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ABsrRAcr

Two complementary approaches to the study
of crystallography, morphology (B) alrd structuro
(,5), are related by a transformation operator (?);
B = T(S). Definine the inverse magnitude of a
plane by its distance h from a c€trtral point (Wulff s
point), and setting fta = L/dfr where 4 is the
interplanar spacing of the ith plane (hkl) and F.r
its structure factor, tle smallest plane polyhedra
about the Wulff point are desipated lilulft zones.
For all structure factors equal, the Wulff zones
reduce to the first Brillouin zones of the physrcists.
For structure factors calculated for space-group
equipoints, the Wulff zones reduce to polyhedra
designated as Donnay-Harker zones because the
serial order of their bounding planes is tlat given
by the Donnay-Harker generalization of the law
of Bravais. As tle transformation is independeot
of physical or mineralogical theory, the form of
the Wulff zones is determined by the physical or
mineralogical assumptions employed in the cal-
culations of the structure factors Fr. The computer
has been used to model general and reduced zones
for FCC, BCC diamond and barite periodic arrays'
the lafter with the assumption tlat the specific sur-
face energies ot of Wulffs theorem may be derived
from the statistical persistences of the faces in
natural occurrence.

Sovnvrenp

La morphologie (B) eX la structure (S) constituent
deux voies d'accds d l'6tude du cristal; elles sont
reli6es par un op6rateur de transformation' (T):
B - 7(S). Si l'on d6finit I'inverse de la grandeur
d'un plan par la distance h7 de ce plan b un point
central C)oint de Wulff) et qu'on pose /rr = L/dFo'
oi dr est f6quidistance r6ticulaire du ir"-u platr
(hkl) et Fi son facteur de structure, les polyBdres
1es plus petits centr6s au point de Wulff sont les
zones de Wulff. A facteurs de structure 6gaux, ces
zones se ramdnent aux premidres zones de Brillouin.
Lorsque les facteurs de structure sont calcul6s pour
des positions de points homologues du groupe. spa-
tial, les zones de Wulff se r6duisent I des polyddres
dits zones de Donnay-Harker parce que le nu-
m6ro d'ordre des plans qui les limitent est celui
que donne la premitsre g6n6ralisation (Donnay-
Harker) de la loi de Bravais. Comme la transfor'
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mation ne d6pend d'aucune thdorie physique ou
min6ralogique, la forme des zones est d6terminee
par bs flpothdses physiques ou min6ralogiques qrr
bnt pr6siO6 au calcul des facteurs de strueture. F{'
L'oriinateur fournit des moddles de zones, 96o6-
rales ou r6duites, pour quaho distributions p6riodi
ques: cF (c.f.c.), cI (c.m.c), D (diamant)-et bary'
tine, cette dernidre dans I'hypothdse que. les ener-
giei sp6cifiques superficielles da du th6orbme - de
fuufff 

'peuvent 
se d6duire de la persistance statisti-

que des faces cristallines naturelles.' 
Cfraduit Par la R6daction)

INTRoDUcTIoN

Paradoxes inherent in the quantum approach
to the physical chemistry of solids are reson'
ciled inlarge part though the principle-of com-
plementarif. 

- 
The systemic morphology of

"ry.t"ttogtu-phically 
symmetrical polyhedra and

bv contrast. what Friedel has designated the
reticular hypothesis (crystal-structure analysis)
are also' complementary conceptual approacnes
that between them have given rise to modern
mineralogical crystallography. Both members
of the couple are valid systemic analyses ot the
mineral kingdom, although until the discgyep
of X-ray diffraction in 1912, little could be
done wiih structuresl since 1912 there has been
a decline in interest in morphology.

