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ABSTRACT

To obtain formulae that give the numbers of
distinct polytypes of mica and SiC when the layer-
number p is a prime, a so-called symbol-differentiat-
ing operation is used to derive different layer-
stacking symbols that represent one and the same
polytype. If a layer-stacking symbol w, is produced
as a result of application of a symbol-differenti-
ating operation ¢ to a symbol wy, @, and
@, are said to be equivalent to each other, and
the set Q of all possible symbols is partitioned
into disjoint equivalence classes. A one-to-one
correspondence exists between the set of different
polytypes theoretically possible and the set of
equivalence classes in Q. For mica polytypes with
a prime layer-number, the equivalence classes in
Q were grouped into six families, and the number
of classes within each of these families was de-
termined. The number of distinct mica polytypes
was thus derived when the stacking operation
lement entre couches contigiies est une rotation
of 60° (senary) or 120° (ternary), respectively.
Corresponding numbers are obtained for SiC poly-
types, and the formulae are derived for SiC poly-
types of any layer-number.

SOMMAIRE

Dans le but de trouver des formules donnant le
npmbre des polytypes distincts de mica, ou de
SiC, lorsque le nombre p de couches est premier,

*Dedicated to Professor J. D. H. Donnay on the
occasion of his 75th birthday.
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on emploie une opération dite “différenciatrice de
symboles” pour établir des symboles d’empilement
de couches différents qui représentent un seul et
méme polytype. Soit w, le symbole d’empilement
que l'on obtient en appliquant I'opération différen-
ciatrice ¢ au symbole w;, on dit alors que ®, et
w, sont équivalents I'un 3 Pautre, et I'ensemble O
de tous les symboles possibles est partagé en clas-
ses d’équivalence disjointes. Une correspondance
bi-univoque relie I’ensemble des polytypes théori-
quement possibles & I'ensemble des classes d’équi-
valence de €. Dans les cas des polytypes de mica
oll p est nombre premier, les classes d'équivalence
de  se groupent en six familles, et nous avons
déterminé le nombre de classes que contient cha-
que famille. Ainsi s’établit le nombre des poly-
types distincts de mica lorsque Yopération d’empi-
lement entre couches contigiies est une rotation
d’un multiple de 60° (sénaire) ou de 120° (ter-
naire). Quant aux polytypes de SiC, nous en avons
déterminé les nombres correspondants et établi les
formules pour n’importe quel nombre p.
(Traduit par la Rédaction)

INTRODUCTION

A complex structure very commonly consists
of substructures. Such a structure may be called
a hierarchic structure and is in most cases re-
sponsible for polytypism, twinning or domain
texture. A study of mathematical principles for
representation of complex structures such as
the polytypes of SiC, ZnS and mica has been
considered to be one of the important problems
of modern crystallography. In these polytypes,
unit layers are stacked upon each other in one
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of a few different orientations, and their se-
quence repeats after a certain number of layers.
These phenomena may be attributed to the
spiral-growth mechanism (Frank 1951). Several
systems of notations to describe these polytypes
have been proposed: layer-orientation symbol
(Zvyagin 1960), vector-stacking symbol (Ross
et al. 1966) and layer-position symbol (Takeda
& Sadanaga 1969) for mica, and ABC sequence,
Zhdanov symbol and A—k notation for SiC
(Verma & Krishna 1966).

A practical method of enumerating the pos-
sible sequences for N-layer mica polytypes was
established by Ross et al. (1966). Takeda (1971)
examined the algebraic properties of the vector-
stacking symbol and introduced three operations,
each of which produces a certain change of
symbol while leaving the structure of the poly-
type invariant. By applying these operations he
enumerated by computer the possible mica
polytypes up to N = 10 for those with 0° and
+120° interlayer rotations (in the ternary
representation) and up to N = 8 for the general
case (senary). Enumeration of SiC polytypes
has been carried out by computer up to N = 26
(Tokonami & Hosoya 1966), and the sequences
and symmetries of stacked closest-packed layers
are tabulated for N up to 12 in International
Tables for X-ray Crystallography, Vol. I (1959).

Because the method adopted in these
enumerations mentioned above is a kind of
computer simulation, a theory capable of pre-
dicting the number of possible polytypes for a
given layer-number has been much desired, in
the hope that such a theory will reveal the
mathematical principle governing the structures
of polytypes, thus promoting a better under-
standing of the physical mechanism of their
formation.

