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ABSTRACT

To obtain formulae tlat give the numbers of
6istilct polytypes of mica and SiC when the layer-
number p is a prime, a so-called symbol-differentiar-
ing operation is used to derive different layer-
stacking symbols that represent one and the same
pol]rtype. If a layer-stacking symbol r,,, is produced
as- a result of application of a symbol-differenti-
ating operation e to a symbol e!, u! and
tr, are said to be equivalent to each other, and
the set O of all possible symbols is partitioned
into disjoint equivalence classes. A ine-to-one
correspondence exists between the set of different
polfiypes theoretically possible and the set of
equivalence classes in O. For mica polytypes with
a prime layer-number, the equivalence iiasses in(), were grouped into six families, and the number
of classes within each of tlese families was de-
termined. The number of distinct mica polvtvoes
was thus derived when the sfsgking op..ati-oo
lement entre couches contigiies est rine ?otation
gf 60" (senary) or 1200 (ternary), respectiveiy.
Corresponding numbers are obtained'for SiC poty_
types, and the formulae are derived for SiC ioly-types of any layer-number.

SoMMARB

Dans le but de trouver des forrnules donnant le
199ble des polvtvpes distincts de mica, ou Je
SiC, lorsque le nombre p de couches est'premier,

on emploie une op6ration dite "diff6renciatrice de
symboles" pour 6tallir des symboles d,empilement
de couches diff6rents qui repr6sentent un seul et
m6me polytype. Soit cu, le symbole d'empilement
que l'on obtient en appliquant l'op6ration diff6ren-
ciatrice e au symbole or, on dit alors que co1 et
ru, sotrt 6quivalents I'un i lautre, et l,ensemble O
de tous les symboles possibles est partag6 en clas-
ses d'6quivalence disjointes. Une correspondance
biunivoque relie I'ensemble des polytypes th6ori-
quement possibles i l'ensemble des classes d,6qui-
valence de 0. Dans les cas des polytypes de mica
oi p est nombre premier, les classes d'6quivalence
de O se groupent sn six familles, et nous avons
d6termin6 le nombre de classes que contient cha-
que famille. Ainsi s'6tablit le nombre des poly-
types distincts de mica lorsque l'op6ration d'empi-
lement entre couches contigiies est une rotation
d'un multiple de 600 (s6naire) ou de 120" (ter-
naire). Quant aux polytypes de SiC, nous en avons
d6termin6 les nombres correspotrdants et 6tabli les
fonnules pour n'importe quel nombre p.

Clraduit par 1a R6daction)

fNtnopuctroN

A complex structure very commonly consists
of substructures. Such a structure may be called
a hierarchic structure and is in most cases re-
sponsible for polytypism, twinning or dom4in
texture. A study of mathematical principles for
representation of complex structures such as
the polytypes of SiC, ZnS and mica has been
considered to.be one of the important problems
of modern crystallography. In these polytypes,
unit layers are stacked upon each other in one

*Dedicated to Profossor J. D. H. Donnay on the
occasion of his 75th birthday.
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of a few different orientations, and their se-
quence repeats after a sertain number of layers.
These phenomena may be attributed to the
spiral-growth mechanism (Frank 1951). Several
systemi of notations to describe these polytypes
have been proposed: layer-orientation symbol
(ZWaCrn 1960), vector-stacking symbol-(Ross
et AL 1966) and layer-position symbol (Takeda
& Sadanaga 1969) for mica, and.4BC sequence,
Zhdanov symbol and h-k notation for SiC
(Verma & Krishna 1966).

A practical method of enumerating the pos-
sible sequences for N-layer mica polytypes was
established by Ross et al. (1966). Takeda (1971)
examined the algebraic properties of the vector-
stacking symbol and introduced three operations,
each of which produces a certain change of
symbol while leaving the structure of the poly-
type invariant. By applying these operations he
enumerated by computer the possible mica
polytypes up to N = lO for those with 0o and
'rl2}o interlayer rotations (in the ternary
representation) and up to N - 8 for the general
case (senary). Enumeration of SiC polytypes
has been cairied out by computer up to N = 26
(Tokonami & Hosoya 1966), and the sequences
and symmetries of stacked closest-packed layers
are tabulated for N up to L2 in International
Tables for X-ray Crystallography, Vol. II (1959).

Because the method adopted in these
enumerations mentioned above is a kind of
computer simulation, a theory capable of pre-
dicting the number of possible polytypes for a
given layer-number has been much desired, in
the hope that such a theory will reveal the
mathematical principle governing the structures
of polytypes, thus promoting a better under-
standing of the physical mechanism of their
formation.

