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ABSTRACT

The morphology of forsterite (Mg,SiO,) is
predicted from the crystal structure by quantitative
computations of surface energies. Olivines -with
different compositions will show only small mor-
phological variations. For F faces the attachment
energies are computed in an electrostatic point-
charge model. This is done for three ionic
models: Si**—02, Sj2*-0'% and Si®~O%, representing
increasing covalency of the Si—-O bonds and in-
creasing amount of preformed SiO, tetrahedra.
From the attachment energies, taken proportional
to the growth velocities, the growth forms for
the ionic models are constructed; the resulting
habit is always elongated along the ¢ axis and
slightly tabular on (010). Only small differences
in the relative morphological importances of the
forms {010}, {110}, {120}, {021}, {001}, {101} and
{111} could be observed for the different charge
models. The attachment energies computed from
Coulomb interactions are considerably reduced
when the short-range Born repulsive energies are
taken into account. Equilibrium forms are con-
structed from specific surface energies. As the oli-
vine structure is not completely ionic, the morpholo-
gy has also been computed for a covalent model:
it differs from that of the ionic models by the
absence of the {111} and {120} forms. The statisti-
cal average morphology observed on natural and
artificial crystals lies betweén the morphologies
calculated for the covalent model on the one hand
and the ionic Si**—0*% and Si®-O' models on the
other.

SOMMAIRE
On prédit la morphologie de la forsterite Mg,SiO,

a partir de la structure cristalline par le calcul
quantitatif des énergies superficielles. Des olivines
de compositions différentes ne montreront que de
faibles variations morphologiques. L’énergie d’atta-
che des faces F a été calculée dans un modele
électrostatique & charges ponctuelles. Ces calculs
ont été effectués pour une série de trois modéles
ioniques Si**—0?%, Si?*—0'%- et Si°-O'", représentant
un accroissement de la covalence des liaisons Si—O
et du nombre des tétraédres SiO, préformés. A par-
tir d’énergies d’attache, supposées proportionnelles
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aux vitesses de croissance, on construit les formes
de croissance pour les modéles ioniques; le facids
correspondant est toujours allongé suivant ¢, 1égé-
rement tabulaire sur (010). Les différents modeles
de charges ne produisent guére de différence dans
I'importance morphologique relative des formes
{010}, {110}, {120}, {021}, {001}, {101} et {111},
Les énergies d’attache calculées A partir des interac-
tions Coulombiques diminuent fortement lorsqu’on
prend en considération les énergies répulsives de
Born & courte distance. On construit ensuite les
formes d’équilibre & partir des énergies superfi-
cielles. La structure de 'olivine n’étant pas enticre-
ment ionique, sa morphologie a aussi été calculée
pour un modéle covalent : ainsi établie, elle différe
de celle des modéles iomiques par l’absence des
formes {111} et {120}. La morphologiec moyenne
statistique, observée sur cristaux naturels et synthé-
tiques, se situe & mi-chemin entre les morphologies
calculées pour le modéle covalent d’'une part et les
modeles ioniques (Si2+—O'% et Si®~0') d’autre part.

(Traduit par la Rédaction)

INTRODUCTION

Olivine is a mineral with a highly variable
morphology as has been discussed by Gold-
schmidt (1920), Hintze (1897), Kalb & Koch
(1929), Niggli (1927), Niggli & Faesy (1921),
Soellner (1911), Zambonini (1900, 1905) and
more recently by Bautsch et al. (1971), Fleet
(1975) and Donaldson (1976). On polyhedral
crystals the most commonly observed mor-
phology comprises the forms: {010}, {110},
{021}, {101}, {001}, {111} and {120}. All these
crystal forms are F faces (faces parallel to at
least two PBCs: °t Hart 1978). Generally the
habit is more or less tabular parallel to the (010)
face and elongate along the ¢ axis. Atom configu-
rations in the growth layers parallel to these F
faces, discussed in Part I ('t Hart 1978), are
the basis for the computations of surface ener-
gies in this paper.

Using the Hartman—Perdok theory, the mor-
phology of crystals from nature or laboratory
can be related to structure (Hartman 1973). If
observed and predicted morphologies conflict,
then this can usually be attributed to special con-
ditions. Concerning these conditions, a few
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remarks must be made. Crystal habit is strongly
affected by degree of supercooling and cooling
rate (Donaldson 1976); polyhedral crystals as
predicted in this paper may only be expected
when these variables are small. The influence of
pressure (Abu-Eid & Burns 1976) and of the
density and orientations of dislocations can be
neglected. Little is known about the influence of
impurities on olivine morphology. Kalb & Koch
(1929) have tried to attribute the different mor-
phologies to different kind of rocks. However,
in going from one rock to another, not only
does chemical composition change, but other
variables do as well.

We neglect the parameters mentioned above,
or assume that they are equal for all crystal
faces, whereas growth velocity is assumed to be
proportional to the attachment energy (Hart-
man 1956, 1973). This assumption is only ap-
plicable to polyhedral crystals. The attachment
energy is the energy released per molecule when
a new slice dus (a growth layer with thickness
dw, where hkl satisfies the extinction conditions
of the space group) is attached to a crystal face.

The bonds in forsterite are neither purely
ionic nor purely covalent. For Mg—O bonds the
effective charges are reduced somewhat due to
non-Coulombic forces, but for Si~O bonds this
effect is considerably higher. For 8-SiO: Slaugh-
ter (1966) computed a covalency of 49% . We
may also assume a covalency of about 50% for
the Si—O bonds in the olivine structure because
they have nearly the same length as in g-SiO..
To determine the influence of increasing cova-
lency, the crystal morphology of forsterite has
been computed for different point-charge models
with the following charges on Si and O: Si**-O*
Si**—0'% and Si’-O%. This indicates the order
of increasing covalency of the Si—O bonds. The
crystallizing particles are assumed to be Si0s*
complexes and Mg>* ions.

