
image array. The symmetry elements are omitted
for clarity.

o o o o o o

o o o o o o

o o o o o o

o o o o o o

o o o o o

o o o o o

o o o o o

o o o o o

FIc. 14. The symmetry of the self-images of a
complementary pair of cyclotomic sets that are
symmetric congruent. The symmetry elements
and translations of the resulting p'"rnnl are
omitted for clarity.
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Peak€ coaloscing at the orLgin.

P6aks at locatioE x Y z:

Peal€ at locationg t t t:
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thg a€If,-lsage dlay

aotal nde!:

DLsluced of mglitud€ z€&:

Obv6r€6 all6tanceB, lt to !Nt:

Rerels€ dllstanc€s' lrN! b (N-l)t:
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the main diagonal. A second antitranslation of
equal magnitude occurs at right angles to the
first one. These antitranslations add to the mir-
ror along tle main diagonal a coincident anti-
reflection glide line and to the glide line be'
tween main diagonals, an antireflection muror
coincident with the original glide line. The re-
sulting symmetry is Cm, An example for N =
12 is shorvn in Figure L3 for " r's t e.

Symmetric congruent pairs. F;ach member of
the pair is symmetric, so the contribution of
each set to the symmetry of the self-image is
that of Figure 11. As in the sase of the asym-
metric congruent pair, the tlvo sets are related
by a submultiple antitranslation /. When this is
mapped along the main diagonal, as above, it is
evident that the self-images of the two inde-
pendent sets of the pair are related by two
orthogonal antitranslations whose lengths are
half the diagonal of the self-image cell. These
antitranslations augment the symmetries p4mm
of the independent parts of the self-image to the
antisymmetry pJ4mm. An example for N - 12
is shown in Figure 14 for n 

"t 
n" 

".

DrsreNcs ARRAYS FoR CoMPLEIvIENTARY SETs

Obverse and reverse distances

In determining distances from a self-image
array, it is sometimes useful to distinguish be-
tween two kinds of distances. It was pointed out
that the main diagonal separates positive dis-
tances on its upper right from negative distances
on its lower left. It was also noted that the same
relation occurs in adjacent cells, as a conse-
quence of which the positive and negative dis-
tances cover the same range between adjacept
cells in opposite directions. The distances in
the region from the main diagonal to the nearest
glide line on its upper right may be termed
obverse distances, whereas those from the main
diagonal to the nearest glide line on its lower
left may be termed reverse distances.

In discussing Figures 5 and 6 it was shown
that there is a difference in the arrangement
of distances for a multiple-lattice set M depend-
ing on whether N is odd or even. A similar

difference occurs for the distances of a set u4.
When r is odd, the distances in the array are
aligned along an even number of lines parallel
to the main diagonal; these occur in pairs of
lines, one with obverse, the other with reverse
distances, symmetrical about the glide line.
When r is even, the number of lines is odd, so
the middle line coincides with the glide line. In
this case both obverse and reverse distances
occur on this particular line. Attention to this
feature will be given again later.

Patterson rnaps and self irnage arrays

The self-image array /z{ is essentially a sim-
plification and a specialization of the familiar
Patterson map. It is a simplification because
cyclotomic sets are one-dimensional; it is a
specialization because the points of the set are
limited to a certain number of the N points of
the multiple lattice. Accordingly the distribu-
tion of points in the cell of the Patterson map
and of the points of the cell of a self-image
array fall into similar categories, ,show1 in Ta-
ble i. this brings out ttre fact that, for a set
of r points, the number of points in each of
the tfree categories of the cell of tle array is
always r, Vz (f - r) and Yz (f - r) regardless
of the pattern of distribution of the r points over
the N-points of the multiple lattice. Th9 on!
variatioi between sets having the same values of
r and N is the distribution of distances over
the possible values t, 2t,3t, . . (N - 1)t.

Determination of interpoint distances

The distances in a cyclotomic set can be de-
termined in several ways. In sets with small
values of N they can be easily determined from
the circular repiesentation by noting the lengths
of the arcs intercepted by the collection of
chords drawn between all pairs of points of
the set. An example of these is given in Table
2, in which the distances between po-ints are
derived from the sets of Figure 15. This proce'
dure becomes tedious for sets with any but
small values of N because the diagtams are
cluttered with criss-crossing chords.

The distances in any set can also be deter"
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t r t r t r t ' -

Frc. 15. The circular representations of the 10 distinct cyclotomic sets with N - 8, r = 4. Below each rep-
resentation is given the symbol of the set. The pair of numbers between sets indicates the interchange of
points (as numbered in the upper left diagram) to transform a set into the neighboring set.
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mined by inspection of the self-image array of
the set. The background for this method is sup-
plied by Theorem /. The method is especially
useful in dealing with pairs of complementary
sets. In the context of such sets the distances
in a set A and tle distances in its comple-

mentary set At are independent of each other,
and the self-images of these complementary
pairs are ordinarily considered as independent
features.

