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ABSTRACT

A physical explanation of the Donnay-Harker
law and its extension is given based on the assump-
tions that the specific surface energy of a crystal
is approximately isotropic and that the growth rate
Ry of a crystal face is roughly proportional to
its attachment energy. This leads to a formulation
of the Donnay-Harker law in the form that Ry
is proportional to 1/d®™,,, where m is larger than
1. It is argued that the Donnay-Harker law and
its extension are valid in the majority of cases and
consistent with certain modifications of habit in
response to external changes, for instance with the
three lattices of calcite that can be distinguished
under various conditions of growth. Finally it is
shown that the extended Donnay—Harker law is
strictly valid for the naphthalene structure.

SOMMAIRE

On donne une explication physique de Ia loi de
Donnay et Harker et de sa généralisation, explica-
tion fondée sur deux postulats: (1) I'énergie de
surface spécifique d'un cristal est & peu prés
isotrope; (2) la vitesse de croissance Ry, d’une
face cristalline est grosso modo proportionnelle & son
énergie d’attachement. On est ainsi conduit 3 énon-
cer la loi de Donnay et Harker sous cette forme:
Ry est proportionnelle & 1/d™y;, ol m est plus
grand que 1. On montre, avec arguments 3 I’appui,
que la Iof de Donnay et Harker et sa généralisation
sont valides dans la plupart des cas et sont méme
compatibles avec certains changements de facids
dis au changement des conditions externes, par
exemple, avec les trois réseaux de la calcite qu'on
peut distinguer suivant les conditions de croissance.
On montre finalement la stricte validité de I'exten-
sion de la loi de Donnay et Harker pour la
structure de naphtaléne,

(Traduit par la Rédaction)

BRIEF HISTORICAL DEVELOPMENT OF THE
EXTENDED LAW OF BRAVAIS

In 1849 Bravais put forward the hypothesis

* Dedicated to Professor Dr. J.D.H. Donnay on the
occasion of his 75th anniversary
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that, in general, a crystal face was the more
important the higher its reticular density, al-
though he was aware of the possible influence
of external factors (Bravais 1866). Friedel
(1907) made an extensive investigation of the
validity of this hypothesis and concluded that
it was valid in so many cases that it could be
considered a law of observation, independent of
any speculation. Yet, several inexplicable excep-
tions persisted. Niggli (1919) was the first to
notice the influence of glide planes and screw
axes on the reticular density. He applied his
ideas to the determination of the space group
of pyrite from morphological data. As {210}
is more important than {110} he concluded
that there must be a glide plane a in the space
group, leading to the symmetry Pa3. The forms,
in order of importance, would then be {111},
{200}, {210}, ..., in excellent agreement with
observation. However, this work remained large-
ly unknown and so it occurred that in 1937 Don-
nay & Harker rediscovered the influence of
glide planes and screw axes on the reticular
density. They showed that many of the excep-
tions noted by Friedel could be explained and,
moreover, that some space-group determinations
could be made on the basis of morphological
data. A review was given by Donnay in 1946.
An extension of the Donnay—Harker law
was given by J.D.H. and G. Donnay in 1961,
in which they showed how a pseudo-cell can
occur if the coordinates of certain atoms have
fortuitous values. This will be discussed below.
At present the extended Donnay-Harker law
can be formulated as follows: the smaller the
growth rate of a crystal face, the larger its
parameter dna. It should be noted that Donnay
& Harker (1937) formulated the law as follows:
the morphological importance of a crystal face
is inversely proportional to its reticular area.
Strictly speaking this is incorrect in a mathe-
matical sense because the morphological im-
portance was not expressed quantitatively. In
this paper we shall use the term proportional in
its mathematical sense and so the extended
Donnay-Harker law was reformulated above in
qualitative terms. The parameter dw. is defined
as the period in which the surface energy is
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repeated exactly (owing to lattice type, screw
axes or glide planes) or almost exactly (owing
to fortuitous values of the coordinates of atoms
that play a special role in the growth process).
In the latter case the paramater dua eventually
can be a submultiple of the value following
from the unit-celt dimensions and the space

group.

A Puysical. EXPLANATION OF THE
DONNAY-HARKER LAwW

In order to find an explanation of the law
one could consider the results of current crystal-
growth theories. In these theories the growth
of the more important crystal faces is a process
in which layer after layer is deposited, by two-
dimensional nucleation or by spiral growth
owing to the presence of a screw dislocation
(e.g., Elwell & Scheel 1975). If one considers the
formulae derived for the linear growth rate
Ruw of a face (hkl), measured along the face
normal and expressed in units lengthetime™, then
indeed Ruwu appears to depend on dum. Un-
fortunately, in all cases the expressions are such
that Ruws increases when du. increases, Conse-
quently a physical explanation of the law must
not be sought in the parameter dwe itself, but in
other parameters.