The morphology for a broken-bond model
has also been computed to examine the influence
of increasing covalency on all bonds present.
In such a model, it is assumed that interaction
only occurs between atoms in the first coordina-
tion sphere. The computation of attachment
energies in a broken-bond model involves sum-
mation of the strengths of all those bonds that
will be found per molecule when a new slice is
attached to a crystal face. This model is consi-
dered as completely covalent. The differences
between the covalent, partly ionic and ionic
models will be discussed.

THE COMPUTATION OF ATTACHMENT
ENERGIES IN THE IoNIC MODEL

The significance of the attachment energy as
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a measure of growth velocity in kinetic theories
such as the BCF theory and computer simula-
tions is given by Bennema & Gilmer (1973).
When growth takes place, there is more or less
a state of disequilibrium, so that in nature, we
shall always observe the growth habit and not
the equilibrium habit.

As mentioned above, attachment energies are
assumed to be a measure of the growth velo-
cities of F faces. Faces with high growth-velo-
cities (i.e.,, with high E..) will disappear from
the growing crystal. The growth form has been
constructed by plotting the growth rates along
the normals to the various faces. In our case,
where only F faces are involved, layer growth
is the growth mechanism. This means that we
have either two-dimensional nucleation or spiral
growth. We define E. as the energy necessary
for the formation of a new growth slice, re-
leased per molecule when a new slice dne is
formed. Eq and FE.. are complementary and
related by

Eur =E sl + Eatt (1)

where E.. is defined as the crystal energy;
E.. is equal to be sublimation energy when
the crystal grows from vapor. We can com-
pute these energies if we consider the atoms
as point charges. In this case we can use the
Madelung method (Madelung 1918, Kleber
1939, Hartman & Perdok 1955, Hartman 1973)
for calculating the electrostatic potentials.

The structure has been divided into a set of
parallel PBCs (n, m), where m is the number
of the slice and » the number of the PBC within
the slice (Fig. la). Each PBC (Fig. 1b) has
been divided into a set of rows through the
different ions parallel to the direction of the
PBC. According to Hartman (1973), the poten-
tial at a point P; having coordinates x; and 7y,
where the x axis is parallel to the PBC direction
and r; is the distance of P; from the row of ions
at which the potential is computed, is, for x;
and r; =< 0 (P, in Fig. 1b, ¢),

. <«
Virx) = % [ S wiH,®
1=1

(2 il ) . ( Dl ) +nrmy]e
7
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where iH,"® (24rilr;/p) is the Hankel function
of zero order, with argument (27lr;/p) as tabu-
lated by Jahnke & Emde (1960). We could con-
sider, through every ion of the PBC, a row of
2N equally spaced point-charges, in the direc-
tion of the PBC, with period p and charge ze.
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Fic. 1. (a) Schematic drawing of PBCs parallel to
[001], within the dy, slice of olivine. The chains
(n,m) are labeled. (b) The PBC (0,0) (Fig.
1a), showing the three different positions of P
at which the potential due to a row of Mg(1)
ions may be computed. (¢) An infinite row of
Mg(1) ions perpendicular to the plane of b. For
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The value of r; is mostly different from zero,
so that eq. (2) can usually be applied. When
P; (P») is situated on a row of non-identical
ions P(3) (see Fig. 1c), then x;540 but r; =0
(Fig. 1b, c¢), and the formula becomes

oo - 5 [4(5)
%5 R b
v <1 ? ) x P — % ]
+—%LmN @)

where yi(y) = dir y!/dy. There is a third pos-
sibility where P; is situated at the position of a
point charge in the row. Then the potential at
P; (P;) due to that row has to be computed for
x; = 0 and r; = 0 according to

%%w+mm

C= )(0)=0.577216 (Euler’s constant).

The potential at a point P; due to the kth row
within a PBC (0,0) is V. To obtain the poten-
tial at a point P; due to the whole PBC (0,0)
we have to sum the potentials due to all the rows
within the PBC

Vi0,0) = @

K
Vi= X
k=1

where K is the number of rows. The energy
is computed by multiplying the potential by the
charge z;e. The energy per molecule to form a
PBC (0,0), Ea is

Vi (®)

1 J K

E, = _2— Zj 2 z2:e Vi (6)
where J is the number of ions per period in
one PBC. If through every ion j we can have a
row, K=J. The energy E. is the energy neces-
sary per molecule to form a growth layer of
thickness dww. Not only is the interactive energy
within the PBC (0,0) considered, but also with
the neighboring PBCs within the zero slice.

1 + o J K
e o 2.1'=1 Tt 2:eVai

5 @)

the computation of the potential at a point P; due
to a row Mg(1) jons, there are different positions,
P,, P, and P;. P, can represent any ion of the
PBC outside the row, in which case eq. (2) has to
be applied. Formula (3) is applied for the poten-
tial at a point P, in the row but not situated on
a Mg(1) ion, so r; = 0. Formula (4) is used to
compute the potential at a Mg(1) site, Ps.
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where n is the serial number of the PBC
within the slice. To obtain the total interaction
energies of one molecule with all PBCs within
the slice, we have to sum from -« to
+o (Fig. 1a). In these cases formula (2) is
always applied, because 7; £ 0. The contribu-
tion of the first term of formula (2), the
Hankel function, rapidly decreases and is
shown to be convergent (Kleber 1939). How-
ever, the contribution of the second part of
the formula converges very slowly. To that end
a power series was developed (Hartman 1956,
Woensdregt in prep.).

The attachment energy was computed as
follows from the potentials V!

+ o +w
E.. = 2m=1 2n=—w 2;’ Zkzie anjk (8)

If E, represents the interaction energy, per
molecule, of a PBC with the mth slice (m = 0, 1,

o]

X E,.
m =1

2, . e ,M), thenEsl = Eo and Eatt =

The computations of the potentials, based on
formulae (2-4), have been done with a Fortran
IV programme called ENERGY (Woensdregt
1971).