As a result of our recent collaboration, we
have succeeded in deriving five kinds of formu-
lae that meet our objectives: the first gives the
number of mica polytypes in the senary repre-
sentation and with a prime layer-number, the
second the number of mica polytypes (termary)
with a prime layer-number, the third the number
of mica polytypes (senary) with a layer-number
relatively prime (Birkhoff & MacLane 1965) to
6, the fourth the number of SiC polytypes with
a prime layer-number, and the fifth the number
of SiC polytypes of any layer-number. However,
because the example where N is a prime number
is best suited for an intellible demonstration
of the relation between different polytypes and
the mathematical structure of the set of poly-
type symbols, we will expound, in this paper,
the theory of enumerating mica and SiC poly-
types with a prime layer-number.
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POLYTYPE SYMBOL AND
SYMBOL-DIFFERENTIATING OPERATIONS

In order to present the system of symbols and
operations for deriving and describing our
theory, let us first give a brief review of the
vector-stacking symbol (Ross et al. 1966) and
Takeda’s (1971) method of enumerating mica
polytypes. In the following discussion we as-
sume that p, the number of layers constituting
a unit cell of a mica or SiC polytype under
consideration, is always a prime.

The unit layer of the mica polytype is usual-
ly so chosen as to coincide with the unit slab
in one-layer mica 1M and possessing the sym-
metry 1C12/m (A. Niggli’s notation for the
diperiodic groups). The structure of a mica
polytype is then considered as a stacking of the
unit layers with rotations by 0°, ==60°, +120°
or 180° between pairs of adjacent layers. There-
fore the polytype symbol @ expressing the
stacking sequence of layers in a p-layer mica
has been given by a series of p numbers as

w= (G10...8;... 010, H

where the jth number a; refers to the angle of
the relative rotation between the jth and the
(-+-1th layer, the first layer being that in
which the origin of the polytype structure is
taken. The simplest expression will be to give
a; one of the values of 0, 1, 2, 3, 4 and 5
corresponding to rotations by 0°, 60°, 120°,
180°, 240° and 300°, respectively. Because of
the periodicity along the direction of the layer
stacking, the condition

$ ;=0 (mod6) @)

i=1

is imposed upon every p-layer polytype.

It will then be obvious that every symbol @
of such p numbers that satisfy (2) represents a
possible mica polytype of p layers; in order to
enumerate all possible p-layer polytypes, all
ws conformable to (2) must be generated. How-
ever the total number of different ws thus gen-
erated will not coincide with but exceed the
total number of different polytypes theoretically
possible, because two or more symbols appar-
ently different from each other may represent
one and the same polytype, whereas one sym-
bol cannot express more than one polytype. The
truth of the second half of this statement will
be obvious from the fact that a symbol deter-
mines one and only one type of sequence,. thus
only one polytype, and the truth of the first
half will be demonstrated below with the aid of
symbol-differentiating operations. .

By symbol-differentiating we mean such an
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operation that preserves the layer sequence of
a mica polytype under consideration but trans-
forms its symbol w to @’ which is not congruent
with @. The simplest of the symbol-differentiat-
ing operations will be derived when the fact
that the origin can be taken in any arbitrarily
chosen layer within the polytype is taken into
account. If the choice of the origin in layer
A, is specified as different from the choice of it
in 4; when 4. =£ A;, every different choice of
the origin in a mica polytype will create a
unique symbol unless all the numbers in the
symbol are the same. When an operation that
shifts the origin by one layer is denoted by p,

(@1@s . . . Gp1Gr)p = (G2 . . . Cpaa,21) 3)
and
(alaz [P / 217 2% SN ap_lap)p" =
(@is1 .+« . GparGpitz . . . @5) @)

hold. If all g in (3) are not equal to each
other, each of p's (i = 1, ... ., p-1) will be a
symbol-differentiating operation, because p is
a prime and accordingly no symbol can have
an internal period. The operations pi are the
only symbol-differentiating operations that can
be derived from a polytype in a fixed position,
because the possibility of a change of symbol
then lies only in a shift of the origin.