The application of self-image arrary Jo tfe
determinaiion of distances is illustrated by the

L 2 3 4 5 6 7 8 ! 2 3 4 5 6 7 4

O O . . O . O . O O t t O ' O '

1 0

3 .

4 ,

6 .

8 .
0 1 2 3 4 5 6 7 0

o -1  -6  -5  -4  -3  -2  -L  0

Fro. 16. An example of how all distances within each of two complementary cyclotomic sets can be

determined by making use ol the relation a"to"tttuitJ-in Figure !t ttte aiitances derived from this

d;C*- ;d'from thi otl.i airtio"t sets with N - 8, , = 4 are listed in Table 3.



CYCLOTOMIC SETS

?fErE 3' l[lGERs oF DrsesrE, rN uNrEi cF r, n{ rEE ro cacl!|rrrirrc slE mvrNc E - B, , c 4

3 1 3

0 1 2 3
v  L 2 . . . .  I

. . O /

0  . . . 5 6 7

4 3 2 L . 1 2 3

4 3 2 L .

0 1 . 2 . 4  . .
0 1 . 3 . .  7
0 . 2 . -  6 7
0 . . . 4 s 6

4 2 2 L 2 L 2 2

4 2 2 L L

u  L z . .  ) . .

0 1 . . 4 . . 7
v . .  J . . o  I

u . .  J {  ) . .

4 2 L 2 2 2 I 2

4 2 L 2 L

0 L 2 . . . 6
. 2 .  t

t . o t

0 . 2 3 4 . . .

4 2 2 L 2 L 2 2

4 2 2 L L

v r . . . J O .

0  4 5 . 7
0 1 . 3 4  . .
v . a J . . - t

, r r r t t ' 2

4 2 L 2 L

L
2
3
4

Ntmbert

Nrmber9

. L I

2 L 1

Slmbol- of set
2 T I

L 2 1
z L t

1 L 2
I I I I

I I I f

0 L . . 4 5 . .
0 . . 3 4 . . 7
0 1 . . 4 5 . .
0 . . 3 4 .  7

4 2 . 2 4 2 . 2

4 2 . 2 2

0 1 . . 4 . 6 .
0 . . . 3  - 5 . 7
o . 2 . 4 5 . .
0 . 2 3 . . 6

4 L 2 2 2 2 2 L

4 L 2 2 L

. . o .

v . 2 . . ) . t

v  r .  J .  J O .

v . 2 5 . 5 . .

4 L 2 3 . 3 2 L

0 t . 3 . s . .  0 . 2 . 4 . 6 .
o . 2 . 4 . . 7  0 . 2 . 4 . 6 .
0 . 2 .  5 6 .  0 . 2 . 4 . 6 .
0  3 4  6 .  o . 2 . 4 . 6 .

4 L 2 2 2 2 2 L  4 . 4 . 4 . 4 .

I

4

uurb"tt

Nunber!

+' Nuinber of d.lstances fron alL four poJ.ygon vertices.
' Nuobe! of absolute mgnltudegs

nrnber of dlstancea from^all four polygon vertices for Ot, Lt, 2t, 3t,but half the nunber for 4t-

self-image of one of the 10 sets of Figure 15; TneNsnonrraerroNs oF Onosn
this is shown in Figure 16. The distances de-
termined from similar arrays of all the r0 sets Interchanges ol points .

$ _4" .lf = 8, r = 4 cyciotomy are shown in
Table 3, where the sequence of sets is th; Fol-a_specific pair of values of N and r
same as in Figure 15. The theory of the occur- (provided N > 4 and r 11) there exists a num-
rence of these distances in seif_imase arravs ber of distinct sets. Starting with any one of
calls for a little explanation. these, the others can be derived from it as

From Lemma I a'..d, Theorem 1 it is clear follows:
Lemma 5; Any possible cyclotomic set I and
its. complement At can be derived from any
other set of the same cyclotomy N,r by inter-
changing one or more points of I with the
same number of points of. At. If. the transforma-
tion to the new set requires several interchanges,
the result is independent of the order in which
the interchanges are made, or whether they are
made together or separately.
This lemma is valid because it depends on
permutations of some of the N points of the
multiple lattice in which the interchange occurs
only between two independent fractions of N.
(An interchange of points contained in A with
each other, or an interchange of points con-
tained in At with each other, obviously leaves
both A and A' unchanged.)