As a result of our recent collaboration, we
have succeeded in deriving five kinds of formu-
lae that meet our objectives: the first gives the
number of mica polytypes in the senary repre-
sentation and with a prime layer-number, the
second the number of mica polytypes (ternary)
with a prime layer-number, the third the number
of mica polytypes (senary) with a layer-number
relatively prime @irkhoff & Maclane 1965) to
6, the fourth the number of SiC polytypes with
a prime layer-number, and the fifth the number
of SiC polytypes of any layer-number. However,
because the example where N is a prime number
is best suited for an intellible demonstration
of the relation between different poll'types and
the mathematical structure of the set of poly-
type symbols, we will expoundo in this paper,
the theory of enumerating mica and SiC poly'
types with a prime layer-number.

MINERALOGIST

Por,YrYru Svvrsol AND
SyIISoL-DTnFERENTIATING OpsRArtoNs

In order to present the system of symbols and
operations foi deriving and describing our
theory, let us first give a brief review of the
vectoi-stacking sym6ol (Ross e/ aL 1966) and

Takeda's (197f)'method of enumerating mica
polytypes. In the following discussion Y" .at-
runi"'ittut p, the number of layers constituting
a unit cef of a misa or SiC polytype under
consideration, is alwaYs a Prime.

The unit layer of the mica polytyle is usual-
lv so chosen as to coincide with the unit slab
in one-layer mica 1M and possessing tle syP-
metry 1.bI2/ m (A. Niggli's notation- for the

AipeiioOic groups). The structure of a mica
poiytyp" is ihen-considered as a stackilg of ,the
irnii i&ett with rotations by 0o, t60o, t120"

or 18Oa between pairs of adjacent layers' There-
fore the polytype symbol ol expressing the
stacking *eq"!"& of layers in a p-layer mica
has been given by a series of p numbers as

6 :  ( a f l 2 . . . a 1  . , . a s - t a e ) ,  ( 1 )

where the ith number 4, refers to the angle of
the relative rotation between the ith and the

CI+lxh layer, the first layer being that in
*ttl"h ttt" 

-origin 
of the polytype structure. is

taken. The simplest expression will be to give

ai oA9 of the values of A, !, 2o 3, 4 anl 5
corresponding to rotations by 0", 60", 12O",
180', )40o and 300", respectively. Because of

the periodicity along the direction of the layer
stacking, the condition

p ^ (2)

is imposed upon every p-layet polytype. -
It will the; be obvious that every symbol crt

of such p numbers that satisfy (2) represents a
possible mica polytype of p layers; in order to
enumerate all possible p-layer polytypes, all
ars conformable 1o (2) must be generated. How-
ever the total number of different <os thus gen-

erated will not coincide with but exceed the
total number of different polytypes theoretically
possible, because two or more symbols appar-
ently different from each other may represent
one and the same polytype, whereas one sym-
bol cannot express more than one polytype. The
truth of the iecond half of this statement will
be obvious from the fact that a symbol deter-
mines one and only one type of sequence,' thus
only one polytype, and the truth of the first
hali will be demonstrated below with the aid of
symbol-differentiating operations.

By symbol-differentiating we mean such an



operation that preserves the layer sequence of
a mica polytype under consideration but trans-
forms its symbol a to a' which is not congruent
with ar. The simplest of the symbol-differentiat-
ing operations will be derived when the fact
that the origin can be taken in any arbitrarily
chosen layer within the polytype is taken into
account. If the choice of the origin in layer
z4r is specified as different from the choice of it
in 241 when Ar I 46 every different choice of
the origin in a mica polytype will create a
unique symbol unless all the numbers in the
symbol are the same. When an operation that
shifts the origin by one layer is denoted by p,

(afi2, . . a,-fie)p : (az. . . ae-fieat) G)

and

(a rgz . .  .  asoa+t .  .  .  anO)p !  :
(4 ;+r  .  .  .  0y tAeAt0z .  . ,  A t )

hold. If all a6 in (3) are not equal to each
othet, each of pns (i - 1, . . , ., p-L) will be a
symbol-differentiating operation, because p is
a prime and accordingly no symbol can have
an internal period. The operations pi are the
only symbol-differentiating operations that can
be derived from a polytype in a fixed position,
because the possibility of a change of symbol
then lies only in a shift of the origin.