Next we must give the polytype a motion and
see if we can derive more kinds of symbol-
differentiating operations. Suppose first that the
motion is of the first kind. Because the symbol
is a string of numbers in one direction, the only
motion of the first kind and representative of
those producing a change of symbol is a rota-
tion by 180° around an axis parallel to the
layers. If this rotation is denoted by 7, it will
operate on the symbol as

(d]ﬂz e ap_lap)'r = (apap_.l ... Q2a1) (5)

and therefore it is a symbol-differentiating op-
eration for those symbols that are not reflec-
tion-symmetrical across a plane perpendicular to
it. Suppose next that the motion is of the second
kind. Because of the symmetry 1C12/m of the
unit layer, the motion of the second kind and
representative of those compatible with the
structures of some mica polytypes is a reflec-
tion across a plane perpendicular to the layers,
but this motion is not symbol-differentiating
because the structures of these polytypes and
their symbols as well are then symmetrical with
respect to this reflection. Then the fact must
be taken into account that two polytypes enan-
tiomorphic with each other are looked upon as
having one and the same layer sequence; if a
mica polytype is not reflection-symmetrical, the
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operation € that creates its enantiomorph will
be a symbol-differentiating operation. If we de-
fine @ = 6-a; when @ £ 0, and @ =
a; when a; = 0, we shall have a relation

(@102 . . . Gpa0p)€ = (@182 . . . 6_11,_15;.), (6)

where the structure represented by the symbol
on the right side is enantiomorphic with that
given by the symbol on the left side. Three
kinds of symbol-differentiating operations, p,
7 and €, have thus been derived for mica poly-
types, and from the ways they were derived,
it is obvious that they and their combinations
exhaust all the operations required.

Next let us turn to SiC polytypes. As no ad-
jacent layers in the SiC structure can take the
same letter in the ABC sequence, two arbitrari-
ly-selected adjacent layers will be expressed by
AB. The layer to follow AB is then either C
or A, providing sequences ABC or ABA. De-
pending on the third layer upon AB, C or A,
the mode of its stacking upon AB will here be
denoted by O or 1, respectively. The polytype
symbol of SiC will thus be a string of p num-
bers, each of which is either 0 or 1. We will
then introduce an experimentally obtained rule
and assume that SiC polytypes formed at high
temperatures contain no 1 in their Zhdanov
symbols, which is equivalent to saying that no
two 1s can be adjacent to each other in our
polytype symbol. Though the operations p and
7 apply also to the present case, € leaves the
symbol of SiC invariant as obvious from its
definition; accordingly, it is not symbol-dif-
ferentiating.

ENUMERATION OF P-LAYER MICA POLYTYPES

Our aim is to enumerate p-layer polytypes of
mica from the set ) of polytype symbols gen-
erated under the assumption that p is a prime,
and under the condition (2). This problem can
be solved through a series of procedures purely
mathematical in nature. However, because the
complete presentation of proofs of all the lem-
mas and theorems necessary for this purpose
would require too lengthy a description, we
shall confine ourselves chiefly to the demonstra-
tion of those of special importance, thereby
concentrating our main effort into a systematic
description of our logical sequence. The theory
will first be developed for mica polytypes, and
as a variation of it SiC polytypes will be dealt
with later.

Let p be a prime larger than 4, and consider
a set {} of polytype symbols in the form of (1),
for which (2) holds. Such operations p, 7 and
€ are then defined on the elements (polytype
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symbols) of Q as expressed by (3), (5) and (6)
respectively. If applications, in succession and in
finite repetitions if.required, of p, 7 and € to
one element w: of ) produce ws, ws is said to
be equivalent to w1, w: ~ w1 Then the relation
expressed by ~ is an equivalence relation in Q,
by which () is partitioned into disjoint equiv-
alence classes I'; s, for example such as

Q=nIuru..... UT,, (N

and all such ws that are equivalent to @: con-
stitute the ith class I'i. Then because the opera-
tions p, 7 and € are symbol-differentiating oper-
ations, all such ws that are different from but
equivalent to each other represent one and the
same polytype on the one hand and belong to
the same equivalence class on the other. This
means that a 1:1 correspondence can be estab-
lished between the set of different polytypes
and the set of equivalence classes given in
by the equivalence relation due to p, 7, € and
their combinations. Therefore the problem of
enumerating different polytypes can be identi-
fied as that of seecking the total number of
equivalence classes in (7). When I} is looked
upon as a subset of , the number of different
elements in I is called the length of T’ and is
denoted by [T

