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ABSTRACT

Ophiolite metamorphism occurs before, during
or after obduction onto the continental margin.
Models of submarine hydrothermal alteration for
modern ridge-crests have been developed from
heat-flow measurements, seismic data and direct
sampling of oceanic crust and mantle from DSDP
drilled and dredged samples. The heat-flow data
require convective heat-transfer to explain the low
measured values, thus requiring the development
of a fracture system from thermal contraction of
the cooling crust and the tensional environment.
The hydrothermal activity will persist if the frac-
ture system remains open to accommodate fluid
access as the crust ages. We do not know the
distribution and depth of oceanic fracture systems
away from the ridge crest and transform faults.
Extent of metamorphism of the oceanic crust is
strongly dependent on: (1) age, (2) crustal thick-
ness, (3) permeability of sediments and crust, (4)
fluid-flow parameters, (5) conductive vs. convec-
tive heat-flow regime, (6) development of major
fault and fracture systems, and (7) spreading rate.
Metamorphism of the upper part of a continentally
emplaced ophiolite could have occurred within the
oceanic environment. The difficulty with deter-
mining an oceanic provenance from the whole-
rock basalt geochemistry is that (1) significant
geochemical variations occur for oceanic basalts
from different tectonic environments, and (2)
major-clement chemistry can be significantly af-
fected by metamorphism. Trace-eclement data have
been more successful in demonstrating the oceanic
character of ophiolitic basalts, Seawater involve-
ment in their metamorphism has been demonstrated
by Li- and Na-enrichment patterns in the meta-
basalts and stable isotopic measurements on in-
trusive and extrusive mafic rocks. The presence
of sulfide mineralization in dykes and mafic vol-
canic rocks at Troodos argues for the ability of
an oceanic hydrothermal system to produce sulfide
deposits. Metamorphism of the ophiolitic ultramafic
layer probably occurs after obduction; heat-flow
models do not predict penetration of water to
oceanic mantle, and in most ophiolite sequences,
metamorphism dies out in the gabbro layer. There-
fore, unraveling the metamorphic history of an
ophiolite is critical to understanding its tectonic
evolution.
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SOMMAIRE

Le métamorphisme d’un cortége ophiolitique peut
précéder, accompagner ou suivie P'obduction sur
la plateforme continentale. Pour les milieux sous-
marins, les modéles d’altération hydrothermale aux
crétes océaniques sont construits a partir des me-
sures du flux de chaleur, des données sismiques et
d’un échantillonage direct de la crofte et du
manteau (carottes DSDP et échantillons dragués).
Le flux calorique observé implique un transfert de
chaleur par convection, requérant un systtme de
fractures & la créte, par contraction de la crolte

- au refroidissement et par tensions tectoniques. L’ac-

tivité hydrothermale persistera tant que le systéme
de fractures reste ouvert aux fluides au cours du
vieillissement de la crofite. On ignore la distribu-
tion des cassures océaniques et leur profondeur
loin de la créte et des failles transformantes. L’é-
tendue du métamorphisme de la crofite océanique
dépend fortement des facteurs suivants: (1) fge
et (2) épaisseur de la crofite, (3) perméabilité de
la crofite et des sédiments, (4) paramétres du flux
des fluides, (5) importance relative de la conduc-
tion et de la convection, (6) développement de
systtmes importants de failles et de fractures et
(7) vitesse de séparation des plaques. Les suites
ophiolitiques que lon trouve sur les plagues con-
tinentales peuvent avoir été métamorphisées a leur
partie supérieure en milieu océanique, mais il est
difficile de le prouver 3 particr du géochimisme
global des roches, vu: (1) la grande variation des
basaltes en fonction du milieu tectonique et (2)
la mobilité des éléments majeurs pendant le méta-
morphisme. A cet égard, les éléments traces sont
plus utiles pour établir le caractdre océanique des
basaltes ophiolitiques. Le rble de l'eau de mer
dans leur métamorphisme est démontré par un
enrichissement en Li et Na et par les isotopes stables
des roches intrusives et extrusives. Llenrichis-
sement en S dans les dykes et les coulées mafiques
4 Troodos montre que les systémes hydrothermaux
océaniques peuvent donner des gisements de sul-
fures. Le métamorphisme des niveaux ultramafi-
ques suit probablement Pobduction; les modéles
de flux de chaleur ne prévoient pas de pénétration
de leau jusqu’au manteau. Dans la plupart des
cas, le métamorphisme disparait dans le niveau
gabbroique. Pour comprendre les événements tec-
toniques de I’histoire d’une ophiolite, il faut con-
paitre son évolution métamorphique.

(Traduit par la Rédaction)
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INTRODUCTION

Ophiolites are stratigraphically connected se-
quences of igneous and sedimentary rocks (Con-
ference Participants 1972) that are usually con-
sidered to be part of the oceanic crust (Fig. 1).
These rocks are partly to completely metamor-
phosed (Table 1) and have been tectonically
emplaced onto continental crust.

The purpose of this paper is to examine the
metamorphism of individual ophiolite se-
quences to ascertain the relative timing of
metamorphism and to establish criteria for rec-
ognizing the metamorphic effects on the
primary igneous stratigraphy. In the process of
doing this, various models of the oceanic crust
will be examined to determine whether meta-
morphism of the oceanic crust could occur in
situ prior to tectonic emplacement, or whether
metamorphism of the obducted oceanic slab
occurs during or after tectonic transport, This
work will build on the discussion of ophiolite
metamorphism summarized by Coleman (1977).

OcCEANIC HYDROTHERMAL MODELS

The degree of metamorphism and alteration
of oceanic crust has been a topic of consider-
able recent interest (Francis 1976, Muehlen-
bachs & Clayton 1976, Stern et al. 1976, Cann
1978, Cann & Moore 1978). Approaches have
included: (1) experimental work on basalt—sea-
water interaction (Hajash 1975, 1977, Mottl
1976, Bischoff & Seyfried 1978, Mottl & Hol-
land 1978) and on peridotite-seawater inter-
action (Seyfried & Dibble 1978), (2) petro-
graphic studies of oceanic metaigneous rocks
(Melson & van Andel 1966, Aumento & Loubat
1971, Aumento et al. 1971, Miyashiro et al.
1971, Bonatti et al. 1975, Bonatti & Honnorez
1976, Prinz et al. 1976, Scott & Hajash 1976,
Humphris & Thompson 1978a, b), and (3)
models of circulation patterns of fluids within
the oceanic crust (Ribando et al. 1976, Rosen-
dahl 1976, Wolery & Sleep 1976, Lister 1977,
1978, Fehn 1978, Sleep & Rosendahl 1979).