To this end we consider the specific surface
energy y. By plotting all values 7w along the
normals of the faces (hkl) we obtain the so-called
< plot. From the work of Herring (1951), Wolff
& Gualtieri (1962) and Bennema (1973) we can
conclude that this 9 plot is a rather complex
surface whose shape can be described as fram-
boidal, i.e., like raspberries, with shallow pro-
trusions and acute depressions. The specific
surface enmergy is clearly anisotropic, but cal-
culations of these energies show that the maxi-
mum and minimum values do not differ more
than by a factor of 1.5. Such calculations have
been carried out for metals by Drechsler &
Miiller (1968) and for anthracene by Kitai-
gorodski & Ahmed (1972). Now the specific
surface energy of a face can be related to dwa
in the following way.

Let us call E; the interaction energy per
molecule of a slice dw in a crystal with a slice i,
the slices being numbered consecutively from
0 to i. Then the total energy to split the crystal
parallel to the face (hkl) along the boundary of
the slices 0 and 1 is 3iE. The factor i here
arises as follows. Consider the term Es, the
interaction between slice number O, in the upper
part, and slice number 3, in the lower part. The
same interaction is found between the second
slice of the upper part and the second of the
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lower, and again between the third of the upper
and the first of the lower. Hence the energy
term E; appears three times in the summation.
To find the specific surface energy we must
know the number of molecules within a slice
per unit area of the surface. If the primitive
unit cell of volume ¥V, contains Z molecules,
the area per molecule is V./(Z dwa) and the
number of molecules per unit area is Z dia V.
In splitting the crystal we obtain two surfaces,
so the specific surface energy 7y becomes

M

Now we define the attachment energy Eu: as
the energy released per molecule when one
slice duu crystallizes on the face (hkl). So. Ea =
S E, (Hartman 1973), which is almost equal
to the surface energy per molecule if terms
other than E; can be neglected. This is commonly
the case for the more important crystal forms,
so that E. is a good approximation of 3iE:
Hence

'y:Zdnm SIiE/ 2V,

v = Zdwa Ea/2Vs (V)

As 7y does not vary much with orientation,
we assume as a first approximation that it is
isotropic. Then it follows from eq. (2) that Eu
is proportional to 1/dma. Now it is generally
assumed that the growth rate Rus increases when
E. increases. As was shown by Bennema &
Gilmer (1973) this qualitative relation between
Rue and E. can be justified by crystal-growth
theories. The quantitative relation between Rua
and Eu. is being investigated, but the results
so far obtained indicate that a simple propor-
tionality between Rwa and Eu is indeed a rea-
sonable approximation. Then, by virtue of eq.
(2), Ruw is in first approximation proportional to
1/dme. This is only in apparent conflict with the
fact mentioned above that Rww increases with
dus according to crystal-growth theories, be-
cause the influence of Eux on Rue far outweighs
that of dwe itself. In a second approximation
we should include the anisotropy of <, the
values of y being somewhat lower for the most
important faces and somewhat higher for unim-
portant ones. This means that 7 is a slightly in-
creasing function of 1/dwa, which, for conve-
nience, we write as 1/d™"us, where the exponent
m is larger than 1 but probably does not exceed
2. Then, according to eq. (2), Eax is proportional
to 1/d™s. Assuming again the proportionality
between Ruw and Eaux, this means that Rue is also
proportional to 1/d"us.