In the previous section p, 7 and € were
defined as symbol-differentiating operations, but
they should now be redefined as operations
given by the defining relations (3), (5) and (6)
respectively. Therefore the identity 1 defined by

pﬂ=1'2= e =1, 8)

should now be looked upon as a legitimate
member of the operations under consideration.
Also from (3), (4), (5) and (6) the following
relations will be immediately recognized:

pT = Tp7 ®
and
PE = €p, TE = €T. 10)

From (8), (9) and (10) it will be directly proved
that every product of finite numbers of p, 7
and € in an arbitrary order coincides with one
of the following 4p operations:

1,0, 0% ..... , PP,
T, PT, P27, v v v .. , pPliT, (11)
€ PE P%6 . .. .. , pPle,

Thus, from now on, we shall deal with only
these 4p operations, denote the sets of opera-
tions in the first, second, third and fourth rows
in (11) by P, T, E and TE respectively, and
express the set of symbols {®, wp, . . ., wp™'}
as wP and in a similar fashion for the other
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TOWS.

The enumeration of equivalence classes will
then be carried out in two steps: (I) derivation
of families of classes according to combinations
of defining relations, and (IT) determination of
the number of classes in each of the families.
Before proceeding to the description of these
steps, it will be appropriate to refer to the
following two lemmas because the first lemma
is very often used in (I) and the second proves
that 4 to F in (I) exhaust all the possible kinds
of family.

Lemma I: When wp = o, all elements In wP
are different from each other.

Proof: If wpi = wpi (0 € 1< j < p-1),
wpit=w(l <j—i <p-1). Aspandj—iare
relatively prime, there exist such integers m and
I that satisfy m(j—%) + I = 1. Then w = wpi—*
= w(pi“i)m = wp(f"‘)m’ = wp]-’—lp = wp, con-
trary to the assumption that wp # w. Q.E.D.

Lemma 2: Among three operations 7, ¢ and
re, if two which are arbitrarily chosen leave w
invariant, the remaining one also leaves w in-
variant. If only one of the two arbitrarily chosen
operations leaves w invariant, it is the only one
of the three operations that leaves w invariant.

Proof: When wr = w and wre = ®, wre =
we = w, elc., and when we = w but wre # o,
wre = weT = WT F o, ec. QE.D.

(I) DERIVATION OF FAMILIES OF CLASSES
ACCORDING TO COMBINATIONS OF DEFINING
RELATIONS

(A wp = 0, w7 =, and we = @
Fromwp = w, &1 = @3, 83 = 03, .., 8p = G
D
From (2), 21 a; = pay = 0 (mod 6). Because p
s

is a prime and a; < 5 by assumption, it is
concluded that @, = 0 and « = (00... 00).
Conversely it is obvious that w = (00...00) is
left invariant by every operation in (11). Hence
under (4), {w = (00...00)} constitutes a class
', of length 1. (Because this sequence repre-
sents the one-layer polytype, it should be elim-
inated from the total numbers of the p-layer
polytypes).

(B) wp #£ w, wr = w, and we = o

The relations wr = w and we = «» make each
of wT, wE and wTE coincide with wP. Ob-
viously p leaves P invariant. When ot = o, 7
leaves wP invariant; wpit = wrp™ = wp™t €
wP. The same applies to ¢ when we = w and to
re when wr = wand we = w. Hence «P is left
invariant by every operation in (11) and is an
equivalence class I's under (B). Then as wp #
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w, all elements of wP are different from each
other by Lemma 1. Hence | T's| = p.

(C) wp # w, wr = w, and we # ©

The relation wr = « makes w7l and wTE
coincide with wP and wE respectively. Ob-
viously p leaves both wP and oF invariant. It
may then be easily proved, as before, that when
wT = w, Tleaves both wP and wE invariant. On
the other hand ¢ maps wP onto wE and wice
verse and the same applies to re when wr = w.
Therefore wPUwE is left invariant by every
operation in (11) and is an equivalence class
T¢ under (C). As wp # w, all elements in wP are
different from each other. If wofe = wpi (1 < §
< i< p-1), 0w = wpi~ie = w(p-ie)® =
w(p—7)?e®? = we, contrary to we # o in (C).
(It should be noted that p and ¢ are commuta-
tive.) Thus all elements in wPUwE are different
from each other and | Ty | = 2p.