Evidence for the presence of hydrothermal
circulation in the oceanic environment is derived
from: (1) the presence of metalliferous sedi-
ments at oceanic ridges (Bostrom et al. 1971,
Dymond et al. 1973, Piper 1973, Francheteau
et al. 1979) and in the Red-Sea brines (Bischoff
1969, Shanks & Bischoff 1977), (2) heat-flow
measurements at ridge crests and flanks (Wil-
liams et al. 1974, Wolery & Sleep 1976, Ander-
son & Langseth 1977, Herman et al. 1977,
Anderson et al. 1979), (3) decay in intensity
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of magnetic remanence away from a ridge axis
(Irving 1970), (4) microearthquake swarms at
mid-ocean ridges (Sykes 1971), (5) presence
of an active hydrothermal system such as at
the Galapagos rift (Corliss et al. 1977, 1978,
Lonsdale 1977, von Herzen et al. 1977) and
TAG hydrothermal field (Lowell & Rona 1976).
The sediment mounds associated with the
Galapagos hydrothermal system are inferred
to have formed from slow percolation of hydro-
thermal fluids circulating through the basaltic
crust and overlying sediments (Corliss ez al.
1978), though direct vertical connection between
the mounds and the hydrothermal vents has
not been shown to occur (Natland et al. 1979).
Hydrothermally circulating seawater also has
been directly observed from the subaerial geo-
thermal fields at Reykjanes, Iceland (Bjornsson
et al. 1972, Mottl et al. 1975). Under the as-
sumption that ophiolites are ancient oceanic
crust, arguments have -been put forth to use
the occurrence of massive sulfides within the
ophiolite (Parmentier & Spooner 1978, Rona
1978) and whole-rock isotope geochemistry to
infer the presence of a former hydrothermal
circulation system (Spooner 1978), ostensibly
while at or near an oceanic ridge.

Heat-flow models

In his heat-flow model for oceanic ridges,
Sleep (1975) postulated that vertical heat-con-
duction from the ridge axis is a function of
spreading rate. Cooling due to conduction (heat
generated from magma accreting at ridge axis)
is more rapid near a ridge axis with slow
spreading-rates because the heat is conducted
almost vertically. However, heat-flow measure-
ments indicate that conduction is not the pre-
dominant mode of heat transfer in young
oceanic crust.

Vertical heat-transfer at the ridge can be
accelerated by hydrothermal circulation systems,
as they add a connective term to the - total
heat-dissipation. Williams et al. (1974) and
Wolery & Sleep (1976) postulated that hydro-
thermal circulation is responsible for the
anomalously low heat-flow observed at ridges.
Wolery & Sleep (1976) estimated the rate of
hydrothermal heat advection by computing the
difference between a theoretical heat-production
associated with sea-floor spreading and the ob-
served heat-flow. This calculation leads to the
extremely high calculated flow-rate of seawater
through the oceanic hydrothermal system of
1.3 - 9.0 X 10 g/y. Wolery & Sleep (1976)
postulated that hydrothermal activity would
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TROODOS BAY OF ISLANDS
Tertiary sediments Layer | _| Sediments
Upper Pillow Lavas Layer 2 Pillow Lavas
Lower Pillow Lavas |
) Sheeted Dikes
Sheeted Intrusive
Complex
Layer 3
Gabbros
Granophyres
and Gabbros Seismic Moho Anorthosite, Troctolite
Ultramafic | x x ] Feldspathic Dunite
Plutonic cumulates | x \ Petrological Moho Clinopyroxenite Chromite
Complex
i(-|arzburgite Harzburgite
depleted ‘
mantle) Mantle

FI1G. 1. Stratigraphy of two well-described ophiolite sequences compared to oceanic layer 1, 2, 3 and 4

(mantle).

TABLE 1. ROCKS OF THE CLASSIC OPHIOLITE SEQUENCE
Unmetamorphosed Rocks Metamorphic Equivalent
marine sediments chert
basalt spilite (keratophyres)i¥
gabbro* metagabbro or amphibolite

ultramafic rock serpentinite (rodingites)**
(harzburgite, dunite)

oceanic layer 1
oceanic layer 2
oceanic layer 3
mantle

—
sheeted dykes may or may not be present between the intrusive gabbroic
layer and the extrusive basalt layer {Fig. 1).

ek
commonly associated rocks produced during metamorphism.

cease after 15-20 m.y. for fast-spreading ridges
and 21-26 m.y. for slow-spreading ridges. These
time periods are derived from the convergence
of theoretical and observed heat-flow curves;
Wolery & Sleep further postulated that after
that interval, heat flow should occur purely by
conduction. However, Anderson & Langseth
(1977) have shown that the transition from
predominantly convective to conductive heat-
flow in the oceanic crust is highly dependent
on the age of the crust and the spreading rate
(e.g., 4060 m.y. for Indian Ocean, 4-6 m.y.

for Galapagos spreading-centre, 10-15 m.y. for
the East-Pacific rise, 50-70 m.y. on the Mid-
Atlantic ridge). This transition is dominated
by the development of a certain sediment-thick-
ness (= 300 m) and a change in composition
from carbonate to siliceous deposition, which
effectively decreases the bulk permeability of
the sediment cover. Also, hydrothermal flow
decreases with time owing to the clogging of
fracture systems within the crust by alteration
minerals (Sleep & Wolery 1978). Therefore,
other physical variables, such as permeability
and flow parameters, are also strongly a func-
tion of age and spreading rate. By means of
very closely spaced heat-flow surveys, Anderson
et al. (1979) have been able to calculate both
the conductive and convective components of
heat flow through oceanic crust and sediments
(Indian ocean), further substantiating the im-
portance of convective processes in the heat-
flow regime of young oceanic crust.
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Depth of fluid penetration

Heat-flow models (Lister 1972, 1974, 1977,
Ribando er al. 1976) have been postulated in
which the depth of penetration of water is ap-
proximately 5 km, based on the wavelength
of the heat-flow variation observed at the
Galapagos spreading-centre (Williams er al.
1974). Permeability alone limits the access of
fluids to about the upper 200-300 m of the
oceanic basement (Wolery & Sleep 1976).
Therefore, the permeability of the oceanic crust
and sediments is not sufficient to explain the
heat-flow measurements; most heat-flow models
also call upon a fracture system, developed
through cooling and static fatigue (Lister 1974),
to explain the anomalously low heat-flow values.
Widespread porous flow has been shown to be
an unlikely mechanism for fluid circulation
(Sleep & Wolery 1978).