Next we must give the polytype a motion and
see if we can derive more kinds of svmbol-
differentiating operations. Suppose first tlat the
motion is of the first kind. Because the symbol
is a string of numbers in one direction, the only
motion of the first kind and representative of
those producing a change of symbol is a rota-
tion by 180o around an axis parallel to the
layers. If this rotation is denoted by 7, it will
operate on the symbol as

(apz.  .  .  ae-f ie)T :  (ana.e_t .  . .  aza) (S)

and therefore it is a symbol-differentiating op-
eration for those symbols that are not reflec-
tion-symmetrical across a plane perpendicular to
it. Suppose next that the motion is of the second
kind. Because of the symmetry 1,C1.2/ m of. tlcie
unit layer, the motion of the second kind and
representative of those compatible with the
structures of some mica polytypes is a reflec-
tion across a plane perpendicular to the layers,
but this motion is not svmbol-differentiatins
because the structures of ihese polytypes anJ
their symbols as well are then symmetrical with
respect to this reflection. Then the fact must
be taken into account that two polytypes enan-
tiomorphic with each other are looked upon as
having one and the same layer sequenei; if. a
mica polytype is not reflection-symmetrical, the
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operation € that creates its enantiomorph will
be a symbol-differentiating operation. If we de-
fine D1 = 6-ai when at * O, and d1 =
a, when e! = 0, we shall have a relation

(araz.  .  .  aFf ie)c :  (d,1dz,  . ,  antd) ,  (6)

where the structure represented by the symbol
on the right side is enantiomorphic with that
given by the symbol on the left side. Three
kinds of symbol-differentiating operations, p,
r and €, have thus been derived for mica poly-
types, and from the ways they were derived,
it is obvious that they and their combinations
exhaust all the operations required.

Next let us turn to SiC polytypes. As no ad-
jacent layers in the SiC structure can take the
same letter n the ABC sequence, two arbitrari-
ly-selected adjacent layers will be expressed by
AB. The layer to f.ollow AB is then either C
or l, providing sequences ABC or ABA. De-
pending on the third layer upon AB, C or A,
the mode of its stacking upon AB will here be
denoted by 0 or 1, respectively. The polytype
symbol of SiC will thus be a string of p num-
bers, each of which is either 0 or L. We will
then introduce an experimentally obtained rule
and assume that SiC polytypes formed at high
temperatures contain no I in their Zhdanov
symbols, which is equivalent to saying that no
two ls can be adjacent to each other in our
polytype symbol. Though the operations p and
r apply also to the present case, € leaves the
symbol of SiC invariant as obvious from its
definition; accordingly, it is not symbol-dif-
ferentiating.

ENuvrBnettoN or p-Leven Mrce Por-vrypss

Our aim is to enumerate p-layer polytypes of
mica from the set O of polytype symbols gen-
erated under the assumption that p is a prime,
and under the condition (2). This problem can
be solved through a series of procedures purely
mathematical in nature. However, because the
complete presentation of proofs of all the lem-
mas and theorems necessary for this pulpose
would require too lengthy a description, we
shall confine ourselves chiefly to the demonstra-
tion of those of special importance, thereby
concentrating our main effort into a systematic
description of our logical sequence. The theory
will first be developed for mica polytypes, and
as a variation of it SiC polytypes will be dealt
with later.

Let p be a prime larger than 4, and consider
a set f,) of polytype symbols in the form of (1),
for which (2) holds. Such operations p, r and
e are then defined on the elements (polytype

(4\
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symbols) of (l as expressed by (3), (5) and (6)
respectively. If applications, in succession and in
finite repetiti,ons if . requhed, of p, r and e to
one element alr of 0 produce e)4 Q)z is said to
be equivalent to rdr, az d at, Then the relation
expressed by a is an equivalence relation in 0,
by which 0 is partitioned into disjoint equiv-
alence classes Il s, for example such as

O  :  l r U l z U  .  . . . .  U l o ,  A )

and all such cos that are equivalent to a)r con-
stitute the ith class ft. Then because the opera-
tions p, r and e are symbol-differentiating oper-
ations, all such crls that are different from but
equivalent to each other represent one and the
same polytype on the one hand and belong to
the same equivalence class on the other. This
means that a 1:1 correspondence can be estab-
lished between the set of different polytypes
and the set of equivalence classes given in f,)
by the equivalence relation due to p, t, e and
their combinations. Therefore the problem of
enumerating different polytypes san be identi-
fied as that of seeking the total number of
equivalence classes in (7). When l.r is looked
upon as a subset of ,fl, the number of different
elements in In is called the length of Ir and is
denoted bV lf,l.

In the previous sestign p, r and € were
defined as symbol-differentiating operations, but
they should now be redefined as operations
given by the defining relations (3), (5) and (6)
respectively. Therefore the identity 1 defined by

PP : tz: e2 : 1, (8)

should now be looked upon as a legitimate
member of the operations under consideration.
Also from (3), (4), (5) and (6) the following
relations will be immediately recognized:

Pr - rq-r

and

pc :  ep ,Tc :  e r .  ( 10 )

From (8), (9) and (10) it will be directly proved
that every product of finite numbers of p' r
and e in an arbitrary order coincides with one
of the followng 4p operations:
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(11)

rows.
The enumeration of equivalence classes will

then be carried out in two steps: (I) derivation
of families of classes according to combinations
of defining relations, and (II) determination of
the number of slasses in each of the familix.
Before proceeding to the description of these
steps, it will be appropriate to refer to the
following two lemmas because the first lemma
is very often used in (I) and tle second proves
that A to F in @ exhaust all the possible kinds
of family.