The crystallographic dichotomy is, however,
indirectly 

-related 
to the continuity-discoltinuity

or the wave-particle duality for which the prin-

ciple of complementarity was originally proposed
by Niels Bohr in 1928, "A complete rlescnp-tlon

oi observable phenomena requires that these
concepts be employed in turn," de Broglie wrote
of thi quanturi contradiction, 'obut 

.. ' ' thgse
concepts- neYertheless are in a sense irreconcila-
ble, the images that they furnish never being
simultaneously applicable in toto to a descrlp-
tion of reality" (tfS:, p. 18). The first nlathe-

maticat expression foi tne complementarity of

matter *aithe de Broglie equation (lt = h/mv)
expressing the equivalence of the lengtF- of a
wa:ve to ihe masJ and velocity of a particle'

There is a long history of attempts to- deter-
mine similar transformations between the ex'
ternal forms and internal periodicity of crystals'
VfoA"to theory began with the work of Bravars,
established by Friedel as a law of nature'
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The lattice assigned to a particular mineral
species must be ". . . the one which assigns to
the various possible faces of the crystal reticular
densities whose decreasing series represents as
accurately as possible the decreasing series of
ease of production, either naturally (through
crystallization) or artificially (through cleavage)
of these same faces" (Bravais 1851).

The translation of this hypothesis of min-
eralogy of Bravais into a formal mathematical
relationship analogous to the de Broglie equa-
tion for the wave-particle duality is the prob-
lem posed in this paper. Bravais recognized at
the outset that his lattices were degenerate
modes of a more complex strucfure; his lattices
were "the relative arrangements of the centres
of gravity of the molecules of crystalline bod-
ies." The complexities of crystal morphology
provided the evidence for this. The problem of
the complementarity relationship is therefore a
more general one than that of a relationship
between morphology and lattice alone. It is the
problem of the relationship of the fully-detailed
structure to the associated polyhedral morpho-
logy. This mathematical problem should be
clearly distinguished from related problems of
natural science such as the problem of the
equilibrium form of a crystal, or the manifold
problems of crystal growth, or even the Bravais
problem of determining the lattice from the
morphology of the species. Crystallography rec-
ognizes two systems of mathematical analysis,
morphological and structural. What is the
equivalence relationship between the two? This
paper is concerned with the determination of a
consistent relationship between three-dimen-
sionally periodic arrays and crystallographic
polyhedra. The extent to which such relation-
ships are to be found in nature is a more dif-
ficult question which will be addressed in the
future.

DpnrverroN on Corvrpr,rMENTARITy RalettoN
In the simplest version, the problem is to

find the polyhedra complementary to the Bravais
Iattices. This problem was posed by Brillouin
in 1931 and the polyhedra designated as Bril-
louin zones by Mott & Jones (1,936). To avoid
confusion with the physics literature, the com-
plementary zones will hereafter be designated
by the name(s) of the author(s) proposing the
manner of determination, i.e., the designation
Brillouin zone for those polyhedra comple-
mentary to the Bravais lattises.

The Brillouin zones are found bv the follow-
ing method: determine the structuie factors for
the reciprocal lattice planes of lowest Miller
indices excluding any planes for which the

structure factor is 0, and for the remainder, cal-
culate the normal distances from the origin one
half the vector from the origin to the reciprocal
Iattice point. The smallest polyhedron about the
origin is the Brillouin zone (Mott & Jones 1936).

The extension of the Bravais law by Donnay
& Harker (1937a,b) was a genelalization to cover
the repetitions of the rnotifs of space-group
theory (equipoints) as well as the noda,l points
of the Bravais lattice (identipoints). In the ori-
ginal Donnay-Harker statement, face indices
in the equations for the calculation of reticular
densities are replaced by the multiple indices
of the lowest order of X-ray reflection com-
patible with the space-group symmetry (Donnay
& Harker I937b). Using the method for the
determination of the Brillouin zones, structure
factors of the planes of lowest Miller indices
are calculated for the assemblage of equipoints
of the space group as distinct from the identi-
points of the lattice. The structure factors for
additional planes of low indices will vanish
(space-group extinctions).

Structure factors for the planes of primitive
lattices are all non-zero. Structure factors for
other than primitive lattices, termed lattices
with basis by physicists, are 0 for planes for
which the interplanar spacings are halved. In
the same way, structure factors for planes for
which the interplanar spacings are divided by
space-group translations may also cancel. In
this case the magnitude associated with the reci-
procal lattice points for the planes in question is
0. The planes must vanish and the zone is
changed accordingly.