The morphology of olivine is derived from
the structure of the Mg end-member forsterite
(Mg:SiO4), with space group Pbnm and Z—=4.
The cell constants and atomic parameters were
determined by Birle er al. (1968) and listed
in ’t Hart (1978, Table 1).

RESULTS
The growth form (ionic model)

The ionic growth form is determined from
the attachment energies, computed in the way
explained above. High attachment-energy means
high growth-velocity of the crystal in the direc-
tion perpendicular to the face considered.

The theoretical models of growth forms of
forsterite are constructed by Wulff’s method
(1901). The central distance of each crystal
face is proportional to the attachment encrgy
of the face. “Wulff plots” parallel to zones of
strong PBCs are made. In each plot the crystal
is bounded by faces with the lowest attach-
ment energies. The region of the Wulff plot
that can.be reached from the origin without
crossing any growth surface belongs to the
crystal. One Wulff plot of the Si*'—0> and
Si~O" models parallel to the [001] direction
is shown (Fig. 2). From Wulff plots in dif-
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F16. 2. The change due to increasing covalency of
the Si-O bonds is shown in a Wulff plot // [001]
of the ionic growth form of olivine, corrected
for a realistic Mg distribution. Continuous line,
model I; dashed lines, model IIIL

ferent directions it is possible to construct a
three-dimensional drawing of the crystal. The
coordinates of the vertices were obtained with
a computer program. The orthographic crystal
drawings, made by. the program CRYSTAL-
DRAW (Strom 1977), are projections of the
crystal in the [621] direction of the cubic
system onto the cubic (621) plane and the
crystals are of equal volumes.

As already mentioned, the attachment ener-
gies are computed for three different charge
models: (I) The Si**—O* pure ionic model. In
this and the other two models, the SiO; tetra-
hedra are considered as complete crystallization
units, in such a way that no Si—O bonds are
broken. All the ions have maximum charges;
in reality, however, the effective charges should
be lower (Fleet 1974). (I1) The SP#*-0O'%
model, According to Born (1964), this model
is energetically the most favorable. Owing to
charge reduction of the SiO. tetrahedron, the
bonding within this tetrahedron is less ionic,
and partial covalency (50%) is introduced.
The Mg—O bonding remains purely ionic, but
the bond strength decreases owing to the de-
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TABLE 1. ENERGIES FOR THE MOOELS I, IT AND ITI (IN KCAL/MOL)

Face Eatt Eeor Bty Eyep Bt Eov
1 11 1r 1 11 I I 11 pass
(010 -120.92 -~130.21 ~138.47 0 -129.92 -130.21 -138.47 79,10 -50.82 ~51.11 -59.37 0,780
(110)% ~323.26 ~291.34 -259.76 0 ~323.26 -291.34 -259.76 197.00 -126.26 -94.34 ~62.76 1.491
(110)* ~394.35 -401.43 -415.18 =155,73 -238.62 -245.57 ~259.45 150,19 ~B8.43 -95.38 -109.26 1.38C
(120)  -324.54 ~312.51 -305.39 ~77.57 -246.97 -234.94 -~227.82 177.07 -69.90 ~57,87 =-50.75  1.406
(021)  -338.65 ~314.20 -289.05 -49.92 -288.73 -264.37 ~239.13 128.67 -160.06 -135.70 ~110.46  1.217
(111)  -395.57 -383.23 -372.49 -42.70 ~352.87 -340.53 -329.79 204.06 -148.81 -236.47 -125.73 1.736
(112)  -406.55 ~372.37 -338.51 0 -406.55 -372.37 -338.51 216.93 -189.62 -135.44 -121.58 1.983

(101}
{130}
(121}
(132)
{001)

-~411.65%
-424.87
-443.81
~457.41
-471.81

-392.89
~389.42
-432.95
~421.96
~436.10

~374.63
-355.30
-426.87
-386.80
~396.55

~46.83
0

~43.52
o

-129.7%

~364,82
-424.87
~400.09
~457.41
-342.10

~346.06
-389.42
~389.43
~421.96
-306.39

~327.80
~355,30
-383.35
-386.80
~266.84

177.16
216.20
208.24
251.63
190,59

~187.66
~208.67
~191.8%
~205.78
~151.51

~168.90
~173.22
~181.19
~170.33
~115.80

~150,64
~139.10
~175.11
~135.17

~76.25

1.465
1.746
1.831
2.102
1,702

*
Values for the dy;, slice with no Mg fons at the slice boundary; * values for the djjp slice with Mg ions at

the slice boundaryi o broken-bond strength for the covalent model, in valence units.

creased oxygen charges. (III) The Si*-O"
model. Here the silicon ion has no charge and
the whole tetrahedron is considered as a cova-
lently bonded group with charge —4. This means
that the electrostatic energy is further reduced.
The model assumes that (a) all the SiO. tetra-
hedra are covalently-bonded preformed build-
ing units; (b) the Mg—O bonds remain com-
pletely ionic.

We may present the model in this way,
because no Si—O bonds have been broken.
Presumably the charges of the SiO.* tetrahedra
in model II are the most realistic.

The configurations of the ions within the
slices are fixed by the composition and orienta-
tion of the PBCs (’t Hart 1978). For all three
models the same PBCs have been used. In
presenting the various energies for models I,
II and III (Table 1) for each F face, we
give the attachment energy E.. in kcal/mol.
More detailed data are available in Tables 2,
3 and 4, in which are given in addition, the
slice energy E, and the contributions of the
slices 1, 2, etc., by Ei, Es,etc.; Tables 2, 3 and 4
available at nominal cost from the Depository
of Unpublished Data, CISTI, National Research
Council of Canada, Ottawa, Ontario K1A 0S2,
Canada. At a point P; the contribution to the
attachment energy of the slice (n+1) is ne-
glected if the contribution of the nth slice is
smaller than 0.004 kcal/mol.