Lemma -1.' When ap + al, all elements tn coP
are different from each other.

Proof: lf. opr : copt (0 < i < i < f-L),
o pt-i : or (1 < j-i < p-L).As2 andl-f are
relatively prime, there exist such integers m and
/ tlrat satisfy rn(i -il + lP : 1. Then t21 : 12s pi-t
- @(pi-r6 : 1rspQ'i^ - lrspL-te : arp, COn-
trary to the assumption that c't p * o. Q.E,D.

Lenma 2: Among three operations r e and
re, if two which are arbitrarily chosen leave or
invariant, the remaining one also leaves o.r in-
variant. If only one of the two arbitrarily chosen
operations leaves <,r invariant, it is t}te only one
of the three operations that leaves c.r invariant.

Proof: Wherr (rr : (t and c'tre : o), (rre :
(te : o), etc.,ald, when ore : c,r but otte * c't,
11re :  oer  :  o t r  *  t t ,  e tc ,Q.E.D.

(I) DrntvertoN oF Feurr-rrs oF Cresses
Acconontc ro CoMBINATIoNS oF DnprurNc
RELATIoNS

(A) , p : (t, ur : 'ot, and @e : @

F f O m c . l p  : 6 r A r :  A 2 t a z :  A s ; , . . r a p :  a t

From (2), fr o, : bar = 0 (mod 6). Because P
i-l

is a prim6 irnd ar < 5 by assumption, it is
concluded that at : 0 and o : (00... 00).
Conversely it is obvious that ot : (00. . .,Q0) is
left invariint by every operation in (11). Hence
under (A), {, : (00 . . . 00)} constitutes a class
fa of length 1. (Because this sequence repre-
sents the one-layer polytype, it should be elim-
inated from the total numbers of the p-layet
polytyres).

(B) up * a, <'tr : o, and 6e : a

Therelations @r : u and c.re : rl make each
of uT, coE and co?E coincide with c,rP. Ob-
viously p leaves coP invariant. Tflhen (tr : @, r
leaves rrrP invariant; apir : @rp-i - ap-ie
<,rP. The same applies to e when @e : a.and to
r€ when cor : to and @e : @. Hence coP is left
invariant by every operation in (11) and is an
equivalence class rB under (B). Then as cop I

(e)

! , 9 , P 2 , . . . . . , P r L ,
r ,  p r ,  p 2 r , . ,  .  . .  ,  p P - t T ,
G ,  p e ,  p z e , . . . . . ,  P p - r e ,
T c ,  p i c ,  g z t c , . ,  .  .  . . ,  g P - L T c .

Thus, from now on, we shall deal with only
these 4p operations, denote the sets of opera-
tions in the first, second, third and fourth rows
in (11) by P, T, E and 7E respectively, and
express the set of symbols {a, ap, . . . , (t)po''}
as arP and in a similar fashion for the other



to, all ele.ments of coP are different from each
otherbylemma 1. Hence lrrl : P.
(C) , p * ctt, c,tr : or, and ue * cts

The relation or : o makes uT and aTE
coincide with orP and <,rE respectively. Ob-
viously p leaves troth toP and coE invariant. It
may tlen be easily proved, as before, that when
(tr : ot, r leaves both <oP and <oE invariant. On
the other hand e maps coP onto c,rE and. oice
ousaartd. thesameappliesto re when ar :6.
Therefore <lPUoE is left invariant by every
operation in (11) and is an equivalence class
Ic under (C). As u p I c,t, all elements in c,rP are
different from each other. If a pde : u pt (L <. j
< i  < P- l ) ,  co:  <opr- te :  @(pi - ie)P :
ot(p;-t1ort : ar€, contrary to c^re * a n (C).
(It should be noted that p and c zlre commuta-
tive.) Thus all elements rn c':PUaE are different
from each other and I f"l : 2p.