Application to circular representations

Such interchanges provide a device for study-
ing changes in distances between sets of the
same N,r cyclotomy. A simple example is af-
forded by the sets having N = 8, r = 4. In
this cyclotomy there are 10 distinct sets l,

that each horizontal line of the self-imag e arcay
is occupied by a series of distances 

-iro* 
u

particular point to the r points of the set. The
total number of distances in the set is the sum
of these for each of the r lines, the total amount-
ing to f distances. These include zero distances,
obverse distances and reverse distances as listed
in Table 1. The specific distances from each of
{" 1 noints to the r points of the set, in terms
9t Oy, 1,t, Zt, . (N - 1)r are given in the
interiors of the 10 blocks of numbers in Table
3o one block for each cyclotomic set. Immedi-
ately below the block is given the sum of the
number of distances in each category, as a line
of 8 numbers (where a dot impli-s that no dis-
tance was observed in that category). Below this
Iine of 8 numbers is a line of i numbers which
give the abso{ute distances ,(including the four
zero distances). For the first four categories
these absolute distances are the same a-s the
obverse distances above them, but the number
for category VzNt = 4t of. the line above the
number must be divided by two because r is
even, as explained in the last section.
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C : B - c * d

C ' : B t * c - d ,
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B t : A t * a - b ,  ( 9 )

from which the self-images of these sets are

B B : ( A - a * b ) ( A - a t b )  ( 1 0 )

B ' B ' :  ( A ' * a - b ) ( A ' l a  - b ) .  ( 1 1 )

If B and Bt are tautoeikonic, that is, have the
same distances, then the difference between (10)

and (1 1) must be zero. By manipulating (10)

and (11) by the rules of image algebra and ap-
plying a simple but powerful theorem @uerger
igl1l it can be demonstrated that this is true,
so that B and Btare tautoeikonic.

This procedure can be continued by.i"t"t-
changing an arbitrary point c in B with an
arbitiari point d in jl' to produce a- new pair

of complernentary sets C and C. The image'
algebra expression of this interchange is

/ 1  t \

(13)

shown in circular representation in Figure 15.
In these diagrams small empty circles are points
of the set ./ whereas large black dots are points
of the complementary set z4l In the upper-left
diagram the points of the multiple lattice M
are assigned numbers from 1 tbrough 8. -A
single interchange invol.ves interchanging the
points at a pair of numbers. The arrangement
bt tne diagrams is such that, to transform. a
particular Gt to 

"oe 
on its left or right, a sin-

gle interchange is made of the pair- of points
ivhose numbeis are noted between the original
and transformed sets. Transformations can be
performed toward the right or the left. Thus
ihe entire co'llection of 10 sets can be con-
structed step-by-step from any one of them by
a sequence of iingte interchanges. Alternatively,
any of the first four sets can also be trans-
foimed into one another directly by a single
interchange, and any of the L0 sets of the
cyclotomy can be transformed into one another
by no more than two interchanges.

" 
Some of the properties of the sets of Figure

15 are given in ta6te 2. The first (double) col'
umn gii.t the symbols for / and At; the second
column indicates by S which of the sets ale

symmetric; the thirci column expresse$ the- rela'
tion between the cornplementary sets and also
ties together the reciprocal pairs @uerget-1977)'
The remaining five columns give the absolute
distances for each set -r4. For this cyclotomy,
N is small enough so that the shords (seen in

Fig. 15) do not make a serious clutter'

As (12) and (13) have the same form as (8)

and 
'(9j 

their' self-images are similar to (10)

and (11). These self-images can be reduced.by
i-ug" utg"tta with the risult that CC - C'C',

ro inut Z and Ct are also tautoeikonic' This
orocedure can obviously be continued until
every pair of complementary. sets. in the cyclo-
tomv are shown to be tautoeikonic'

Application to irnase algebra "Hi?,#;J; ffJ"1'#'"Jt3l1i:i::iffrg
The proof of Patterson's Theorem (ii) with mentary sets' Z' Krist L48' 79-98'

the aid of image algebra @uerger 1976) made Q977): Exploration of cyclotomic. point

,rt" of tn" trans'formitions of order to construct sets for tautoeikonio complementary pairs' Z'

other sets of the same cyclotomy' The general Krist' 145' 371'4Ll'
strategy of this application was that it is pos- parrERsoN, A. L. (1939): Homometric structures.
sible i6 begin the transformation with a set A Nature 143, 939-940.
and its comlplement A' which are congruent and (1944): Ambiguities in the X-ray qnalysis
which, theiefore, have the same distances' If or 

"tviiut 
siructures] Phvs. Rev. Ser' 2,65, L95'

uo utUittury point a in z4 is interchanged with ,ol.'
an arbitrary iroint D in At, then A-Vnd A' -y" pAULrNc. L. & Smpprll, M. D. (1930): Tt-r9 crys
transformed into oew sets B and B/ according 

' .t"J;ilG 
of Uiruvil. and the C-modification

to Lemma 5' The relation of B and B' to a oi the sesquioxides' Z' Krist' 75' 128'142'

and A'are expressed in image algebra as

B : A - a * b (8) Manuscript received February 1978'