D) wp # w, wTe = @, and we # w

As wre = wmakes wTE and «T coincide with
wP and oFE respectively, exactly the same argu-
ment holds as in (C), which leads to the conclu-
sion that I'p is wPUWE and |T'p| = 2p. It is to
be noted that I'; and I'; can have no element in
common; by Lemma 2, wr = wand wre # win
(C) whereas wr # wand wre = win (D), and
obviously no element can satisfy these two sets
of mutually inconsistent conditions.

(E) wp # w, w7 5% o for every element of Uz, and
WE = W

The relation we = « makes wE and wTE
coincide with wP and w7 respectively. Then p
leaves each of wP and w7 invariant, the same
applies to e when we = w, but 7 maps P onto
T and vice versa, and the same applies to e
when we = w. Therefore wPUwT is left invar-
iant by every operation in (11) and is an
equivalence class I'z under (E). As wp # w, all
elements in wP are different from each other.
If wp' = wpir, wp*it = w. Take such in-
tegers m and [ that satisfy 2m + Ip = 1,

and put o' = wp)™ Then '€wPcTy
W'r = wpltdmy = 2T plirdm w pli+d)
A-18) ek = gy gl D g plitdm = plid™ =

w', contrary to wr # w for every element of I'z.
(It should be noted that as p and 7 are not com-
mutative, the above part of the proof cannot be
carried out in the same way as for the corres-
ponding part in (C) but calls for such an element
w' that is equal to wpl+d™ and satisfies w'r
") Thus all elements in wPUwT are different
from each other and |T'z| = 2p,

(F) wp # o, o1 # w and wre # w for every
element of U, and we &

431

Operation p leaves invariant each of wP, wT,
«E and wTE. Operation 7 maps wP onto w7,
wT onto wP, wE onto wTE, and wTE onto wE.
Operation ¢ maps «wP onto wE, «T onto «wTE,
wE onto wP, and wTE onto w7. Operation e
maps wP onto wTE, T onto wE, wE onto oT,
and »TE onto wP. Hence only wPUwTUwEU
wTE will in this case be left invariant by every
operation in (11) and is an equivalence class I'x
under (F). Relations wp # wand we # w assure
as proved in (C) that all elements in wPUwE are
different from each other. Relations wp 7 w and
wr ¥ wassure as proved in (E) that all elements
in wPUwT are different from each other. Like-
wise, relations wp 3 w and wre # w will be
easily proved to assure that all elements in
wPUwTE are different from each other. When
wP and T are operated upon by ¢ «E and
wTE will be produced. Therefore all elements in
wEUwTE are different from each other. When
wP and wE are operated upon by 7, o7 and
«TE will be produced. Therefore all elements
in wTUwTE are different from each other. When
wP and wTE are operated upon by re, wF and
wT will be produced. Therefore all elements in
wEUwT are different from each other. Hence all
the 4p elements in I's are different from each
other and |I's| = 4p. Thus we have the follow-
ing theorem.

Theorem 1: Equivalence classes in Q produced
by operations in (11) are classified into six
families as follows: Family A defined by (wp =
w, w7 = w, and we = w) and consisting of a
class of length 1; Family B defined by (wp #
w, wT = w, and we = w) and consisting of
classes of length p; Family C defined by (wp %
w, wT = w, and we # w) and consisting of
classes of length 2p; Family D defined by (wp
# w, wre = w, and we ¥ w) and consisting of
classes of length 2p; Family E defined by (wp
# w, wrT # w for every element of I'z, and we
= w) and consisting of classes of length 2p, and
Family F defined by (wp # o, wr # wand wre
# w for every element of I'r, and we # «) and
consisting of classes of length 4p.

(II) DETERMINATION OF THE NUMBER OF
CLASSES IN EacH OF THE FAMILIES

Family A
Family A contains only one class {w = (00
... 00)}. Hence, its class number #, is equal to

Family B

In order to count the number 7z of classes in
this family, the fact must be utilized that every
class in this family contains one and only one
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such element w that satisfies w7 = wand we =
w, which means that #p is equal to the total
number of elements satisfying these two condi-
tions except w = (00...00). In fact if wpir =
wpt (1 < ¢ <p-1), wp*r = w = wr. Thus
wp® = w. Take such integers m and [ that
satisfy m(27) + Ip = 1. Then w = wp? =
w(p?)™ = wp'~** = wp, contrary to (B). QE.D.
Let us therefore count the number of these ele-
ments. Because we = w, ¢; in w is either 0 or 3,
and from wr = w the equalities hold: ¢, = a,,
Q2 = Op_1y « v+ +3 Cp-1)/2 = (pi3)[2. When each
of a1, as, . . ., Q1) I8 given the value of either
0 or 3, the remaining central number @12 i8
determined by (2). Thus the number of elements
that satisfy both wr = wand we = w is 2-D/2,
because w is determined by the first (p—1)/2
a;s and each of such a8 can have the alter-
native of 0 or 3. As this number includes »,
(= 1), npis given by np = 2-1/2 — 1,