(D) ,p * c's, c'sre : 6, and ue * a

As co re : o, makes otTE and c,r? coincide with
oP and <oE respectively, exactly the same argu-
ment holds as in (C), which leads to the conclu-
sion that lp is coPUco.E and I fp | : Zp.It is to
be noted that fc' and f, can have no element in
conrmon: by Lemma 2, u7 : co and core I o:n
(C) whereas or * o and. ure : o in (D), and
obviously no element can satisfy these two sets
of mutually inconsistent conditions.

fr):rrl 
a, ar * otfor eaery elem.ent of lE, and

The relation ue : @ makes aE and aTE
coincide with <,rP and <o? respectively. Then p
leaves each of coP and o? invariant, the same
applies to e when o)e : o), but 7 maps oP onto
<o? and oice lersa, and the same applies to re
when c,re : o. Therefore aPUaT is left invar-
iant by every operation in (11) and is an
equivalence class lr under (E). As a p * a, all
elements in coP are different from each other.
If. ospt : apir, rlpi+tT : co. Take SuCh in-
tegers ze and / that satisfy 2m * l! : l,
and put c,lt : otpG+i)m. Then olt€1;'Pclzi
1,prT:  ospQ+in,  -  ap2(t+i^r ,G+i-  :  apG+r.)
(l-tn) 

, oQvfln 
- <p ph+i , ot'a'1^ : 6 oG+)^ :

c,rr, contrary to otr * r^l for every element of fr.
(It should be noted that as p and r are not com-
mutative, the above part of the proof cannot be
carried out in the same way as for the cores-
ponding part in (C) but calls for such an elemenr
co' that is equal to apk+i^ and satisfies .,'r *
co'.) Thus all elements in aPUuT are different
fromeachotherand lrrl : Zp.

(F) ,p * a, osr * a and are I a Jor eouy
element oJ lv, and c,se * ot
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Operation p leaves invariant each of uP, c,tT,
arE and c.rTE. Operation r maps c'tP onto c,tT,
orl onto aP, oB onto otTE, and oTE onto ol,E.
Operation € maps orP onto oE, oT onto coTE,
ar.E onto osP, and otTE onlo coL Operation re
maps orP onto oTE, c,r? onto uE, otE onto co?,
and otE onto orP. Hence only uPUoffUarEU
otTE wrll in this case be left invariant by every
operation in (11) and is an equivalence class Ir
under (F). Relations ot p * o and <oe + o assure
as proved in (C) that all elements tn c'tPUooE are
different from each other. Relations co p * a and.
cor * to assure as proved in (E) that all elements
tn <':PUcoT are different from each other. Like-
wise, relations up * o and coze * <o wrllbe
easily proved to assure that all elements in
aPUotTE are different from each other. When
orP and aT are operated upon by e, oE and.
coTE wtll be produced. Therefore all elements in
uEUoTE are different from each other. When
arP and uE are operated upon by r, aT arrd
c':TE wtll be produced. Therefore all elements
n aTUaTE are different from each other. When
uP and uTE are operated upon by re, aE and,
co? will be produced. Therefore all elements in
aEUaT are different from each other. Hence all
the 4p elements in fp are different from each
other and I f" I : 4p. Thus we have the follow-
ing theorem.

Theorem./.'Equivalence classes in Q produced
by operations in (11) are classified into six
families as follows: Family A defined by Q':p :
o, o)T : c,r, and coe : o) and consisting of a
class of length 1; Family B defined by (otp *
@, o)r : o, and ae : os) and consisting of
classes of length 2; Family C defined by (,'t p *
<'), er : o), and r^re * a) and consisting of
classes of length 2b; Fantly D defined by (,o p
# <'t, t'tre : o, and ae * a) and consisting of
classes of length 2f: Fantly E defined by (rp
* a, ur * a for every element of nq, and coe
: c,r) and consisting of classes of length 2p, and
Family F defined by (crp * o\ otr * a and otre
* ot for every element of fr, and c,re # a) and.
consisting of classes of length 42.

(ID DBrnnlrrNauoN oF rHE Nuvrepn oF
Cressps IN EAcH oF TrrE Falattrss

Family A
Family ,4, contains only one class {co : (00

. . . 00) ]. Hence, its class number za is equal to
1 .

Family B
In order to count the number arq of classes in

this family, the fact must be utilized that every
class in this family contains one and only one
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suchelementcothatsatisfies or -- rland coe :
o, which means lhat na is equal to the total
number of elements satisfying these two condi-
tions except o : (00...00). In fact if. ap;7 :
@pt (l < i < p-L), up2ia : co : r,rr. Thus
6 p"n : co. Take such integers m and I that
satisfy m(2i) * lP : L. Then or : a pzi :
u( p'u)* - u p|-to : o p' contrary to (B). Q.E.D.
Let us therefore count the number of these ele-
ments. Because o) e : o), a1 in a is either 0 or 3,
and from or : e the equalities hold: at : Qp,
a2 : ap-r2 . . . -, ab-tl2 : aG+s)12. When each
of ar, az, . . . , a6-tp is given the value of either
0 or 3, the remaining central number @1e1r;12 is
determined bV Q). Thus the number of elements
that satisfy both cor : c, and 6e : a is 2@-1)t2,
because o is determined by the first (p -l) 12
ar.s and each of such ars can have the alter-
native of 0 or 3. As this number includes za
(: t), nu is given by ns : 2b-L)!2 - I.