As early as 1947 Buerger presented an ex-
planation of the Bravais law, considering crystal
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growth as a stacking of identical blocks. He
assumed that the energy of the bond between
a block and a crystal face is proportional to
the area of the surface joining the block to the
crystal. In our terms his starting point was that
Ea: is proportional to 1/dwa. As pointed
out by Dowty (1976) this implies that the bond
energy per unit area is approximately the same
for all faces, which is just our starting point.
The derivation given in the present paper is
advantageous because y is a quantity accessible
to both theoretical and experimental work, the
latter in the form of the observation of equili-
brium forms, and because it is quite general,
not depending from the start on the properties
of a model. Models enter implicitly in the
reasoning where Ruw is related to E.. on the
basis of crystal-growth theories. The link with
the growth rate is made both by Buerger (1947)
and Dowty (1976) by considering the start of
a new layer; for this, according to Dowty, ‘the
critical factor would seem to be the energy
with which the block is bonded directly to the
face’, which is in our terms Eu. This is an
oversimplification of the problem, but as stated
above, the assumption that Ru. increases with
E.: is reasonable, although they made this
assumption on incorrect grounds. They consider
growth rate to depend ‘largely on the rapidity
with which the block for that face attaches
itself to the surface, which has generally been
considered to be dependent on the energy of
attachment’ (Dowty 1976). This suggests that
a block attaches itself faster to the face when
E. is higher, but this is not true. The probability
of blocks landing on the surface is the same
for all surfaces, but it is the probability of
detachment of a block that is low when E. is
high. Therefore, the block will stay longer on
the surface and thus will have a greater pro-
bability of becoming incorporated into the
growing layer or into the two-dimensional
nucleus.

THE VALDITY OF THE DONNAY—HARKER LAW
AND OF ITS EXTENSION

It follows from the foregoing paragraph that
the Donnay—Harker law and its extension are
valid if (1) y is approximately isotropic, (2)
E; is the main term of SiE, and (3) Rum is
proportional to Ea: The first condition can be
expected to hold reasonably well for metals
and for organic crystals where van der Waals
interaction predominates. For ionic crystals the
anisotropy in 7y is presumably larger. Leaving
out of consideration extreme anisotropy such
as occurs for example in mica, the anisotropy
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is restricted to one or two crystal forms having
a decidedly lower value than the other forms
(cf., ‘t Hart 1978). Often this does not invalidate
the law. The second condition means that the
law can be expected not to hold for faces with
small dwa values, but these are absent or rare.

The third condition is a reasonable approxi-
mation. The conclusion must be that in the
majority of cases the law is valid. Any exception
must therefore have a special explanation, which
often is to be found in the effect of external
factors on crystal habit. We leave aside the
fact that the law cannot explain the occurrence
of one merohedral form in preference to another
with exactly the same diw. value.

To show the effect of external factors we
consider first the NaCl structure. In the case of
growth from aqueous solution the crystals are
cubes. In the growth process the Na* and Cl~
ions can be considered as point charges which
have exactly the same attachment energies to
the {100} faces. This means that for the growth
process they are indistinguishable and therefore
identical. Hence, the lattice is determined by the
cube having the shortest Na—Cl distance as cell
edge. The symmetry of this model is Pm3m and
the main form according to the Donnay—Harker
law is {100}. However, at high supersaturations
the habit changes to octahedral (Kern 1953). A
probable explanation is that growth rate is so
high that dehydration processes of the ions play
a role, and because the hydration energy of
Nat is larger than that of Cl~, the ions can be

distinguished in the growth process. Thus the

symmetry for the crystal-growth process is the
same as that of the structural cell, Fm3m,
leading to {111} as the most important form.

A similar argument holds for calcite, for
which three lattices have been considered by
Friedel (1926) and by Donnay et al. (1934).
First there is the X-ray cell, R3c, containing
2CaCOs, which operates in the growth process
when the Ca’* jon and the two differently
oriented CO,*>~ ions can be distinguished. The
second cell is obtained when the two CO;?~ jons
are not distinguished. This cell has the edge
15[117], space group R3m (indexing based on
the smallest thombohedral unit cell), and con-
tains 1CaCOs. In fact it means a body-centring
of the structural unit cell. The third cell is
based on the cleavage rhombohedron. Its edge
is 14[311], space group R3m, and it contains
1¥%CaCOs. This cell determines the growth
process if the Ca®>* and COs*~ ions can be
considered as point charges and therefore as
identical. Table 1 shows the form sequences
with their frequencies as determined by Palache
(1943). The usual form in which calcite crystal-
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TABIE 1. CRYSTAL FORMS OF CALCITE WITH THEIR FREQUENCIES OF
OCCURRENCE, ARRANGED IN DECHEASING ORDER OF dhkl

di fferently oriented differently oriented calcium and carbonate
carbonate ions carbonate ions not ions considered

distinguished distinguished as polnt charges
cell edge [100] cell edge 3[111] cell edge #[311]
hkl freq. hkil hkl freq. hkil hkl freq. hkil
(moxph.) {moxph.) {morph.)