With the exception of the PBC within the
dut slice, the slices and PBCs that give the

lowest attachment energies are drawn in Figures .

2 to 5 of ’t Hart (1978). It was not possible
to decide on the basis of qualitative considera-
tions which PBC configuration within the dut
slice is energetically the most stable. For the
configuration of the disi slice (see also Fig. 4,
t Hart 1978), the attachment energy was
found to be —493.25 kcal/mol for model 1.
However, if the slice was translated over a
distance Y%d.u, then the attachment energy for

Fic. 3. The two different configurations of the
d.y, slice: 4 with the flat surface and all the Mg
jons in M(I) positions at the slice boundary, B
with the undulating surface and no M(I) posi-
tions at the slice surface.

the same model became —395.57 kcal/mol.
Therefore, the latter modified configuration
of the slice is much more stable.

The dio slice could be formed using two
different PBCs, A and B (Fig. 3). The B
configuration gives the 'slice an undulating
surface and the attachment energy for this
configuration in model I is —323.26 kcal/mol.
The 4 configuration of the duo slice has all
the Mg ions in M (1) positions at the geometric -
boundary of the slice. The attachrent energy
for this slice in the same model is —394.35
kcal/mol. Below we shall see the difference
between these two slices.

For model I, the: lattice -energy FEe. is
~5760.37=+ 0.20 kcal/mol. The lattice energies
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for models II and III with the reduced charges
are —2982.59+ 0.34 kcal/mol and -1455.69+
0.40 kcal/mol, respectively.

The computation of slice (Ea) and attach-
ment energies (E..) is based on the assumption
that a PBC does not have a dipole moment
perpendicular to the PBC direction. The con-
sequence of this symmetry is that the M(I)
Mg ions, located at symmetry centres, occur at
the geometric slice boundaries. Therefore, such
an ion and its charge are equally divided be-
tween the two adjacent slices. This leads to a
surface structure having a statistical distribu-
tion of the Mg ions between the two slice
boundaries. However, it is very likely that in
reality these Mg ions at the surface are ordered
in some way we shall call a realistic distribu-
tion. Yet the statistical distribution is a
necessary step to obtain attachment energies
for the realistic model. It is easy to
compute a correction energy to obtain the
attachment energy for the realistic distribution
from a model with a statistical distribution. A
direct calculation of the attachment energy for
a realistic contribution would increase the ne-
cessary computation time by at least a factor
of 2 or 4. This is due to the fact that a PBC
with a realistic distribution has a period twice
as long as the lattice period, because every
second Mg ion in a row is missing. The same
applies for the translation in other directions,
so that two adjacent PBCs of double period
must be combined to form one huge ionic chain
with four times as many atoms as usual. It is
much more convenient to compute correction
energies as shown in the next paragraph.

CORRECTION ENERGY FOR A REALISTIC
DISTRIBUTION OF MG IONS AT THE BOUNDARIES
OF SLICES

Giese (1974) pointed out the energy correc-
tion for a realistic distribution of ions by the
computation of surface energies on cleavage
planes of muscovite. This correction seems
reasonable although we do not have a cleavage
surface here but the surface of a growing
crystal. The correction energies can also be
computed with the program ENERGY in the
following way (P. Hartman, pers. comm.).
Suppose for example that there are two ions
per unit cell at a geometric slice boundary
(Fig. 4). In the case of a statistical distribution
all the Mg ions have a charge -1, because
they are divided between the two adjacent
slices. For a realistic distribution, only one
position on the geometric slice boundary per
unit cell (position I in Fig. 4), will be occupied
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F16. 4. Identical Mg ions on the boundary surfaces
of a slice du. The identical lattice translation
from slice to slice is [uvw]. One mesh area is
indicated. For computation of the correction
energy, the translations within the slice have to
be chosen in such a way that a lattice plane is
formed with alternating occupied and unoccupied
Mg positions.

by Mg®* ions. Now the correction energy is
computed by adding an ion of charge +1 in
position I (Fig. 4) and an ion of charge —1 in
position II. This means that.if the correction
is applied to a model with a statistical distri-
bution of 41 charges on the geometrical
boundary, all the ions in position I will get
a charge 42 and in position II a charge O.
The vector [uvw] is the translation from one
slice to the next. The ions translated from the
upper slice boundary to the lower boundary
have opposite charges. Owing to the symmetry
and the opposite charges of these identical ions,
the total sum of interaction energies with the
rest of the ions within the slices is zero. Thus,
for the computation of the attachment energies,
only the interaction energies between the Mg
jons at the geometric slice boundaries need
be considered.

If we lower the Eq by the correction energy,
the interaction between arrays of alternating
charged Mg ions on both sides of the slice,
we will get the same E. energy as computed
with Mg** ions in only half the M(I) positions
at the geometric boundaries. The E. energy
becomes more negative because the Mg**—-Mg**
interaction decreases. This results in a less
negative attachment energy (eq. 1).

The Mg**—Mg?* interaction energy is the
same for all three models, because the charge
of the Mg ions is the same. So the correction
energies may be used to correct the attachment
energies of all three models (Table 1). There
are five slices of F faces without Mg ions at
their boundaries, (010), (112), (130), (132)
and (110) with the undulated surface, so their
attachment energies are not corrected. These
crystal forms become relatively less important
(Figs. Sa—c).
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F16. 5. Growth forms of olivine for the three different charge models;
a—c, growth forms of models with a realistic distribution of Mg ions at
the slice boundaries; d—f, growth forms ‘corrected for both a realistic
distribution of the Mg ions and for the Borm repulsion energy; g-i,
equilibrium forms of olivine (realistic Mg distribution).