Family C
In each of the equivalence classes in this

family, those elements that can satisfy both or
: co and ae * u are only two, <,r and coe.
In fact from (C) in (I) the equivalence class
containing co is expressed as orPUc,rE. Il upd
(l < i < P-L) in coP satisfies or : c,r, then
ot pr r : r,r pt, but this leads to a p -- c,l as proved
in the previous case of family B. However, as
a p * a in (C), it is concluded that c,rp' (1 -< i <
p-L)cannotsatisfy @r: @. As r,rpier: apure,it
will be immediately concluded that os pie (1 < i <
2 -1) in c,rE cannot satisfy er : @. On the other
hand, ol satisfies @r : @ by assumption, and
because @er : @re : ee, ee also satisfies
@r : @. Q.E.D. Therefore the number zc of
equivalence classes in this family is equal to
half the number of such elements that satisfy
both arr : co and ose * a. Then the number of
elements that satisfy @r : e is 6(e-l)/2 because
or is determined by its first (p - 1) 12 a1's as in
the previous case of famrly B and each of such
d; s c?rr have choice among six numbers, 0, I,2,
3, 4 and 5. Then the set of these 6(e-1)12 elements
includes /rr elements of family B and one ele-
ment of family A. Hence the total number of
such elements that satisfy both or : co and
ue 1 a is 6(?-1)/2 - tua - | : 6@-t)rz -
2@-1)t2. As rc is half this number, n" : (Yd,)

{6(r-r)tz - 2@-1)12\.

Family D
Exactly the same argument holds in this case

as in the previous case of family C when orz :
co is replaced by osre : co, and the number rer of
equivalence classes in this family is given by zo
:  (%) {6o-or , -  2@-L)t21.

Farnilg E
Let the set of all elements that satisfy r,re :

or be Q'. Then kr e : (a fl2. ., o ;.. . a o -e n) 6)', each
of ap is either 0 or 3. Hence, the total number
of elements in Q' is 2e-1 because one of the p
numbers Qb Qz, . . , , anh c'l is determined from
the rest by (2), and each of the remaining 2-1
numbers can have the alternative of 0 or 3. All
the elements of classes in families A and B are
contained in Q'because (A) and (B) have c're :
cr in common with o'. Hence, the number of
those elements in Q' that are contained in clas-
ses of family E is Ze-t - P X /ta - I, and be-
cause 2p of these elements form a class, the
number ar of equivalence classes in family E is
given by nt : (L/zD l2o-' - f X nB - 1l :
(r/2il l2e-t - p X2@-t)t2 + p - t l.

Family F
The total number of elements in o is 6"-l

because one of the l numbers in co is determined
from the rest by (2) and each of the remaining
p-\ numbers can have choice among six
numbers, O, L,2,3, 4 and 5. As all the elements
in classes of families A, B, C, D, E and F con-
stitute Q and because I l/ I : 48, the number
ar of classes in family F is given by np :
(12il 16,-, - 2p(nz t nn * nd - f X. ns -

i^1 : (zD 116'-, - 2o-'l - 2p[6{n-rtrz -
2@-rrt217.

We have thus completed all the procedures of
(.I/) and now reached the theorem that gives
the total number of equivalence classes in o:

Theorem 2: The total number zs(2) of equi-
valence classes in a is given by ns(p) : nn 4
nB * nc + nD + 14r * 14r, whete ne .: .L, kB
: 2@-t)t2 - 7, ltc : /t,o : (.y)l6(e-1)t2 -

2,,-t)pl n" : (Yzil l2o-' - 0 x'z@-t)t, *
, - 1l and nr : (%P) lI6e-L - ze-tl
2pl6tn-1lrz - 2@-L)tzll. Hence the total number
of polytypes

n's@) : t!t\?) =n": (%P) {6rr * (2P) X 6@-t)t2
l - 2 o - i - 2 p - 2 1 .  ( 1 2 )

Note here that y' is greater than 4.
To derive the above theorem, it was assumed

that any two adjacent layers in mica polytypes
are stacked together with a relative rotation of
one of the multiples of 60o, which is a digit in
the sonary representation. However, in natural
micas the rotation is usually by one of 0", 120",
and 240'. For these, therefore, it should be
assumed lhat a;s in cu can take the values of.0,2
and. 4, by which the stacking sequence can be
expressed by a number in the ternary repre-
sentation. For tl,is case those procedures in
steps (I) and (II) will be considerably simplified
because the relation ae : c') cannot hold in this
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TABLE 'I. NUMBERS OF DISTINCT MICA POLYTYPES
FOR GIVEN LAYER NUMBERS (N) IN THE TERNARY