For example the lattice for the diamond
structure is Fcc, face-centred cubic, for which
the appropriate Brillouin zone is constructed
of the (111) and (200) forms, the cuboctahedron
of Figure 1. But the space-group symmetry is
Fd3m. With the d glide, the structure factor
for (200) vanishes and the zone for the diamond
structure is therefore the octahedron (111)
alone. Mott & Jones (1936) give the rhombic
dodecahedron Q20) (Fie. 2) f.or the Brillouin
zone of the diamond structure because the
structure factor of (111) is sharply reduced and
they have defined their zones in part physically.
The octahedron (111) about the origin of the
reciprocal lattice is smaller than the dodecahe-
dron (220) and the octahedron planes albne
bound the smallest polyhedron with structure
factor )0. If we are to be consistent, the Bril-
louin zone for the diamond lattice F would
remain the cuboctahedron of Figure l, whereas
the octahedron alone (Fig. 3) would be desig-
nated the Donnay-Harker zone for the diamond
equipoint assemblage with space group Fd3m.
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The Donnay-Harker generalization of the law
of Bravais was presented as a law of nature
and with its introduction, minor but embarras-
sing departures from the serialization of forms
of the Bravais law were explained. The final
generalization is to extend ttre analysis to tle
details of the motif. This was done in part by
Niggli (1919), Donnay & Harker (1937b), Wells
(1,946), Buerger (1947), Donnay & Donnay
(L96I a, b, c; 1962) and in detail by Mclachlan
(1952, 1.977) and Scbneer (1968, I97O).
The equation for the structure factor is:
Enr"t = 2fpxp(i6), where $1 - 2rr(bxt *
k* * tzi. The summation is taken over the j
components of the unit cell with each com-
ponent assigned a specific magnitude fi. For
the Brillouin zones and for the Donnay-Harker
zoneso the fi are specific to identipoints and
equipoints, respectively. The fi are therefore
constant and equal. But in the general case,
Ihe 11 arc functions of the specific cell com-
ponents such as particular atoms, ions, neuftons
or electrons. The scattering factors for the
atoms in diffraction cornputations are an exam-
ple. For the general case then, the fi functions
express the influence of the motif. The Bril-
louin zones express the effect of the Bravais
translations, the Donnay-Harker zones, the ef-
fect of the space-group operations. Symmetry
(and cell constants) alone determine the Bril-
louin and Donnay-Harker zones; these are
therefore topologically alike for all mineral
species of the same symmetry. The Wulff zones
are the morphology of a mineral species and in-
clude expression of the individuality of the
motif. Beyond this, specimens of the same
species are also different. Their individuality,
the particular, unique morphology of speci-
mens of the same species, is a record of their
conditions and history of growth, unique to
every specimen.

The zones discussed above are the first zones,
the smallest polyhedra about the origin of the
reciprocal lattice. Zones of indefinitely higher
order are taken by considering the next largest
polyhedron formed about the origin by bound-
ing planes of non-zero structure factors, the
next largest, and so on. The relationship dis-
cussed above, namely the transform (?) from
the structure to the zone (B) may be expressed
as: B = ?(S). This in turn may be reversed by
Fourier synthesis. The planes of the zones are
the points of the reciprocal lattice. If a suffi-
cient number of appropriately weighted points
are used, the Fourier transform of the weighted
reciprocal lattice is the crystal structure (Schneer
1968).

Flc. 1. The first Brillouin zone for the face-centred
cubic lattice (F). Two-dimensional stereographic
projection is by computer.

Frc. 2. The first Brillouin zone for the body-centred
cubic lattice (/), or second zone for (F).

Frc. 3. The Donnay-Harker zone for the diamond
structure, Fd3m. The (200) of Figure I is can-
celled by the diamond glide d leaving the (111).

General zones

In the rule for the construction of the Br'il-
louin zones, distances from the origin to the
bounding planes were calculated solely on the
basis of geometry, all distances being equal to
Vz tlie reciprocal of dun, the interplanar spac-
ings of the direct lattice. As the lattice points
are identipoints, the coefficients for the struc-
ture factors are equal and all structure factors
are either finite and equal or 0. As noted above
in the case of diamond, the structure factors
computed from the equipoints of the space
group are no longer equal although the coeffi-
cients li for the structure factors remain the
same. The problem is the same as that of the
intensity of X-ray diffraction. Only tle lattice
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will determine the possible planes of diffraction
(reciprocal lattice points); for the primitive
lattices, these will be the points with indices
given by all possible permutations of the in-
tegers, positive, negative and 0. The structure
factors for all such lattices (identipoints) are
non-zero. For the non-primitive lattices (attices
with basis) the planes of possible diffraction are
shalply limited: those with (h, + F .1- fi = 2n
are allowed for body-centred lattices, for exam-
ple, with all others cancelled. If the sum of the
squares is odd the structure factors for body-
centred lattices are 0.