DSDP drilling results in the Atlantic oceanic
crust show a general absence of hydrothermal
alteration regardless of crustal age, which led
Hall & Robinson (1979) to conclude that the
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hydrothermal circulation system must occur
at depths greater than 600 m and that it is
probably irregularly distributed. However, in
the Pacific, large fault-scarps about 1 km apart
(Williams et al. 1974, Rosendahl 1976) dominate
the topography and provide zones of high
permeability. Also, in DSDP leg 54, Hekinian
et al. (1977) reported intensely fractured and
brecciated oceanic crust on the southern flank
of the Galapagos spreading-centre. The devel-
opment of a fracture system in the oceanic
crust is related to the thickness of the basaltic
crust, its brittleness (a function of composition)
and the spacing of major fault patterns (Rosen-
dahl, pers. comm. 1979).

Fluid penetration obviously determines the
depth to which metamorphism can occur. Heat-
flow models do not predict penetration to the
oceanic mantle. The seismic velocity data
(Rosendahl 1976, Fig. 5) and oceanic crustal
models generated from those data (Clague &
Straley 1977) cannot distinguish between pris-
tine igneous rock in layer 3 and the uppermost
mantle (Fig. 1) and metaigneous rocks and
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centre from Sleep & Rosendahl (1979). The magma

chamber (dots), which is probably filled with cumulate mush, and the conduit of upwelling mantle

material (angles) are very wide. The walls of

the conduit may . consist of cooler material at the

sides (half circles) or material segregated from the partial melt. The inner intrusion-zone (dense

vertical lines) probably occurs over that part

of the magma chamber where melt is usually present.

Downwarp of the base of the magma chamber and the density difference between the cooled

gabbroic crust (slanted lines) and the magma

chamber are possible anomalous masses. The geo-

therms are calculated assuming conductive heat-transfer only.
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serpentinite. Epp & Suyenaga (1978) do not
agree with Sleep & Wolery (1978) that hydro-
thermal precipitation will close the fracture
system and stop circulation in the crust older
than the heat-flow transition zone (Williams et
al. 1974). They argued that thermal contraction
continues as the crust continues to cool, which
allows the fracture system to remain open and
to accommodate the volume occupied by the
formation of hydrothermal minerals. Thus,
fractures would increase in depth with age and
therefore would increase the extent of metamor-
phism with age, perhaps allowing fluid penetra-
tion to the mantle. Serpentinites have been
dredged from Atlantic oceanic ridges and frac-
ture-zones (Aumento’ et al. 1971, Bonatti &
Honnorez 1976). Bonatti & Honnorez (1976),
Bonatti (1976), Clague & Straley (1977) and
Epp & Suyenaga (1978) proposed diapiric in-
trusion of serpentinite into fault zones parallel
to oceanic ridge-axes, which implicitly assumes
that fluid access to the lower crust and mantle
occuired through deep fractures produced by
the tensional environment at the ridge.

Fast versus slow spreading-rates
The importance of fast versus slow spreading
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has been emphasized not only with respect to
heat flow, but also to chemical and strati-
graphic differences in the oceanic crust gen-
erated (Rosendahl 1976, Lister 1977, Sleep &
Rosendahl 1979). Fracture patterns are dis-
tinctly different for the two rates of spreading:
fast-spreading ridges are marked by axial-block
topography and slow-spreading ridges by axial
valleys (Rosendahl 1976). The salient struc-
tural difference between the two types of
oceanic ridge is the presence or absence of
deeply penetrating faults; their presence seems
to characterize slow-spreading ridges. The dif-
ference in the fault patterns between the slow-
and fast-spreading ridges can also be inferred
from the common occurrence of metaigneous
rocks dredged from slow-spreading ridges (Mid-
Atlantic ridge) and the absence of metamorphic
rocks from fast-spreading ridges (Pacific ocean-
basin) (Rosendahl 1976).

Sleep & Rosendahl (1979) presented possible
geothermal gradients away from the ridge axis
based on evidence that a fast-spreading ridge
has a relatively large, wide magma-chamber
(Fig. 2), and a slow-spreading ridge has a very
narrow magma-chamber (Fig. 3). The slope of
the isotherms is much less steep at the fast-
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spreading ridge because of the large magma-
chamber and reduced vertical heat-loss by con-
duction. The Nisbet & Fowler (1978) model
for a slow-spreading ridge suggests the absence
of a magma chamber and injection of magma
by crack propagation. However, the postulated
geothermal gradients for both types of spread-
ing centre are high enough to drive a hydro-
thermal circulation system and to be the cause
of metamorphism of the oceanic crust. The
presence of a hydrothermal circulation system
at the oceanic ridge would significantly alter
the geotherms (Figs. 2, 3) as calculated by
Sleep & Rosendahl (1979). Parmentier &
Spconer (1978) have attempted to model such
a convective system, and have demonstrated
that the magnitude of the geotherms can de-
crease significantly as a function of the boundary
conditions chosen.