Family C

In each of the equivalence classes in this
family, those elements that can satisfy both wr
= w and we # w are only two, v and we.
In fact from (C) in (I) the equivalence class
containing w is expressed as wPUwE. If wp'
(1 € i € p—1) in P satisfies wr = w, then
wp't = wp’, but this leads to wp = w as proved
in the previous case of family B. However, as
wp # win (C), it is concluded that wpi (1 < ¢ <
p—1)cannot satisfy wr = w. As wpfer= wp're, it
will be immediately concluded that wpie (1 <7<
p—1) in wE cannot satisfy wr = w. On the other
hand, w satisfies wr = w by assumption, and
because wer = wre = we, we also satisfies
wr = w. QE.D. Therefore the number #n, of
equivalence classes in this family is equal to
half the number of such elements that satisfy
both wr = wand we ¥ w. Then the number of
elements that satisfy wr = w is 6%=1/* because
w is determined by its first (p — 1)/2 a8 as in
the previous case of family B and each of such
a; s can have choice among six numbers, 0, 1, 2,
3, 4 and 5. Then the set of these 6(?~1/? elements
includes 7y elements of family B and one ele-
ment of family A. Hence the total number of
such elements that satisfy both wr = o and
we ¥ wis 6=V — py — 1 = -V
2-1I2, As ny is half this number, ne = (14)
{6(17_1)/2 — 2(27—1)/2}.

Family D

Exactly the same argument holds in this case
as in the previous case of family C when wr =
w is replaced by wre = w, and the number %, of
equivalence classes in this family is given by #p
= (14) {6@-Di2_ 20-Di2}
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Family E

Let the set of all elements that satisfy we =
» be Q. Then in v = (@1@2...4;...0,-10,)EQ',each
of a;s is either 0 or 3. Hence, the total number
of elements in Q' is 2?~! because one of the p
numbers @, @z, . . . , G, N w is determined from
the rest by (2), and each of the remaining p—1
numbers can have the alternative of 0 or 3. All
the elements of classes in families A and B are
contained in Q' because (4) and (B) have we =
w in common with Q'. Hence, the number of
those elements in Q' that are contained in clas-
ses of family E is 2°-* — p X nz — 1, and be-
cause 2p of these elements form a class, the
number #z of equivalence classes in family E is
given by nz = (14p) {27! — p X np — 1} =
(Y4p) {271 — p X 2=V + p — 1},

Family F

The total number of elements in Q is 67!
because one of the p numbers in  is determined
from the rest by (2) and each of the remaining
p—1 numbers can have choice among six
numbers, 0, 1, 2, 3, 4 and 5. As all the elements
in classes of families 4, B, C, D, E and F con-
stitute Q and because |I'»| = 4p, the number
nr of classes in family F is given by nr =
(4p) {671 — 2p(ng + np + #e) — p X e —
na) = (4p) ({6771 — 2277} — 2p{60-00% —
or-1i21],

‘We have thus completed all the procedures of
(ITy and now reached the theorem that gives
the total number of equivalence classes in Q:

Theorem 2: The total number zns(p) of equi-
valence classes in Q is given by ns(p) = %4

#g + #e + np + N + #p, Where ng = 1, np
= 20-012 _ 1y, = np = (Lg){6r-Dz —
2(1:_1)/2}, ng = (%p) {gp—l —p X 902 4

— 1} and nr = (U4p) ({671 — 271} —
2p{6@-1iz — 2(>-Di2}] Hence the total number
of polytypes

ns(p)

IFo

ns(p) — ";1
(Mp) {6+ + (2p) X 612
Lol — 2p — 2}, (12)

Note here that p is greater than 4.