As has already been mentioned above, there
are two different configurations of the dimw slice
(Fig. 3). For the undulating di7 slice without
Mg ions on the slice surface (FEa=—323.26
kcal/mol), no correction for a realistic distri-
bution has to be computed. However, for the
other configuration of the slice, with the flat
surface and all the Mg ions in M(I) positions
at the geometric slice boundary, the correction
energy E..=-155.73 kcal/mol has been com-

puted. The attachment energy for this configura-
tion of the slice is —394.35—(—155.73) =—238.64
kcal/mol (model I); for a realistic Mg distribu-
tion this slice is the most stable one.

THE BORN REPULSION ENERGY

Until now only Coulomb interactions have
been considered, giving rise to the most im-
portant electrostatic energy in ionic crystals.
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However, especially with respect to the attach-
ment energy, the Born repulsive interaction
can be an important contribution. Computations
of the Born repulsive energy (Appendix)
show, for the [001] zone, contributions to the
attachment energy between 60-70%, and for
the other faces in between, 45-58% (Tables
1-4). In all three models, this fact is clearly
responsible for the reduction in richness in
crystal forms (Figs. 5d—f).

THE GRowTH ForM (COVALENT MODEL)

Besides the ionic and partly ionic models,
now a covalent model! is introduced. The
covalent case is represented by a broken-bond
model in which the bond strength for each
bond has been taken into account. There are
two different bond types (Mg-O and Si-O)

in the structure; these are of different bond-

strengths. For that reason, the bond strengths
were computed according to Brown & Shannon
(1973) and Povarennykh (1972). The bond
strengths were expressed in different units, but
the ratios between them are about the same.
For further calculations the values of Brown
& Shannon are used.

For all the F faces the number of broken
Mg-O bonds per molecule per mesh area are
given in Table 5 (deposited with Tables 2, 3
and 4). These bonds have already been shown
in Figures 2 to 5 of ’t Hart (1978) as dotted
lines. The bond strengths must be summed
over all the broken bonds per mesh area and
divided by the number of molecules per mesh.
This broken-bond strength per molecule (Table
1) is assumed to be a measure of the growth
velocity of the faces and is equal for both
a statistical and a realistic distribution, because
the number of broken bonds remains equal.

We could construct the dii slice in two
different ways (vt Hart 1978). Both have 18
broken bonds per mesh area, that is, 4.5 broken
bonds per molecule. The total broken-bond
strength per molecule for the dio slice is 5.520
v.u. (valence units) for the flat slice and
5.964 v.u. for the slice with the undulating
surface.

The broken-bond model (Fig. 6) is of a
form slightly less elongate parallel to the ¢
axis than the ionic growth forms. If we com-
pare the broken-bond model with the ionic
models, which were not corrected for the
repulsion energy, we find good agreement. With
the exception of the {120} form, which does
not occur in the covalent model, the tendency
of the changing morphology from I to III con-
tinues for the covalent model. As we can see,
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F1c. 6. Growth form for broken-bond model.

{101} and {021} become more important,
{111} becomes less important, and the crystal
becomes less elongate along [001].

THE EQUILIBRIUM FORM

Besides growth forms, a theoretical equili-
brium morphology has been computed from the
specific surface energies. The equilibrium form
of a crystal is defined as the one that has the
minimum value for the total surface-free-energy
at constant temperature and crystal volume.

The specific surface-free-energy 7 is the
energy per unit of surface to divide an infinite
crystal in two halves along a specified surface.
Instead of the free energy we will calculate the
energy that can be computed from the con-
tributions of different slices to the attachment
energies. If for example we consider a suite of
slices, then the number of cells per c¢m? is
1/Muw = duw/V, (Vp, is the volume of the
primitive cell) and the number of molecules
is Zy*dua/ Vo, (Z5 is the number of molecules per
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primitive cell). The interaction energy between
two slices per molecule is En (E:... Es Tables
2—4, deposited) and the total interaction energy
between the suites of slices of the divided two
infinite half-crystals is

+
E, =2 mE.,,
m =1

For example, in the case of the diw slice, we
assume that the crystal is divided along ab
(Fig. 1a). Then the interaction per molecule
between slice 0 and the suite of slices, En.
(m= 1,2,...0), is computed in PBC (0,0).
In the same way the interaction per molecule
between the slice —1 and the suite of slices is
computed as the interaction of PBC (0,~1) with
the same suite of slices, This interaction energy
with the slice 1, 2, 3,... is the same as the
interaction per molecule in PBC (0,0) with the
slices 2, 3, 4,..., which explains the above
given summation. The total interaction now is
computed per 2 cm®, so we have to divide by 2,
and we find for the specific surface energy
(Hartman 1974):

¥ =fZ,dw E,[ 2V, ©)
where f=695.1904 is a conversion factor to
obtain v in erg/cm?® from E, in kcal/mol.

To compute ¥ for the models with a realistic
distribution on the crystal surface, one should
know the contributions E. of the single slices
for these corrected models. The corrections that
were computed for a realistic distribution of
Mg ions are completely contributed by Ea and
E,. To know the contributions of the corrected
model to Ei, one should take for the computa-
tion of attachment energies such a number of
molecules that after translation within the slice
in both translation directions, there are at
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least one vacant and one identical occupied Mg
site. Such computations were not carried out,
owing to long computing times. Because E.:
stays constant, E'y = E; — FEe and Eq = E'y
+ Ecor.

If we construct the equilibrium morphologies
from the specific surface energies computed for
a realistic Mg distribution (Table 6), then in
addition to {010}, {120}, {001}, {110} and
{021}, the {112} and {132} forms appear.
From model I to model III (Fig. 5g-i), the
crystal habit becomes less elongate parallel to
the ¢ axis. The {110} form is present only in
model I, and the importance of the {120} and
{021} forms increases.

DiISCUSSION

In the models presented here an attempt was
made to predict the morphology of forsterite
on the basis of electrostatic forces for the ionic
model, and on the basis of bond strengths for
the covalent model. In all models the SiO.
tetrahedron is assumed to exist as a precrystal-
lization unit, because it probably exists at
temperatures at which forsterite crystallizes.
Therefore, during crystallization only Mg-O
bonds have to be formed. It has been assumed
that the growth velocities in the directions
normal to the faces are determined by laver-
growth mechanisms, because all the faces here
considered are F faces., For that reason the
attachment energies, assumed proportional to
the growth velocities, are computed for the
ionic models.