The preceding discussion has shown that
oceanic hydrothermal systems exist and that
their activity is determined by such factors as:
(1) age of oceanic crust, (2) crustal thickness,
(3) permeability of sediments and crust, (4)
fluid-flow parameters, (5) conductive versus
convective heat-flow regime, (6) development
of major fault- and fracture-systems, and (7)
spreading rate. Unfortunately, the extent of
oceanic metamorphism, exclusive of fault and
fracture zones that allow fluid access, is un-.
known because of the technical inability to
sample deep oceanic crust away from those
zones. Therefore, an understanding ‘of oceanic
hydrothermal systems is critical to an under-
standing of the extent of oceanic metamorphism

TABLE 2. ELEMENTAL MOBILITIES DURING LOW-GRADE METAMORPHISM OF BASALTS

2

Experimental!  Oceanic Metabasalts®  Ophiolitic Metabasalts3

S'IOZ - +or - +
Ti0, - * *
Aly0y. - - * or +
Fel - - -
Fey0y n.d. + +
Mn0 - - *
g0 +* + ok, -
Cad - - -
Nazo + + +
0 - - s
Py0y n.d. * W, -
uzo + + +

+) gain during metamorphism
*) no change
n.d, not determined

]Hajash (1975), Mott1 (1976}, Mottl & Holland {1978)
l()1uul{oz:k/sewutex" ratios}, comparison to unaltered starting-material
asa

2eoish {1977), Humphris & Thompson (1978a}, comparison torprlst'lne basalts
in same petrelogic provenance

g-i Toss during metamorphism

3Cmsh (1977}, Grapes (1976), Menzies et al, (1977), comparisan to

unaltered basalts in individual ophioTite sequence or an average.
for unaltered ophiolitic basalts
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because fluid access to rock determines the
extent of metamorphism. Further work is
needed on the processes of formation, spacing,
depth and frequency of occurrence of fracture
systems in the crust, since they are a critical
part of the hydrothermal system, both at and
away from the oceanic ridge.

OPHIOLITES

The stratigraphic sequence of rocks making
up the complete ophiolitic sequence is rela-
tively well defined (Conference Participants
1972). The major problem in correlating
ophiolites with oceanic lithosphere is that the
oceanic provenance of the ophiolite is uncer-
tain. Various models have been proposed sug-
gesting ophiolites can be correlated with mature
oceanic crust and mantle (Gass 1977), mar-
ginal-basin type of crust and mantle, or im-
mature oceanic crust, i.e., that from a ridge
crest (Rosendahl 1976).

Geochemistry of ophiolitic rocks

Experiments with basalt and seawater (Table
2) show major-element exchange between basalt
and fluid, Table 2 also illustrates element
changes in oceanic and ophiolitic basalts that
have wundergone greenschist-facies metamor-
phism. A good correlation exists between the
direction and change of element mobilities be-
tween oceanic metabasalts and experimentally
derived analogues. The metabasalts of ophiolite
suites show the greatest variation in the major-
element mobility when compared to the experi-
mentally derived metabasalts and to the oceanic
metabasalts.

Experimental work on mineral stabilities and

TABLE 3., COMPARISON OF ELEMENTAL MOBILITIES DURING LOW-GRADE METAMORPHISM

OF PERIDOTITE
Experimentall Oceanic Ophiolitic
Heta-Peridotite? Meta-Peridotited

s10, - *, - N
TiOz n.d. *, - ¥, -
AT04 n.d. * - -
FeQ n.d. - -
Fe,04 n.d. + +
FeOt - - * -
Hno - * *
MgO + +, * +, *
Ca0 + - .
Nazo - LA L
Kzo * L3 *’ -
Hzo" + + +

(=) loss during metamorphism, {+} gain during metamorphism, (*) no

change, n.d. not determined. ! Seyfried & Dibble (1978); 2 Aumento &
Loubat (1971), Prinz et al. {1976); 3 Miyashiro (1966), Moores & Vine
{1971), Coleman & Keith {1971), Honﬁ%ny et al. (1973), Comparison of
Tosses and gains with average peridotite [Nockolds 1954, Green 1967).
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TABLE 4. COMPARISON OF DIRECTION OF MAJOR-ELEMENT MOBILITIES FOR METABASALTS AND

METAPERIDOTITES FROM DIFFERENT ENVIRONMENTS

Metabasalts Metaperidotites

Exp/0c*  Exp/Oph*  Oph/Oc* Exp/Oc*  Exp/Oph*  Oph/Oc*
510, d d d d s d
Ti 02 d d s nd nd H
A1203 $ d d nd nd d
Fe0 $ s H nd nd s
Fe,04 nd nd s nd nd s
MnQ s d d d d s
Mg0 s d d d d s
Ca0 s 3 H d d H
Na,0 s s H d d s
KZO s d d s d d
H20 s s s 3 s H

Exp = experimental results, Oc = oceanic rocks, Oph = Ophielitic rocks, s = same,

d = different, nd = not determined
* from Tables 2 and 3

metamorphism of ultramafic rocks (Chernosky
1975, Moody 1976a, b, Seyfried & Dibble
1978) documents some major compositional
changes during serpentinization, involving sea-
water under greenschist-facies conditions (Table
3). These changes chiefly involve an addition
of magnesium and water and a loss in total
iron, Si0;, Al:Os; and FeO.

Tables 2 and 3 show the direction of major-
element mobilities for metamorphic rocks of
the oceanic crust and ophiolite suites. The ex-
perimental results presented are for basalt and
peridotite reacted with seawater under green-
schist-facies conditions. Comparisons of the di-
rection of element mobility for metamorphic
rocks from different environments are presented
in Table 4. Similar patterns of element mobilities
between ophiolitic and oceanic rocks could in-
dicate similar metamorphic conditions (e.g.,
in ophiolitic and oceanic metaperidotites). A
comparison of the rock-seawater experiments
and the element-mobility patterns in metamor-
phic rocks might indicate seawater involvement
in metamorphism (e.g., experimental and oce-
anic metabasalts). However, Table 4 indicates
the difficulty in trying to use the major-element
geochemistry to determine the time and place
of metamorphism, as the correlation between
the three different groups, except for the two
examples given above, is inconclusive.