To derive the above theorem, it was assumed
that any two adjacent layers in mica polytypes
are stacked together with a relative rotation of
one of the multiples of 60°, which is a digit in
the senary representation. However, in natural
micas the rotation is usually by one of 0°, 120°,
and 240°. For these, therefore, it should be
assumed that a,s in @ can take the values of 0, 2
and 4, by which the stacking sequence can be
expressed by a number in the ternary repre-
sentation. For this case those procedures in
steps (I) and (IT) will be considerably simplified
because the relation we = w cannot hold in this
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TABLE 1. NUMBERS OF DISTINCT MICA POLYTYPES
FOR GIVEN LAYER NUMBERS (N) IN THE TERNARY
REPRESENTATION (BASE 3)

1 1
2 1
3 2
4 4
5 8
6 18
7 39
8 94
9 222
10 572
11 1 463
12 3 934
13 10 584
14 29 211
15 80 808
16 226 430
17 636 320
18 1 800 318
19 5 107 479
20 ?

23 341 187 047
29 197 216 119 544
31 1 660 419 530 055
37 1 014 153 134 906 184
] 74 132 108 201 056 400
43 636 156 918 785 481 015
47 47 143 287 917 563 616 519
53 30 476 801 365 547 693 758 184
59 19 958 172 445 992 979 743 434 999
61 Number of 27 figures

type of sequence. The final result corresponding
to this case of the ternary representation is
given by
np() = (M4p) {371 + (2p) X362
—2p — 1}, (13)
with p greater than 4.

In Tables 1 and 2, numbers of distinct mica
polytypes are listed for given layer-numbers. In
these tables the numbers of polytypes in the
ternary and senary representations, up to 19 and
12 Tayers, respectively, have been generated by
computer, and those polytypes with a layer-
number larger than the above are the results of
calculations according to (12) and (13).

ENUMERATION OF p-LAYER SIC POLYTYPES

Let us express p-layer SiC polytypes also by
(1), in which each of the numbers ¢;s is either 0
or 1 in the binary representation. Instead of (2),
however, the condition of ‘no two 1s being ad-
jacent’ holds for SiC. Equations (3), (4) and (5)
apply to SiC but in (6) @; = a; for all j, that is, ¢
is not symbol-differentiating for the present
case and should accordingly be deleted. There-
fore, the equations in (10) are trivial and the
latter two rows in (11) should be omitted. In
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TABLE 2. NUMBERS OF DISTINCT MICA POLYTYPES FOR GIVEN LAYER
NUMBERS (N) IN THE SENARY REPRESENTATION (BASE 6)

1 1
2 3
3 6
4 26
5 83
6 402
7 1776
8 9 212
9 47 3N
10 254 721
1 1378 142
12 7 574 768
13 41 884 605
14 ?

15 ?

16 ?

17 41 487 751 175
18 ) ?

19 1 336 320 261?618
20

23 1 430 670 875 381 804
29 52 939 157 060 432 805 605
31 1 782 854 191 531 337 908 752
37 69 692 059 449 311 155 754 627 625
41 81 509 113 041 731 913 865 429 529 075
43 2 797 847 694 176 606 471 071 811 477 694
47 3 317 413 963 852 624 100 552 130 498 223 256
53 137 255 311 267 601 444 345 446 666 542 784 075 505
59 5 752 551 551 399 394 713 921 759 959 900 326 815 503 238

61 Number of 45 figures

(4) in (I), equation (2) must be replaced by the
condition that w # (11 ...11), 2H being ex-
cluded from the beginning. Because the cases of
SiC can be interpreted as always satisfying we
= w, only families 4, B and E will be present in
Theorem 1.

After Theorem 1 we shall depart from the
thread of argument given to mica polytypes and
resort to a method much simpler than that des-
cribed in the previous section. When the con-
dition of 'no two 1s being adjacent’ is imposed,
the sequence of p numbers, each of which is
either 0 or 1, is equivalent to the well-known
sequence called a2 PM sequence (sequence of
plus and minus signs) (Berman & Fryer 1972),
which is a typical Fibonacci sequence. Let the
total number of sequences with » numbers be
J@®); f@) = f(p—1) + f(p—2) holds. As f(1)
= 2 and f(2) = 3, if the mth number in the
standard Fibonacci sequence, 1, 1, 2, 3, 5, ....is
denoted by F(m), f(p) = F(p+2). On the other
hand because ¢, and a, cannot be 1 at the same
time, those sequences with a; = 1, @, = 0, @,
= Oand @, = 1 must be excluded from f(p). The
number of such sequences is f(p —4) = F(p—2).
Hence the total number |[Q| of possible se-
quences is