Now let us consider the predicted habits.
In the models that are corrected for a realistic
Mg distribution, we see that {101}, which does
not occur in model I, becomes more important
with increasing covalency of the Si~O bonds.
We observe the same effect for the {120} form,

TABLE 6. Eg AND THE SPECIFIC SURFACE ENERGIES Y FOR A REALISTIC Mg DISTRIBUTION ON THE SLICE
SURFACES FOR THE THREE IONIC MODELS ‘

sivt siz+ 510

Face Eg Y Eg Y Eg v

(010} -129.77 -3160.62 ~130.28 ~3173.04 ~139.34 -3393.70
(i -324.93 -6682.14 -292.23 ~6009.68 -260.46 -5356.33
(110 -394.17 -4903.49 ~401.74 ~5059.17 -415.78 -5347.90
(120 -322.09 -4059.12 ~308.26 ~3829.53 -299.42 -3682.79
(021) -336.56 ~5311.64 -312.28 ~4861.71 -287.14 -4395.85
(111) -388.06 -5763.21 -377.11 -5580.48 -367.89 ~5426.62
(112) -455,99 -5347.98 -419.54 ~4920.49 -385.71 ~4523.72
(101) -428.09 -6772.22 ~409.58 -6443.44 -391.85 -6126.50
(130) -408.73 ~5396.68 -370.52 -4892.17 -338.53 ~4469.79
(121) -492.85 -6448.47 -480.76 -6274.96 -474.91 ~6191.01
(132) ~519.91 -5039.88 -477.33 -4627.12 -438.10 ~4246.84
(001) -453.67 ~4625.33 -421.84 -4170.88 -384.79 ~3642.75

*, T see Table 1.
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also not important in the completely ionic
model, but in model III it is more important
than the {110} form, whereas {111} and {010}
become slightly less important. In summary
we may say that with increasing covalency
of the Si—O bonds and with decreasing Coulomb
energy of these bonds, the crystal habit becomes
a bit less tabular parallel to (010) and less
elongate parallel to the ¢ axis.

Comparing the habit of the covalent broken-
bond model (Fig. 6) with model III having
the realistic Mg distribution (Fig. 5c), we
observe a change toward equidimensionality.
The {111} form, that became gradually less
important, has disappeared and {101} and {021}
have become more important. The only disa-
greement between model III and the covalent
model is the absence of the {120} form in
the latter. In this model the {110} form is
favored by the short-range interaction of the
covalent Mg-O bond.

The influence of the repulsion energy on the
attachment energy should now be discussed.
Those faces having, per molecule, many dangling
Mg—O and O-O contacts at the surface, give a
high contribution to the repulsion energy. This
means that slices with low dua values and in
general high attachment energies largely con-
tribute to the repulsion energy. However, we
cannof say that crystal faces with low dhua
values become relatively more important when
the Born repulsion energy has been taken info
account. Their growth velocities are reduced
even by slightly smaller percentages, which
leads to more simple morphologies (Fig. 5d-f).
So one may check in this model the extent to
which the correction arising from the repulsion
energy is reliable.

The morphologies of the three models are
elongate along the c axis if the repulsion energy
is assumed to be attributed to nearest-neighbor
interaction. The elongation along the ¢ axis of
crystal drawing shows that this method has to
be more refined and that presumably also other
phenomena have to be taken into account, such
as quantum-mechanical interactions (Lombardi
& Jansen 1966) and surface distortion (Verwey
1946).

The equilibrium forms are more equidimen-
sional than the other models. In addition to
{010}, {120}, {001}, {G21} and {110} (only
model I), the {112} and {132} forms are present.
This is the most important difference between
these and most of the other models. The {112}
form is only observed on |crystals from pallasitic
meteorites (Goldschmidt| 1920), but never on
terrestrial crystals. The presence of {112} and
the equidimensional habit of crystals from these
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meteorites indicate a more or less equilibrium
habit. This is also asserted by Scott (1977), who
assumed that equilibrium forms of olivines in
pallasitic meteorites are due to a diffusion
process having, as driving force, the difference
in surface tension between olivine and the metal
melt. The {132} form seems not to have been
recorded in the literature.

Let us compare the morphologies computed
for the different models with that of olivine
crystals from nature. These include not only the
Mg end-member forsterite but also olivine
crystals in which magnesium has been replaced
to a smaller or larger extent by iron. Due to
the richness of crystal forms of olivine crystals
in nature, it is not possible to make a compari-
son with a single type. But we can look at a
number of special criteria like combinations ot
forms, “Fundortpersistenz” (Niggli 1941) and
overall statistical appearance of the different
crystal forms. Kalb & Koch (1929) distin-
guished three different occurrences: basaltic
lavas, contact metamorphic calcareous rocks and
cavities. Of course, there are more kinds of
rocks in which olivine crystals could be found,
but owing to the lack of descriptions of those
rocks we are limited to the above three types.
Olivine crystals from basaltic lavas (e.g., te-
phroite or limburgite) are commonly described.
Percentages of the occurrence of crystal forms
(Table 7, column I) for 171 crystals from a
limburgite from Sasbach, Kaiserstuhl, are given
by Kalb & Koch (1929). The most frequently
observed combination of forms was {010},
{1103, {021}, but {120}, {101}, {111} and {001}
were also rather commonly observed. The same
combination of forms was observed on olivine
crystals from the Vesuvius latites and tephroites
(Goldschmidt 1920, Hintze 1897). The propor-
tion (in %) of different forms on crystals of

TABLE 7. IMPORTANCE OF CRYSTAL FORMS, IN PERCENTAGES, BASED ON THE
PRESENCE OF FORMS

Face I 11 111

(010} 94.2 100.0 91.7
(110) 76.1 96.8 79.1
(021} 79.6 74.2 79.1
111 67.3 90.3 68.1
{120} 62.6 38,7 57.7
{101) 52.1 51.86 53.3
(001) 47.4 38.7 47,7
(100} 38.0 19.4 ’ 35.7
(011) 28.7 19.4 30.7
(121} 23.4 19.4 26.3
(130) 14.6 19.4 14.7
(131) 8.2 - 8.2

I: Occurrence of crystal forms on 171 olivine crystals from vol-
canic rocks of the Sasbach type (Kalb & Koch 1929); II: "Fundort-
persistenz” of olivine crystals from Vesuvian basalts; III: occur-
rence of crystal forms of olivine crystals according to Gold-
schmidt's Atlas der Krystallformen (1920).