The degree of element mobility during meta-
morphism largely determines the relevance of
geochemical studies performed on ophiolitic
rocks. Whole-rock chemistry of basalts has been
used to demonstrate that ophiolites are related
to oceanic crust. For example, Miyashiro
(1973, 1975a, b) has used major-element chem-
istry to suggest that the Troodos ophiolite was
formed in an island-arc environment. However,

his claim has been refuted by Gass et al.
(1975), Hynes (1975), Moores (1975) and
Church & Coish. (1976). Some of the disagree-
ment between Miyashiro (1975a, b) and the
other workers results from Miyashiro’s (1975c)
contention that element mobility during meta-
morphism is minor. The difficulty in using
major-clement data to support arguments of
tectonic environment is shown in Tables 2 and
3. These tables clearly illustrate significant
major-element changes during low-grade meta-
morphism of both basalts and ultramafic rocks
in ophiolite sequences; thus, care must be exer-
cised in an extrapolation from major-clement
chemistry to the tectonic setting of the igneous
rocks. The weight of evidence for the Troodos
would favor an oceanic origin of the basalts,
but not chiefly on the basis of the whole-rock
chemistry. Therefore, Miyashiro’s arguments
based on major-clement chemistry of the basalt
are not very convincing evidence of an island-
arc origin for the Troodos complex.

Miyashiro (19752) has also used whole-rock
chemistry to classify ophiolites into three dif-
ferent groups based on the inferred presence
of calc—alkaline or tholeiitic trends as shown
by the basalts of ophiolitic sequences. How-
ever, Pearce & Gale (1977) and Sun & Nesbitt
(1978) suggested, as did Miyashiro (1975a, b,
¢), that some real geochemical variation exists
among oceanic basalts from the different tec-
tonic environments within oceanic lithosphere
(e.g., oceanic ridge-crest versus island arc ver-
sus back-arc basin). Therefore, the petrological
origin of ophiolitic basalts is further compli-
cated not only by metamorphism, but also by
real geochemical differences reflecting tec-
tonic environments.

The direction of element mobility for the
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metamorphosed oceanic versus ophiolitic ultra-
mafic rocks is the same except for SiO:, Al:Os
and K.O (Table 4). However, the preliminary
results of peridotite-seawater experiments (Sey-
fried & Dibble 1978) conflict with the geo-
chemistry of metamorphic rocks, especially
with respect to CaO. Calcium is lost from
ultramafic rocks during metamorphism in both
oceanic and ophiolitic rocks, and the leached
calcium is deposited in the rocks associated
with serpentinites, e.g., rodingites (Barnes &
O’Neil 1969, Barnes et al. 1972, 1978, Coleman
1977, Pfeifer 1977, Wenner 1979). Honnorez
& Kirst (1975) described rodingites dredged
from the Mid-Atlantic-ridge fracture zones;
these formed by the alteration of a noritic
gabbro. The element-mobility data support the
formation of rodingites by fluids involved in
the metamorphism of ultramafic rocks. CaQ
is also shown to be lost during metamorphism
of basalts.

Tables 2 and 4 indicate that Na-enriched
metabasalts (i.e., spilites) can form from the
interaction of seawater with basalt. Both oceanic
and ophiolitic metabasalts demonstrate an en-_
richment in sodium, which agrees with the ex-
perimental data on basalt-seawater interaction.
A comparison of the direction of mobility for
the other elements in the experimentally derived
metabasalts with the direction of those in the
oceanic metabasalts demonstrates very good to
excellent agreement. A comparison of oceanic
and ophiolitic metabasalts shows a much
greater variation in patterns of element mobility.

Further evidence for seawater involvement
in the formation of spilites could be inferred
from the data of Shaw et al. (1977). Enriched
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in sodium and water, spilites are also enriched
six-fold in Li compared to the unmetamorphosed
basalt. Seawater, brines and volcanic waters
are obvious choices for the Li- and Na-enrich-
ment in the spilites.

The data in Tables 2 and 4 indicate that
the metamorphism of basaltic rocks could occur
in the oceanic crust. Also, the wider variability
in the major-element-mobility data for ophiolitic
metabasalts may indicate the effects of more
than one metamorphic event, with involvement
of a fluid other than seawater. The data for
the ultramafic rocks (Tables 3, 4) are incon-
clusive.

Pearce & Cann (1971) used the Ti, Zr and Y
contents of four different ophiolitic basalts to
demonstrate that the volcanic rocks have ocean-
floor provenance. Smewing et al. (1975) argued
that the major- and trace-element contents of
Troodos metabasalts are significantly different
from those formed at present-day constructive
plate-margins, and proposed an origin at a slow-
spreading ridge within a small, marginal ocean-
basin. Coish (1977) asserted that metamorphism
had little effect on TiO,, P:Os, Zr, Y, Cr or
Ni contents of metabasalts from the Betts Cove
ophiolite, Newfoundland, and proposed an
ocean-floor origin for the basalts. Beccaluva
et al. (1977) determined 12 different trace-
element contents for the rocks within the
ophiolitic sequence from eastern Corsica and
concluded that the ophiolitic metabasalts showed
an ocean-floor affinity.

Rare-earth-element (REE) data from ophioli-
tic rocks are sparse; rocks from the Pindos
suite, Greece (Montigny et al. 1973), the
Troodos complex, Cyprus (Kay & Senechal

TABLE 5. GEQCHEMICAL CRITERIA USED BY BLAND (1978) TO DETERMINE THE ORIGINAL CHARACTER OF -
APPALACHIAN METABASALTS

Chemical
Discriminator

Rock Types
Distinguished

Reference

12-20 wt. % Ca0 + MgO*

selects rocks of similar

Pearce & Cann (1973)

tectonic affinities &

>20% Ca0 + Mg0*

alkalies
K0 & NaZO/KZO ratio

l-']--F2 discriminate function

OFB & RA from
WPB, SHO, OFB,
(LKT & CAB)

Fz-»F3 discriminate function

Ti vs. Zr, ppm**
Zr vs. Ti/100 vs. (3)Y, ppm

OFB, CAB, LKT

OFB + CAB + LKT
Cal wt % vs. Y, ppm

eliminates ultramafic- cumulates

(LKT, CAB, SHO, OI)

SHO, LKT, CAB, OFB

WPB, CAB, LKT, and

LKT & SHO plot to left

Pearce (1976)
Jakes & White 51972)

Rogers et al. {1974)
Pearce (1976)
Pearce (1976)