Q] =Fp +2) —F(p—2)=F@p +1) +
F@p) — {F(p) — F(p — 1)} = F(p + 1) +
F(p — 1). The number |Q| consists of elements
of classes of family E, those of classes of family
B, and (00 ... 00) of family A. The number of
classes whose elements are left invariant by

- -1
operation 1, ot = w, is given by f (11_2_)
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_g (=1 _ g2 13
—F< 5 +2>—F(2 ),be—

cause each of such classes is determined when
Gz, O3, - + - » O(pe1)jz ATE given, both a; and a,
being necessarily zero. Hence, when the layer-
number p is a prime larger than 2, the number
ns(p) of possible SiC polytypes (always in a
binary representation) will be given as

na(p) = (%) F +1) +F@p — 1)
o4 (222) o

- 11 +F 2_"%3 -1

= (%) {(FO+L+Fp-1

+F <’%§—) —p-11}, a9
neither 3C nor 2H being counted in it.

As far as SiC polytypes under the condition of
‘no two 1s being adjacent’ are concerned, we
have lately succeeded in solving the problem of
their enumeration for any layer-number. Denote
the total number of N-layer SiC polytypes by
75(N). Then

np(N) = nx,n + #vex,

3
N; ) — 2,

when N is odd, and

(15)

nN,N = F

THE CANADIAN MINERALOGIST

=F N—;_—i — 2
when N is even, (16)
and
nw,on = (L/2N) {F(N +2) — F(N — 2)
— N X ny.ny — Z'(0 X 1
+ 21 X nya)} an

where 7.,; expresses the number of sequences
with a period of ¢ layers and having j distinct
representations and starts with #,1 = 1, 71,2
= 0, #1,0 = 1 and #a,0 = 0, F(k) is the kth
number of the Fibonacci sequence, 1, 1, 2, 3,
5,...and X' means a summation over all such
Is that divide N, i.e., /N, with [ # N.

In Table 3, numbers of distinct SiC polytypes
for given layer-numbers are listed. The numbers
of these polytypes were derived according to
(14), (15), (16) and (17), and those with N up to
43 were also generated by computer and con-
firmed to coincide with the above results of cal-
culations.

CONCLUSION

The present mathematical treatment leads
to the same numbers of distinct polytypes for
layer-number N up to 5 in the senary case, and
for N up to 7 in the ternary one, as in earlier,
more direct treatments by Ross et al. (1966),

TABLE 3. NUMBERS OF DISTINCT SiC POLYTYPES FOR GIVEN LAYER- and for N up to 8 (senary) and for N up to 10

NUMBERS (N)
N N
1 1 31 49 352
2 1 32 77 337
3 1 33 120 694
4 1 3% 189 580
5 2 35 296 847
6 2 36 466 930
7 4 37 733 362
8 5 38 1155 355
9 7 39 1 818 562
10 10 a0 2 868 918
11 15 41 4 524 080
12 20 42 7 145 780
13 30 43 11 285 526
14 a3 4 17 845 317
15 60 45 28 220 044
16 91 46 44 668 419
17 132 a7 70 716 649
18 197 a8 112 038 102
19 290 49 177 548 408
20 840 50 28] 533 868
21 651 51 446 544 706
22 1005 53 1124 865 050
23 1 509 59 18 130 295 895
26 2 38 61 45 908 862 054
25 3 542 67 750 014 690 474
26 5 504 71 4 851 043 787 277
2 8 433 73 12 352 235 686 604
28 13151 79 204 817 314 892 976
29 20318 83 1 336 183 557 337 451
30 31759 89 22 360 422 113 307 176

97 # of 18 figures
101 # of 19 figures

(ternary), respectively, as in a computer simula-
tion by Takeda (1971). The numbers of mica
polytypes generated by computer with our im-
proved program for the senary case agree with
those given by our formulae for N up to 11
and for the ternary one for N up to 19.

In order to make practical application of
these results, the complete set of a listing of
the specific mica polytypes for N = 5 and 6 is
available, at a nominal charge, from the
Depository of Unpublished Data, CISTI, Na-
tional Research Council of Canada, Ottawa,
Canada, K1A 0S2.

We believe that the treatments leading to
Theorem 2 in this paper will be successfully ap-
plied to all variations of polytype provided ap-
propriate reinterpretations of the meaning of
some of the quantities in this theory are intro-
duced, if they are required at all.
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