STRUCTURAL MORPHOLOGY OF OLIVINE

Vesuvian basalts (Table 7, column II) shows
very good agreement with crystals of the Sas-
bach type (column I). More recently Brothers
(1959) described olivine crystals from a por-
phyritic alkali basalt having the forms {010},
{110}, {101}, {021} and occasionally {120}.
Many others have given descriptions of olivine
crystals from basaltic rocks, with almost always
the same basic morphology: {010}, {110}, {021},
whereas {1203}, {101}, {001} and {111} are also
rather common.

However, for most crystals described in the
early literature, the host rock was poorly known
or completely unknown; chemical analyses were
given in only a very few cases. For that reason
the influence of single impurities on the mor-
phology remains to be studied ('t Hart in prep.).

The olivine crystals from basaltic rocks may
well be compared with the models of Figures 5b,
c. This means that the growth process represents
in nature a situation in which the SiQ4 groups are
preformed crystallizing particles, and the Si-O
bonds are at least 50% covalent. The repulsion
energy must not be neglected, but it must be
considered with caution.

Olivine crystals from calcareous contact
metamorphic rocks, with a composition of for-
sterite or monticellite (CaMgSiO,), show greater
richness of forms. A few of these crystals from
near Monzoni in Tirol (Goldschmidt 1920)
always show {010}, {111} and {120} as the
most important forms; {110}, {021}, {121} and
{101} are common, whereas {011} is occasional-
ly observed. These crystals are equidimensional.

Crystals, generally fayalite-rich, grown from
silica-bearing aqueous solutions in cavities,
mostly show a habit that compares well with
that of olivine crystals in contact metamorphic
calcareous rocks (Kalb & Koch 1929).

If we look at the crystal forms drawn
in the “Atlas der Krystallformen” (Gold-
schmidt 1920), we observe also that the crystal
forms already mentioned are statistically the
most important ones (Table 7, column III).
There is also good agreement between predicted
morphology and the morphology of artificial
olivine crystals. Artificial cobalt olivine crystals
are elongate parallel to [001], the {110} form
being dominant; in addition, {010}, {021},
{101}, {111}, {121}, {001}, and sometimes
{131} and {211} are recorded ('t Hart & Wes-
sicken 1977). Forsterite grown in 2 MoO-Li.0—
V:0;5 flux (Vu Tien et al. 1972) shows the
forms {110}, {010}, {101}, {021} and
{001}, whereas the crystals are less elongate
along the ¢ axis. More V.O; favors the {110}
form. From the same flux, but with an abun-
dance of MgQO, crystals with the same forms as
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above been grown, but then with the form {120}
always present in addition ('t Hart in prep.).

CONCLUSIONS

1. According to attachment-energy calculations,
the growth form (ionic model) with a realistic
Mg distribution on the boundaries of the slices
is bounded by the forms: {010}, {110}, {111},
{021}, {001}, and moreover by {101} and {120}.
The latter two forms are absent in model 1. By
introducing increasing covalency of the Si-O
bonds, these forms become more important and
the crystal becomes less elongate parallel to
[001].

2. Correction of the ionic growth forms for the
Born repulsion energy reduces the number of
crystal forms to {120}, {010}, {001}, whereas
{111} only is present in model I.

3. The equilibrium form is less elongate along
[001] and more equidimensional. The theoreti-
cal equilibrium form is defined by {120}, {010},
{001}, {021}, {112} {132} and {110}. The last
form is only present in model I.

4. The morphology of the covalent broken-bond
model consists of the forms {010}, {110}, {101},
{021} and {001}.

5. The statistically most important forms on
crystals from nature are {010}, {110}, {001},
{021} and {101}; {120} and {111} are also com-
monly observed.

6. Olivine crystals from pallasitic meteorites
agree rather well with the theoretical equilibrium
habit. They are equidimensional and are the
only crystals known to show the {112} form;
the {120} form is less pronounced than in the
predicted habit.

7. The most satisfactory model for crystals from
nature lies between the covalent broken-bond
model and an ionic one intermediate between
model II and III, corrected for a realistic Mg
distribution. This agrees with Born (1964), who
found model II to be energeticaly the most
favorable configuration. A contribution for the
Born repulsion energy was computed, but from
the discrepancy in morphology between the
models corrected for the Born repulsion energy
on one hand and crystals from nature on the
other, it may be concluded that these models
have to be further refined.
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APPENDIX

For materials with a halite structure it is rather
simple to compute almost exactly the total repulsion
energy per molecule (Born & Huang 1954, Tosi
1964, Kittel 1971). For forsterite, however, the
situation is much more complicated, because here
we have three different types of ions, Mg?*, Sit*
and O*, Furthermore, only one-half of the octahe-
dral voids and one-eighth of the tetrahedral voids
in the forsterite structure are occupied. This is in
contrast with the halite structure, where all the
octahedral voids and none of the tetrahedral voids
are occupied. ‘

Because we have three types of ions, we can
expect repulsive forces between Si—O, Mg—O, 00O,
Mg—-Mg, Si—Si and Mg-Si atoms. Only the first
three distances represent nearest neighbors and they
will be considered as contacts primarily contributing
to the repulsion energy.