REPRESENTATION (BASE 3)

TABLE 2. NUI4BERS OF DTSTINCT IIIICA POLYTYPES FOR GIVEN LAYER
NUMER5 (N) IN THE SENARY REPRESENTAT]ON (BAsE 6)

I

6
zo
6J

402
1 776
I 2"12

47 3l l
254 721'I 378 142

7 574 768
41 884 605

'I

4

6
7

9'10

l 1
12
1 3't4
'15
'16

1 7
I8
l 9
20

29
3 l
37
4I

47
53

6l

'l

1
2
4
8'lB

39
94

222
572

I 463
3 934'10 584

29 211
BO BO8

226 430
636 320'I 
800 318

5 't07 479

1
2

4
5
6

B
9'10

1 l
1 2
I J

l 4
1 5'16

1 7
t 6

t 9
20
. J
a 3
? l

37
4t
43
47

59
6 t

?
?

41 487 751 175
t'I 

336 320 261 618
'l 

430 670 875 381 804
52 939 157 060 432 805 605

1 78? 854 191 531 337 908 752
69 692 059 449 3l] 155 754 627 625

8t 509 |3 041 731 913 865 429 529 075
2 797 847 694 176 606 471 071 811 477 694

3 317 413 963 852 624 100 552 130 498 223 256
]37 255 3ll 267 601 444 345 446 666 542 784 075 505

5 752 551 551 399 394 713 921 759 959 900 326 815 503 238
Number of 45 flqur€s

type 9,f sequence. The final result corresponding
to tlis case of the ternary representation G
given by

nb@) : (YaD ltu-L * (2p) x3(J,-t)tz

34"t 187 047
197 216 ]19 544'I 660 4t9 530 055

I  014 t53 134 906 lB4
74 't32 't08 

201 056 400
636 ' t 56  9 lB  785  48 t  015

47 143 287 917 563 616 5't9
30 476 801 365 547 693 758 lB4'19 958 172 445 992 979 743 434 999
Number of 27 figures

(4) in (I), equation (2) must be replaced by the
condition that co + ([ ... 11), 2Il being ex-
cluded from the beginning. Because the cases of
SiC carr be interpreted as always satisfying c,re
: c!,, only families A, B andE will be present in
Theorem 1.

After Theorem 1 we shall depart from the
thread of argument grven to mica polytypes and
resort to a method much simpler than that des-
cribed in the previous section. When the con-
dition of 'no two 1s being adjacent' is imposed,
the sequence of p numbers, each of which is
either 0 or 1, is equivalent to the well-known
sequence called a PM sequence (sequence of
plus and minus signs) (Berman &Fryer IgZ2),
which is a typical Fibonacci sequence. Let the
total number of sequences witJr p numbers be
J@; J@) : I@-1) + f(p-z) holds. As J(1): 2 and J(2) : 3, if the mth number in the
standard Fibonacci sequence, 1, I, 2, 3, 5, . . . . is
denoted by F(m), f(p) : F(p+2). On the other
hand becaus€ dr €uld an cannot be L at the same
time, those sequences with a, : 1, az : 0, ae-t
: 0 and ae : L must be excluded from/(p). The
numberof suchsequences isf@-Q : F(p-2).
Hence the total number lo I of possible se-
quences is

l o l  :4 ( ,  +2 )  -  F (p  -2 )  :  F@ +r )  +
F(p) - lF(p) - F(p - Dl : r@ + 1) +
F(p - t).The number la I consists of elemenrc
of classes of family E, those of classes of family
B, and (00 . . . 00) of family A. The number of
classes whose elements are left invariant by

operation{,0)s : r,r, is given * ,("t)

- 2p - r l , (13)

withp greater than 4.
In Tables I and 2, numbers of distinct mica

polytypes are listed for given layer-numbers. In
these tables the numbers of polytypes in the
tgrnary and senary representations, up to 19 and
L2 layers, respectively, have been generated by
computer, and those polytypes with a layer-
number larger tJran the above are the results of
calculations according to (12) and (13).