In addition to the rules for finding the planes
having lattice extinctions, rules also exist for
the determination of planes with structure fac-
tors cancelled by the space-group operations.
But what is the situation for planes with struc-
ture factors that approach 0 but are not 0?
These rules do not distinguish between mag-
nitudes of structure factors but onlv between
0 and non-zero. If the coeffisients t used in
the calculation of the structure factors ale not
all equal the structure factor for a given plane,
such as the (100) of the primitive cube, for
example, could vary from 0 to l,tr At 0, the
face vanishes from the Brillouin zone, nolr
transformed from cube to rhombic dodecahe-
dron.

In the case of B-brass, AtZn, the disordered
alloy has the structure of the body-centred cube,
with Cu and Zn distributed randomlv at corners
and centres of a cubic lattice. With ordering,
there is a separation so that the probability of
finding a C\r in one of the two positions varies
quasi-continuously from 0.5 to 1 whereas the
probability of finding it in the other position
varies concomitantly from 0.5 to 0. In the
state of complete order, as the probability of
finding copper in the two positions reaches L
and 0, the structure is wholly primitive cubic
with a CuZn motif (Pm3m). The zone is tbere-
fore a cube. fn the state of complete disorder
with probabilities for At = Zn = 0.5 in both
positions, the structure is Im3m. At all inter-
mediate stages it is Pm3m as the positions are
distinguishable. The structure factor coefficients
foo-,. orrd fce't* or9 directly proportional to the
order parameters.

As we are defining a general zone, the prob-
lem is purely mathematical and considerations
of natural history or phy$ics are not involved.
The function we are seeking is that of the mag-
nitude of the plane. Such a function was pro-
posed by Wulff (1901). From a centre point
designated the Wulff point (origin), poles called
Wulff vectors are drawn to the faces of the
crystal (toward the points of the reciprocal
lattice). For the lengths of the Wulff vecton
hr and a set of specific surface magnitudes
qz (Wulff used specific surface energies) and for
a given volume, 2c.r/h is minimum when

6 1  c z  q - g - : . . , : c .-T-V; :n,

This minimum polyhedron has the properties
desired for the general zones. To be consistent
these should be referred to as Wulfl zones, Let
the magnitude for the reciprocal lattice point
i be designated as cr and defined as a function
of the structure factor Fr. For these equations
to hold, the Wulff vestors la or poles to the
faces from the Wulff point are set equal to the
reciprocals of the product of the interplanar
spacings and structure factors: hr = d.Er,

To construct the Wulff zone, planes per-
pendicular to the lines from the origin to the
points of the reciprocal lattice are constructed
at distances proportional to half the ftt. This
construction has the properties desired, in that
tor deFJk = dnFn/hn - duFr/hj = . . . :
d"F"/h' - 2C; >dFJht is a minimum.

The fastor of 
otwo 

on the right-hand side of
this equation is entered to bring the expression
hr = L/dFr into agteement with the Brillouin
zone construction. For the Brillouin zones,
Ft = Fu. The distance l/ h of. a plane from the
origin of the reciprocal lattice is I/2d+ or Vz
the vector to the lattice point, as in the Bril-
louin-Jones constructions above.

For the Donnay-Harker zones, the non-zero
structure factors may no longer be equal. The
general lWutff) zone for the diamond structure
is the octahedron (1 11) with polar distance
0.306, faceted by the rhombic dodecahedron
Q20) with polar distance 0.354 (Fig.  ).