Pearce & Cann (1973)
Pearce & Cann {1973)

Lambert & Holland (1974}

of SCAT; OI, CON, OFB
plot to right of SCAT;
CAB plot within SCAT

* coupled with 'l"lO2 content SYMBOLS:

** coupled with Ca0 + MgD content

OFB = ocean-floor basalts

LKT = Tow-potassium tholeiites
CAB = calc-alkaline basalts
SHO = shoshonites

01 = oceanic-island basalts

CON = continental-
rifting basalts
RA = rear-arc basalts
WPB = within-plate basalts
SCAT = standard calc-
alkaline trend
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1976, Smewing & Potts 1976) and the Point
Sal ophiolite, California (Menzies et al. 1977)
have been examined. Unfortunately, total agree-
ment on the effect of metamorphism on the
primary basalt-REE distributions is not evident.
Menzies et al. (1977) summarized evidence
that indicates light-REE mobility during zeolite-
facies metamorphism of ophiolitic basalts. This
mobility results in an increase in the total con-
centration of REE and a change in the profile
characteristics due to Ce or La mobility. At
the same time, greenschist-facies metamorphism
has not changed the REE patterns of the
primary basaltic lavas of ophiolite complexes
(e.g., Point Sal ophiolite). Conversely, Montigny
et al. (1973), Kay & Senechal (1976), Smewing
& Potts (1976), Coish & Church (1978) present
evidence that REE abundances of ophiolitic
basalts were not modified by metamorphism for
the Pindos, Troodos and Betts Cove complexes.
Clearly, more REE data are needed for the
total stratigraphy of an ophiolite sequence be-
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fore the question of REE mobility during meta-
morphism can be resolved.

A combination of major- and trace-clement
data is more convincing in demonstrating an
ocean-floor origin for the ophiolitic metabasalts.
Bland (1978) has confirmed that the tectonic
origin of a metabasalt can be determined, but
that more than one geochemical test must
be applied in order to see through the meta-
morphic - overprint. Table 5 summarizes the
different criteria used by Bland (1978) to de-
termine the tectonic setting of many different
ages of the metabasalts in the Appalachian
Blue Ridge and Piedmont. A more definitive
statement about the origin of the ophiolite
basalts could be made if a complete geochemical
study were done on these rocks, similar to
Bland’s (1978), using a statistically significant
sample size. Pearce & Gale (1977) have used a
combination of whole-rock chemistry, trace-
clement and REE data of metabasalts to clas-
sify the tectonic environment (oceanic) asso-

oceanic serpentinites

oceanic metabasalts

oceanic gabbro
oceanic basalt

ophiolite metabasalts

— ophiolite serpentinites

ophiolite ultramafic rocks,

partially serpentinized

+ vein serpentine
Troodos serpentinites
Troodos metabasalts

CE R RN

80 12 14 16

' 0 %o(relative to SMOW)

FiG. 4. Summary of whole-rock oxygen-isotope data obtained from Spooner et al.
Magaritz & Taylor (1974).

Wenner & Taylor (1973),

(1973, 19772, b),
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ciated with the formation of massive-sulfide
deposits related to ophiolites,

Oxygen-isotope data have been used to in-
dicate the type of water involved in metamor-
phism as well as the temperature of metamor-
phism. Spooner et al. (1974, 1977a) argued
for seawater involvement in the metamorphism
of eastern Liguria, Pindos and Troodos ophioli-
tic basalts. However, Figure 4 shows that the
ophiolitic metamorphic rocks are more enriched
in §'*0 compared with the oceanic rocks. Some
overlap is present in the data, especially for
the partly serpentinized ultramafic rocks. How-
ever, these oxygen-isotope data alone do not
necessarily provide conclusive evidence for sea-
water involvement.

Sheppard (1977) and Heaton & Sheppard
(1977) presented both $°0 and $§D isotopic
data for the metamorphosed Troodos pillow-
lavas, sheeted intrusive complex, trondhjemites
and upper gabbro. The 8D values for Troodos
rocks overlap with the few available measure-
ments of oceanic metamorphic rocks. Mineral
data are combined with whole-rock values to
calculate models for SD and §™0O fractionation
assuming equilibrium, with the isotopic differ-
ences reflecting different temperatures (i.e.,
different metamorphic grades. Heaton & Shep-
pard (1977) concluded that a large component
of seawater was involved in the metamorphism
of Troodos rocks.

Wenner & Taylor (1973) and Magaritz &
Taylor (1974) documented a marked difference
between oceanic and continental ophiolitic ser-
pentinites on the basis of both oxygen- and
hydrogen-istotope compositions. They argued
against a seawater origin of the water involved
in the metamorphism of the ophiolitic ultra-
mafic rocks.

Recent measurements by Sakai & Tsutsumi
(1978) of serpentine—water D/H fractionations
between 100-500°C at 2 kbar suggest that
deuterium exchange, in particular, may be con-
trolled by nonequilibrium processes. The ex-
perimentally derived D/H fractionation factors
indicate that a mixed fluid containing 50-75%
magmatic water and temperatures higher than
300°C were involved in the formation of
oceanic lizardite—chrysotile serpentinites; this
result is not in agreement with previous work
(Wenner & Taylor 1973). Sakai’s & Tsutsumi’s
(1978) work illustrates the difficulty in using
whole-rock isotopic analyses to determine the
nature of the fluid involved in metamorphism
or alteration if equilibrium isotopic fractiona-
tions are assumed.

The model of Spooner & Fyfe (1973) and
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Spooner et al. (1977a) for hydrothermal meta-
morphism of ophiolite metabasalts from eastern
Liguria, Italy, is based on oxygen-isotope data,
water contents and Fe®*/(Fe**{Fe®*) ratios
of the rocks. The metamorphic mineral as-
semblages indicate that temperature increased
with depth in the basaltic lavas. The §*O values
decrease with depth but do not reach the §°0
composition of primary basalt. The §®0 profile
was assumed to be controlled by the temperature
gradient. Different oxygen-isotope values and
oxidation ratios were measured for cores versus
rims of metabasalt pillows, indicating that iso-
topic and chemical equilibrium was not achieved
during metamorphism. Spooner et al. (1977a)
combined the oxygen-isotope data with the
oxidation ratio Fe®**/(Fe**+Fe**) to calculate
the amount of water involved in the alteration
of the basalt (10°-10*: 1 water:rock ratio).
Their calculations assume that the fluid involved
in the alteration was seawater.