ENuvrsnarroN oF ,-LAvBn SrC poryrwns

_ Let us express p-layer SiC polytypes also by
(1), in which each of the numbers as is either b
9r 1 in the binary representation. Initead of (2),
however, the condition of 'no two Ls being ad-
jacent'holds for SiC. Equations (3), (4) and (b)
apply to SiC but in (6) A, : a; for allr, that is, e
is not symbol-differentiating for the present
case and should accordingly be deleted. There-
fore, the equations in (10) are trivial and the
latter two rows in (11) should be omitted. In
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: ,  (p  -  L  *  r \  :  
" ( ,  

J  t ) ,  be -  _  o  / , ' ' r+a \: r1 -1 - t " ) : " \2  l - , . " ,  _ , \  z  ) -z 'nu '
cause each of such classes is determined when wnei ry is ev6n, (16)
azt aat . . . , a(e+rtlz are given, Fth 91 Td ao --r
feing'necessariii Zero. Hence, when,the layer- anct

;umilt i. u pii*e larger than 2,.the number %v,z* : (1/2/0 lr(N + 2) - r(N - 2)

no(f) of possible SiC polytypes (always in a - N X nN,N - 2'(l X nut

;it#v ;":iies*6fi*l wilue eiv"n as 1- 2t x nt,zil, Q7)

nB(b) : (%p) lF\p f 1) +.F.(, - -1) whers 21,;.expresses the number of sequences
. |  ^ I 'b is\  

- ,  
I  ; i th;p6i ' ioa-otf  layersandhavingjdist inct

-P  <F lT )  - ' f  
rep t "sent t t ionsandstar tsw i thzr ' r  :  l '  n1 'z

t \ 
/" ' 'ot 

' ---o' 
*" - 1 and non :0' tr'(&) r; the eth

- 1l  +r (p:"  )  -  t  
"ornb"i ' l r  

the Fibonaccisequence' 1,Lt2,3.,
\ z / - il':.;t>' means a summition over all such

: (%) 
,{.oPir 

r) + F(' - 1) 
ritttutEiuia" N,i.;::I/i,witht * ^\t

+ bF (P-+) - O - I l, (14)'- itt futt" 3, numbers of distinct S1C polvtvpes

\ 2 / foibven layer-numbers are listed. The numbers

neither3Cnor ZHbengcountedinit. oitittu pofytyp* rpere derived according to

As far as sic porvtvfti"riliei6e Lndition of (*i' 1t-s1,qu) ina trO' and those with N up to
'no two ls being adjacent' are concerned, oJi 43 were also generated by computer and con-

have lately succeeded in solving tt" proUt"*li fittn"a io"oi"Eide with the above results of cal-

their enumeration for ;;6;;;ilfri benote culations'

the total number of N-layer SiC polytypes by
za(AD. Then CoNcLUsroN

nn(I,J) : nN,N * %N,zN, (15) The present mathematical treatment leads

/^' ' 2 \ to the same numbers of distinct polytypes for
^  t l v  t . l

nN,N : r t---=-l - >'nr,, iuy"r-oumb.rN up to 5 inthesenary.case, and'*"- 
-- \ . : I 

- 
i;;-iv ;p to 7 in ih" t"roury one' as in earlier'

when N is odd, and more diiect treatments by Ross et al. (L966),

TABLE 3. Nut{BERs 0F DI5TINST sic PSLYTYPE5 FgR GIyEN uvrn- and for N up to.8 (senary) and for N up to 10- - 
G;;t, reJpectiveiy, as-in a computer simula-

NUMBERS (N) 
tion by Takeda tlgl'l' The numbe'rs of mica

! ! polytypes generated by computer wrth our lm-

I I 3i 4s aE itovdd progr-am for tlie senary case-agree with

2 | 32 22131 
'tG1si"9ti 

by our formulae for N up to 11

3 I 33 l?q q?i and foi the ternary one for-N-up to.19'
4 r 31 199 :19 

*'i"- 

"ti"r 
to make practical application of

Z i 3? 
'ft|9i6 

tn"t" tourtt' ttt" "ohirtte 
set -of 

-a-tisting 
ot

1 4 3i 291 *? td;p;;tfi; mica polvtvltgs fo1 N = 5 and 6 is

3 ; 33 I li!;A; uuuiiitr"' at u''ooittiout charge' from the
l0 .10 40 ? qqq iil o"p"'it",'y of -Unprrblished.Data, CISTI, Na-

li ;3 iL i i?l lB3 tioial Research- council of canada' ottawa'
i3 io i3 1! ?ql l?9 canada, KlA os2.
i4 43 44 ll ryl' r 56045 r t *d l t r t r - -w "6 "1 "ye . ' t f r a t t he t rea tmen ts l ead ing to
t6 er 46 $ qqq li? Theorem 2 in this paper will_ be successfully ap
17 t3z ql 797,\2?17 oti.O to all variations of polytype provided ap-

ig LBI i3 ii?8lilii ;'';;"-;"i^['p'"t"*""i.q1 .to"-meanins or
zit 440 60 ?ql ry 9* ioni" of the quantities in this theory are intro-

tt ., 331 ;] .' iliili 6i[ il;, if A;y ui" r"qoi'"d ar a'.
i l  I  509 59 l8 ' l3o 295 895
24 2 328 61 qq 9gq qq? 054
25 3 542 67 750 014 690 474 REFERENCES
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