- The problem of finding a general zone is CoNcr,usroN
therefore that of determining a morphology
that in the example above would expiess t[L In the preceding pages the construction of
diminishing magnitude of the cube relative to crystallographically symmetrical polyhedra com-
the dodecahedron as the structure factor F(100) plementary-to the Bravais lattices,-called Bril-
approaches 0 and conversely the diminishing louin zones, and the construction of the com-
importance of the dodecahedron, which would plements of the equipoint assemblages of the
vanish as F(100) approaches F(100)-*. space groups, here ieferred to as the Donnay-



Harker zones, has been demonstrated. For the
general case of the three-dimensionally periodic
repetition of a motif of components with ef-
fective magnitudes fr, a construction of com-
plementary polyhedra here referred to as Wulff
zones was derived from Wulffs theorem and
the Brillouin zone theory. In the simple case of
the Bravais lattices the Wulff zones were shown
to degenerate to the Brillouin zones. The Wulff
zones for the equipoint assemblages modify the
Donnay-Harker zones as defined sensu stricto.
Finally, the Wulff zones were shown to conform
to the requirements of IVulffs theorem: by
weighting each surface with a specific surface
magnitude cran the total surface magnitude be:
comes a minimum when at/h"t = cu/hu = c
(von Laue 1943). The agreement (or lack of it)
between the morphologies of real crystals and
the zone complements of their structures re-
mains to be demonstrated.

The empirical verification of the Bravais and
Donnay-Harker laws and the modification of
the serial order of reticular densities by struc-
ture-factor calculations has been discussed in
detail by Mallard (1879), Friedel (1904, Lgll),
Baumhauer (1904), Fedorov (1920, Ungemach
(1934), Niggli (194L), Braun (1932), Wells
(1946), Buerger (1947), Donnay & Donnay
(L96la, b, c; 1962) and Phillips (1946) among
others. The extent to which the morphology of
natural crystals conforms to the zones comple-
mentary to their structures should be the object
of future investigation. It is suffisient to point
out here that the rationale for such conformity
lies in equating the oa of Wulffs theorem with
the product diFd above (Mclachlan 1952 and
in Schneer 1977; Schneer 1968) deriving in turn
fron the assumption of Bravais in 1851 that
the interplanar bonds should be inverse func-
tions of the interplanar distanses. Barite, BaSOn,
may be used as an example of the determination
of Wulff zones 'for more complex structures.
The writer has made use of computer graphics.
For comparison with the Brillouin zone (Fig. 5)
a modified Wulff zone has been constructed
(Fig. 6) using the first ten most frequently ob-
served forms 0O2,200, OLl., 21O,020, 2lI, l0I,
4IO, 702 and 111 (Friedel 1904; Braun L932;
Schneer 1970, Table 1). The planes as shown
are plotted with Wulff vectors h determined
from structure factors calculated from the ob-
served frequencies of occurrence (P) of the
faces, i,e., observed structure factors (Schneer
l97O): F+ = ln Pt/ mt where mr is the multi-
plicity factor. Of the first ten faces, all those
which would have been eliminated because of
the greater strucfure factors of intersecting
faces have been retained as facets with h 3Vo
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Ftc. 4. The Wulff zone for the diamond structur€.
The forms (111) and Q20) are constructed at
distances from the Wulff point inversely propor-
tional to the product of their interplanar spacings
and structure factors. The structure factors are
calculated for the 8 carbon atoms of the unit
cell.

Frc. 5. The first Brillouin zone, for barite, BaSOa,
P nm a; a : b : c : : 1.627 : | : 1.3 ll ; Z - 4. lf. constructed
with structure factors from penistences, the pina-
coid (001) is slightly larger in proportion; other-
wise the zone is unchanged.

Frc. 6. The Wulff zone for barite with empirical
structure factors for the ten planes of greatest
persistence. Planes that vould have been elimin-
ated are shown as minor facets; these are (211),
(002), (102) and (111).

less than the values at which the fases would
have disappeared. The relation h = tldFr de-
fines the transform operator ? from the struc-
ture to the zone. Figure 6 may be regarded as
a graphic expression of Braun's data for barite
morphology, or alternatively as the mean (not
modal) average barite crystal. It is clear that
the Wulff zone will vary according to the pro-
portionate values of the strucfure factors Fr and
that these in turn will depend upon the coef-

MORPHOLOGICAL COMPLEMENTS OF CRYSTAL STRUCTURBS
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ficients used for the components of the struc-
ture and upon the means by which they enter
into the determination of the structure factors
Fu
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