The problem, however, is that Born repulsion
energy of alkali halides has been computed on the
basis of compressibility data, which have been
obtained from homogeneous elastic compression. In
other words it has been assumed that owing toc a
certain stress all types of bonds are reduced in
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length by the same amount. However, the bonds
considered here do not all experience the same
repulsive forces.

Raymond (1971) computed a repulsion energy of
about 1410 kcal/mol for forsterite, but his cal-
culation was based on homogeneous elastic com-
pression. Tokonami et al. (1972) computed a repul-
sion energy of 716.34 kcal/mol for cobalt olivine
(Co,5i0,) by the method of Huggins & Sakamoto
(1957).

In our case we are especially interested in the
repulsion energy per contact. A crystallizing parti-
cle attached to a certain crystal face undergoes a
repulsive interaction with that face and especially
with the nearest neighbors to which it will be
attached. The repulsion energy, which contributes
to the attachment energy, is determined by the
Mg-O and O-O contacts that will be formed when
a molecule is attached to a crystal face. The Si—-O
and O-O contacts within the SiO, tetrahedra have no
influence on the attachment energy, because none
of them is assumed to be formed during the
crystallization process.

At first the repulsion energy for periclase (MgO)
was computed by two different methods (Borm &
Huang 1954, Huggins & Sakamoto 1957). In the
first method the repulsion energy may be re-
presented (Ohashi & Burnham 1972) by

E.p = i Ni; €3D (— 735/p) (A1)
where p is the hardness parameter computed from
equation (A43), r; is the distance between the ith
and the jth ions and A is the repulsion range para-
meter (Kittel 1971):

N = pA (z¢)*/nr? exp (— 7./p)  (A2)

where 4 = —1.7476, the Madelung constant for
periclase, ro— 2.106 A, the nearest—neighbor dis-
tance and n is the number of nearest neighbors. It
was assumed that the compliances sy; = 0.408, 544 =
0.676 and s, =—0.095 x 102 c¢m2?/dyn (Bhaga-
vantam 1955) were measured for homogeneous
elastic compression, so 8 = 0.654 x 102 ¢cm?/dyn.

From
A
o =2 = (it 7-)

we found r,/p= 5.356 and p= 0.39 A Now
we can substitute p in eq. (A2) and we find A =
5.228 x 10 erg/mol. According to eq. (Al) we
find for the repulsion energy of periclase 203.94
kcal/mol, which is 33.99 kcal for one Mg—O bond
if we assume that all the repulsion energy is due
to these bonds. This is in good agreement with
Huggins & Sakamoto (1957). The disadvantage of
this method is the assumption that all the repulsion
energy per molecule is contributed by one type of
bond. In a structure like that of olivine, probably
more types of bonds contribute to the repulsion
energy. For that reason method B should be used.
However, this method gives no satisfactory results
for Si—O bonds, which have a high repulsion energy

(A3)
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per bond. But because only Mg—O and O-O con-
tacts were considered to influence the attachment
energy, this method may be applied in our case.
According to Huggins & Sakamoto (1957), the
repulsion energy for one molecule is

Eep = b Ziciexp la(r: + 15 — 1)) (A4)

where E,., is the total repulsion energy of all the
bonds considered for one molecule and b = 102
erg is a conversion factor. The factor ¢;; (Pauling’s
coefficient) gives roughly the dependence of the
overlap repulsion energy between two ions on
their valences and on the number of electrons in
the outermost shells. In ¢y = 1 + (z/n) + (@/ny),
2, and n; are respectively valence and num-
ber of electrons in the outermost shell of the ith jon.
S0 Cug-0 = 1, €oo = 0.5. The repulsion constant
a= 1/p is 2.56 for Mg—O bonds if we take p =
0.39, as we found for periclase and a = 1.79 for
O-O contacts computed from the O-O distances
in periclase (ro-o = 2.978A, ro/p= 5.356 and
p= 0.56); r; is the distance between the two
nearest neighbors and r; and 7, the effective repulsion
radii. All the parameters are known, except r; and
r;. The effective repulsion radius of oxygen is con-
sidered to be 1.384 (Shannon & Prewitt 1969,
Tokonami et al. 1972). The effective repulsion
radius ryz = 1.01A pnow could be computed from
the periclase structure, because both methods
should give the same repulsion energy.

We made the assumption that the same para-
meters could be used for both periclase and olivine
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for the Mg—O and O-O repulsion. This seems a
reasonable assumption, because in both minerals the
distances within the MgQO; octahedra are quite
comparable. It has been shown that the repulsion
energy within the MgO, octahedra is nearly the
same for different minerals. Huggins & Sakamoto
(1957) computed for periclase 202 and 170 kcal/
mol for two different repulsion parameters. For
olivine Born (1964) found 262.5 kcal per MgO,
octahedron to bz the minimum for the Mg—O re-
pulsion, and Ohashi & Burnham (1972) found for
the M(I) sites of different pyroxenes 204.0-225.5
kcal per octahedron.

From projections of the crystal structure of
forsterite (‘t Hart 1978, Figs. 2-5), it is possible
to determine which Mg—O and O—O contacts have
to be considered for the different F faces. The
contribution of these contacts to the repulsion
energy for the different faces is given in Table 5
(deposited). There is a big difference between the
two models because in the last one the O—O contacts
are also taken into account. However, the total con-
tribution for the different faces per molecule is
quite comparable. In Table 1 we see for the three
different models the influence of the repulsion ener-
gies on the attachment energies, computed according
to Huggins & Sakamoto (1957). There By = E/pe—
E.... It seems unrealistic not to consider O-O re-
pulsion. Firstly, oxygen ions have large ionic radii,
and secondly, a large number of O—O contacts will
be formed by the attachment of a crystallizing parti-
cle on a crystal face.