Measurements of *Sr/*Sr ratios in the
Troodos mineralized and metamorphosed dykes
and mafic volcanic rocks (Chapman & Spooner
1977, Spooner et al. 1977b) yield values en-
riched in *Sr relative to fresh oceanic basalts.
These authors suggested that seawater was the
ore-forming fluid for the sulfide ore-deposits
of the Troodos complex, a hypothesis sub-
stantiated by fluid-inclusion data from vein
quartz coexisting with the sulfides (Spooner
& Bray 1977). They gave the occurrence of
the deposits as further evidence of a major
oceanic hydrothermal-circulation system within
the basalts. : .

Spooner & Fyfe (1973), Andrews & Fyfe
(1976), Coleman (1977) and Rona (1978)
have documented the evidence for hydrothermal
systems at spreading centres with regard to
seawater leaching of the basaltic oceanic crust
to derive the metals for the massive sulfides
of ophiolitic complexes. Spooner (1977) and
Parmentier & Spooner (1978) have developed
a model for Cyprus deposits, where a strong
case can be made for the location of the sulfide
deposits within the metabasalt layer as a result
of oceanic hydrothermal circulation. A total
geochemical study of ophiolite metabasalts as-
sociated with massive sulfides in Cyprus, Oman
and Betts Cove has led Pearce & Gale (1977)
to postulate that the basalts formed at a spread-
ing axis in an oceanic back-arc basin rather
than at a major oceanic ridge-crest. Unfortu-
nately, the subsequent metamorphism and de-
formation of the ophiolitic metabasalts of the
Whalesback cupriferous iron deposit, Newfound-
land, do not permit the relationship between
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TABLE 6. TYPICAL MINERALOGY OF OPHIOLITIC METABASALTS*

AND METAPERIDOTITES*

chlorite, epidote, albite, actinolite
+ sphene, zeolites, calcite

1izardite, chrysotile, magnetite
+ brucite, antigorite

Spilites:

Serpentinites:

* Essential metamorphic mineralogy of oceanic meta-
igneous rocks and continental ophiolitic rocks
is same.
sulfide mineralization and sub-sea-floor meta-
morphism to be determined (Bachinski 1977).

Metamorphic mineralogy

As shown previously (Table 1), metaigneous
rocks similar to those in ophiolite suites have
been recovered in dredge samples from oceanic
ridges and fracture zones. Table 6 summarizes
the essential mineralogy of serpentinites and
spilites (layers 2 and 4 in the stratigraphy of
the ophiolite sequences). The metamorphic
mineralogy is not very helpful in contrasting
the oceanic versus continental ophiolitic environ-
ment — they are the same. The interesting
problem is that both the serpentinites and
spilites (Na-enriched metabasalts) can undergo
metamorphism in the same range of temperature-
pressure conditions (Moody 1976a, b, Moody
& Meyer 1978, Meyer 1978). If that setting
is defined in terms of zeolite- and greenschist-
facies metamorphism, then the distinction be-
tween the timing of metamorphism and occur-
rence of serpentinites and spilites together in
the ophiolite sequence can be made.

Many models of sub-sea-floor metamorphism
(Spooner & Fyfe 1973, Bonatti et "al. 1975,
Coleman 1977, Elthon & Stern 1978, Humphris
& Thompson 1978a, b) indicate increasing
metamorphic grade with increasing depth.
Oceanic metamorphism is depicted in these
models as dying out in the gabbroic layer at
conditions of upper-greenschist or amphibolite
metamorphic facies.

Ophiolitic rocks that show this increasing
grade of metamorphism down through the
ophiolite sequence, from sediments to extrusive
and then to intrusive mafic rocks (Fig. 1) are
found in (1) eastern Liguria, Italy (Spooner
et al. 1974, 1977a), (2) the Sarmiento
complex, Chile (Elthon & Stern 1978), (3)
the Chenaillet massif, France (Mevel et al.
1978), (4) Darvel Bay, Borneo (Hutchison
1978). Table 7 summarizes the best described
of the known ophiolite sequences with respect
to metamorphism. The difficulty in preparing
the table was that information on the meta-
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TABLE 7. METAMORPHIC HISTORY OF OPHIOLITES*

Degree of metamorphism Examples

Metamorphism in oceanic crust  Vourinos, Northern Greece
down to gabbro layer only; Macquarie Island
serpentinization during or Bay of Islands, Newfoundland
after tectonic emplacement Blow-Me-Down, Newfoundland
Betts Cove, Newfoundland
Troodos, Cyprus
Sarmiento complex, Chilel
Point Sal, California?
Semail, Oman
Papua-New Guinea
Chenaillet, France?
E. Liguria, Italy"
Darvel Bay, Borneo®

Dunn Mtn., New Zealand®
Southern Québec’
Eastern Taiwan®
Karmoy, Norway®

Polymetamorphism before
and after emplacement,
including regional
metamorphism

*

newly published information modifies and adds to the orig-
inal compilation of Christensen & Salisbury (1975). Elthon &
Stern (1978), 2Menzies et al. (1977), SMeve] et al. (1978),
bSpogner et al. (1974, 1977a), SHutchison (1978), ©Coombs et
al. (1976), 7Laurent (1975a, b), Laurent & Hebert (1978),
lﬁag;gv)n: et al. (1978), SLiou & Ernst (1979), °Sturt et al.

morphism of the total stratigraphic sequence is
generally unavailable. Those ophiolites that give
evidence for a possible oceanic episode of
metamorphism reach upper-greenschist facies,
although Mevel et al. (1978) described amphi-
bolite-facies metamorphism in an ophiolite
gabbroic layer. Amphibolites formed from meta-
morphism of the intrusive mafic layer have
been observed in the oceanic environment
(Table 1). These amphibolites are not to be
confused with those produced at the base of
the ophiolite in a metamorphic aureole that is
clearly related to its tectonic emplacement
(Dewey & Bird 1971, Jamieson 1979, McCaig
& Kemp 1979).