110 "xx 0221 110 xx 0221 213 = 101t
211 =x 1011 211 xx 1011 101 xx 1120
222 xx 0001 222 xx 0001 220 ax 0221
101 xx 1120 10T xx 1120 332 xx 0112
210 = 4483 200 xx  40%1 310 xx 2131
200 xx 4041 (220) ~ (422)
@20) _ 332 xx 012 21T xx 1010
332 xx 0112 321 x 2233 444 x=x 0001
321 x 2243__ 21T = 2461 431 4 1232
201 8 8.4.12.1 433 0 2035 (202)
211 x 2461 310 =xx 2131 543 = 1123
433 0 2035 (422) 321 xx 1341
310 xx 2131 211 xx 1010 400 xx 4041
422) _ 444) 521 x 3142
432 0 44B9__ 42 x 0435 655 4 1014
320 xx 4.8.93.5 431 4 1232 552 x 0111
211 xx 1010 411 6 2021 41 xx 3251

(330)

(202)

543  x 1123

1 = 2n for hhl h+k+1l=2n h+k+1l=4n

%xx very common forms, recorded from more than 25 localities
x common forms, recorded from 10 to 25 localities

lizes from aqueous solutions under low super-
saturation is the cleavage rhombohedron {2113},
which ranks first in the third column. Here Ca®*
and COs*~ behave largely as point charges.
When, under high supersaturation or in the
presence of impurities they can be distinguished,
the main form should be the steep rhombohe-
dron {110}. Indeed, Kirov et al. (1972) found
that calcite crystallizes in steep rhombohedra
{110} when growth takes place from a solution
containing an excess of Ca?* ions, whereas with
an excess of COs*~ ions the basal plane {111}
predominates. At high supersaturations and
without one of the ions being in excess, the
rhombohedron {100} becomes dominant. Kirov
et al. correctly point out that a combination of
{110} and {111} of calcite correspond to
{111} of NaCl and that these forms might be
expected when one of the jons is present in
excess. In that case the kinetics are governed
by the incorporation of the ions present in low
concentration. Comparison of the first and
second columns reveals that the exact orienta-
tion of the COs*~ ion does not have a large
effect. Among the 15 forms listed the first
column has 9 very common forms, of which 4
are at the beginning of the list. For the second
column these numbers are 8(6), for the third
10(7), which stresses again the importance of
the sublattice.

Tue EXTENDED DONNAY —HARKER LAW
Donnay & Donnay (1961) discussed this
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extension by referring to the columbite structure.
Hartman (1968a) has shown that the Snls
structure is a quantitative example of this
extension. He showed that two consecutive
planes (100), a distance duo apart, both cut
the same number of I-I contacts, although the
relative orientation of the molecules at both
cuts is entirely different one from the other.
As the surface enmergy can be quantified by
counting the number of cut I-I contacts, its
repeat period is indeed duso.

The naphthalene structure was considered by
Hartman & Perdok (1956) as an exception to
the Donnay-Harker law, which predicts the
sequences: {001}, {111}, {011}, {110}, {201},

Of these forms {011} has never been
observed. The structure, in space group P2./a,
consists of two molecules per unit cell with
their centres at the positions of two centres of
symmetry, namely (0, 0, 0) and %, ¥, 0).
A fact not noticed by Hartman & Perdok (1956)
is that each interaction between two molecules
at (0,0,0) and at (Y2 + u, % 4+ v, w) also
exists between the latter molecule and the one at
(1 + 2u, 1 4 2v, 2w). So the bond assemblage
in the sense of Donnay & Donnay (1961) is
strictly centred, and we have to apply the
extra extinctions of a C lattice, which explains
the absence of {011}.

Violations of the Donnay—Harker law com-
monly allow the location of centres of mole-
cules, as was shown by Hartman (1968b) and
later more elegantly by Hazell (1971). More-
over, they also can give an indication that the
observed habit is the result of a habit change
by external factors. Let us recall the well-known
fact that fluorite almost always crystallizes in
cubes whereas the octahedron is the most
important form both from the space group
Fm3m and from the calculation of attachment
energies (Hartman 1974). This indicates that the
cubes reflect external factors.

CONCLUSIONS

The law of Donnay—Harker and its extension
by Donnay & Donnay can be understood by
assuming a low anisotropy of the specific sur-
face energy and by assuming a proportionality
between, the growth rate of a face and its
attachment energy. The lattice to which the law
has to be applied meed not be the structural
lattice but can be a sublattice determined by
the crystal-growth process. Application of the
Donnay-Harker law to the structural unit cell
can give information about coordinates of
atoms or centres of molecules, or about the
influence of external factors on the morphology.
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