Most ophiolitic serpentinites are composed of
lizardite—chrysotile  rather  than antigorite
(Wenner & Taylor 1973, Magaritz & Taylor
1974, Wicks & Whittaker 1977, Prichard 1979),
indicating a lower temperature of metamorphism
than the antigorite field of stability (Moody
1976a, Evans 1977). However, Liou & Ernst
(1979) reported antigorite in ultramafic rocks
of the East-Taiwan ophiolite, and other upper-
greenschist-facies minerals from the meta-
basalts. Clearly, depth of penetration of cir-
culating ocean waters is important, as are
metamorphic pressure-temperature conditions.
In the case of most ophiolitic ultramafic rocks,
amphibolite-facies metamorphism is too high
a grade of metamorphism to have taken place
in oceanic environments.

Amphibolite-grade oceanic metamorphism of
ultramafic rocks is uncommon; Bonatti et al.
(1970) have described anthophyllite and cum-
mingtonite in a dunite. In fact, prograde meta-
morphism of serpentinite with formation of
“metamorphic” olivines has been postulated to
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occur at the greenschist-amphibolite boundary
(Vance & Dungan 1977, Dungan 1977) with
the coexistence of antigorite and olivine.
Johannes (1975) & Evans et al. (1976) deter-
mined the equilibrium breakdown of antigorite
to forsterite + talc to occur at approximately
500°C at 2 kbar total pressure. Prograde meta-
morphism of a serpentinite to the amphibolite
facies would produce the mineral assemblage
forsterite 4 talc = tremolite (Vance & Dungan
1977, Evans 1977), not the common meta-
morphic assemablage found in metamorphosed
ophiolitic ultramafic rocks (Table 6). There-
fore, the presence of an amphibolite-facies meta-
morphic assemblage in the ultramafic layer of
an ophiolite probably indicates a prograde re-
gional metamorphism of the ophiolite after em-
placement of the ophiolite on the continent.

METAMORPHIC MODELS FOR OPHIOLITES

The discussion presented in the two previous
sections indicates that ophiolitic basalts have
an oceanic character. Metamorphism of layer 1,
layer 2 and part of layer 3 (Fig. 1) probably
occurs in the oceanic crust before tectonic
emplacement of the ophiolite, whereas metamor-
phism of the lower part of layer 3 and all of
layer 4 occurs during or after emplacement
(Moody 1978). Detailed models of hydro-
thermal circulation systems at mid-oceanic
ridges are in the process of being evaluated by
geophysicists, geologists and petrologists. More
information is needed before an internally con-
sistent model for both fast- and slow-spreading
ridges can be developed. The extent of meta-
morphism at the ridge crest, and as a function
of age of the oceanic crust, is still unknown.
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The major consensus (Tables 7, 8) from the
studies of both oceanic and ophiolitic rocks is
that metamorphism of the ophiolitic sequence
can occur within layers 1 and 2 but ceases at
various different levels in layer 3 (gabbro,
Fig. 1). The cessation of metamorphism in
layer 3 is directly related to the limit of fluid
penetration into the oceanic crust, which is un-
known except for oceanic ridge-crests and
transform faults. As further information about
fluid penetration away from crests and faults
is unlikely to emerge because of drilling limita-
tions, quantitative modeling of the cooling, con-
tracting crust will be required to shed light
on the major oceanic—fracture systems away
from the ridge crests.

Evidence gathered to date strongly suggests
that serpentinization of the ultramafic layer
occurs after and not before emplacement of
the ophiolite. Certainly, the physical properties
of peridotite versus serpentinite (Moody 1976a)
are sufficiently different during deformation to
suggest this (i.e., the tectonic emplacement of
a serpentinite would take place with the pro-
duction of a mélange and complete disruption
of the serpentine layer). Mélange production
on a large scale has been described for sub-
duction-zone ophiolites (Coleman 1977) but
is not a widespread feature of other ophiolites,
Therefore, tectonic-emplacement models point
to the ophiolite metamorphism of the lower
layers 3 and 4 occurring during or after em-
placement, not before. The tectonic emplace-
ment of some ophiolites (e.g., at Bay of Islands
and Semail) is marked at their bases by meta-
morphic aureoles of medium- to high-grade
rocks including mylonites.

TABLE 8. SCHEME OF METAMORPHISM FOR OPHIOLITES*

Ophiolite Oceanic
Rocks Metamorphism Obduction Regional*+*
Marine Sediment Zeolite No metamorphism, or Zeolite

metamorphism in oceanic

Basalt Zeolite-greenschist

(spilites)
Diabase Greenschist

Gabbro Greenschist-amphibolite

environment before tec-
tonic transport

Zeolite-greenschist

Greenschist

Greenschist-amphibolite

Peridotite Unmetamorphosed, except
Tocal serpentinization
along fracture zones
rodingites associated

with serpentinites

* contact metamorphic
aureole mélange,
mylonites, serpentini-
zation ¢ rodingites

Deformation at base of
ophiolite slab with
development of folia-
tion there

Conditions of
Metamorphism

No deformation

Serpentinization,
possible prograde
metamorphism of
serpentine

Development of
penetrative
foltation

* modified from Coleman (1977)

** multiple stages of metamorphism possible, superposition of oceanic with continental
regional metamorphism, including simple burial metamorphism without development

of penetrative deformation.
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Element mobilities during metamorphism are
significant. Care must be exercised in re=
constructing parent igneous rocks from their
supposed metamorphic progeny. Several lines
of geochemical and petrographic evidence must
be assessed before definite conclusions can be
reached about the parent igneous rock and
its origin.

The metamorphic history of an ophiolite is
an integral part of its geological history. Critical
to an understanding of this metamorphism is
the ability to decipher the geological events
undergone by the ophiolite after emplacement
on the continent, its emplacement history and
then its possible oceanic provenance. It is safe
to say that the unique importance of ophiolites
in the understanding of global tectonic processes,
coupled with the difficulty in unraveling their
histories, will assure them a continuing central
position in plate-tectonic studies in the fore-
seeable future.
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