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ABSTRACT

A Fortran IV computer program, POLYVOL,
has been developd to calculate the volume, sur-
face area and interedge angles for anv convex poly-
hedron. It has checks to determine whether the
polyhedron is convex and whether its surface has
been correctly closed by the defined exterior faces.
These two checks provide a powerful aid in
assuring that the computed volume is correct. A
specific application of this program is made to the
cubic svnthetic zeolite tvw A.

Ketwordst polyhedron volume,' crystal structure,
zeolite tvpe A.

SoMMAIRE

POLYVOL. programme r6die6 en Fortran IV'
permet de calculer le volume, la superficie et les
angles e4tre ar6tes d'un polyMre convexe quel-

conque. Il p€rmet de v6rifier si le polyddro est
convex€ et si sa surface est effectivement ferm6e
par les faces ext6rieures pr6alablement d6finies; ces
deux tests permettent de s'assurer que le volume cal-
cui6 est exact: Nous appliquons ce programme i
la z6olite svnth6tique cubique de tvpe A,

(Traduit Par la R6daction)

Mots-cl6s: volume d'un polyEdre. structure cristal-
line, z6olite de type l.

InrnonucttoN

Crystal structures are composed of packed

arrays of various occupied and vacant polyhedra

that totally fill the space in the unit cell. The
polyhedra are commonly described in terms of

coordination number, bond lengths, bond angles
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and distortional indices (Dollase 1974). In
addition to these parameters are the volumeo
surface area and interedge angles of the poly-
hedra. These polyhedral parameters are all
directly related to such structural properties as
cation distribution and unit-cell parameters.
The value of the program POLYVOL is that
it allows simple and rapid calculation of these
parameters with only a minimal amount of
input data. The program, written in Fortran
IV. is available from the authors upon request.

Polyhedral volumes are directly applidable
to the study of crystal sftuctures, particularly
of zeolites, in which the volumes of large cages
often control the occlusion of molecular species
within the zeolite framework.

The variation of polyhedral volumes is an
important stereochemical response to changes, in
temperature and pressure. It should be possible
to determine whether the volume decrease ac'
companying increasing pressure is due, to com-
presiion of the filled polyhedra or to their rota-
iion with respect to each other (Hazen &
Finger 1979). A rotation should be reflected
in a volume decrease of only the unfilled poly-
hedra within the structure.

DEFINING A POLYHEDRON

Any convex polyhedron composed of r pojnts
is uniquely defined by its v vertices. By defini-
tion, a point is a vertex if there exists a plane

such that 1) the point is contained in that plane
and 2) all remaining points lie to one side of
that plane. Collinear and coplanar points,-can
be identified with.vector tests and then elimi'



r54 THE CANADIAN MINERALOGIST

nated from the initial array of n points if they
do occur. An interior point creates a special
situation. which will be discussed below.

By permuting the n points three at a time,
the number R of unique triangular planes is
given by nr./3!(n-3) !. The number T of exterior
t$angular faces that define the polyhedron is
given by 2v4, as a direct consequence of
Euler's theorem. Since every triangular face
has three edges and each edge is shared by two
faces, the number of edges is given by

E  =  3F /2  (1 )

from Euler's theorem:

F = 2 v 4 = T  ( 2 )

Detsnn,rrNlNc rHs T ExrERroR FAcEs

Each of the R triangular planes, defined by
tlree points, can be described by two vectors
Yr and Yr, with one of the three points being
chosen arbitrarily as an origin for the plane
(Fig. l). Identification of the exterior faces
of the polyhedron requires using the cross-
product vector Ys = Yr x Yr (or Y: x Yr). The
vectors Yr and Ys aro crossed in the order that
will direct the vector Vs awa! from the geo-
metric centre of the polyhedron. Thus Yr, Vz

and Vs constitute a set of basis vectors for each
plane R, which can be used to describe the
locatlon of all of the n points. The exterior
faces are the only faces for which none of the n
points can be expressed with a positive linear
component of the cross-product vector Vg, in
that basis.

Each exterior face is then tested to see
whether any of the remaining a-3 points lie
in that face. If no other points lie in the face,
then all three points must be vertices and the
face constitutes one of the T exterior triangular
faces. If, however, other points do lie in the
face, then the total set of points re comprising
the face is treated separately. Collinear and co-
planar points are first eliminated from the set
of la points, leaving j vertices to define a con-
vex polygonal face. The face is then broken
down into l-2 triangles with each triangle re-
presenting one of the ? faces.

CoupurrNcirHE VoLUME

Each exterior triangular face T is the base of
a tetrahedron whose apex can be any point P
lying inside the polyhedron. P is the common
apex of the T tetrahedra and also defines an
origin for the polyhedron, so that the three

Frc' l. (a) The vertices, 1,2 and 3 define one of the polyhedron's R triangular planes. To determine
whether this is an exterior face, the vectors Yr and Yz are crossed in the order that directs their
cross-product vector fr away from the geometric centre of the polyhedron. This plane is an exterior
triangular face because all the remaining n points possess a negative Ya component (b) For the plane
defined by the vertices 4, 5 and 6, vertex number 7 has a positive Ya component and is therefore not
an exterior triangular face.
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vertices that define the face become the end
points of three vectors denoted A, B and C,
which outline a tetrahedron. The volume of
the tetrahedron is one-sixth of the volume of
the parallelepiped defined by the same three
vectors and is given by % lA, 'B x Cl. Summing
the T tetrahedral volume elements gives the
total volume of the polyhedron.

CoNcevrrv

One possible problem, here referred to as
concavity, results if one or more of the n
points is positioned inside the convex polyhedron
formed by the rr vertices. Some of the faces
then indent the polyhedron's exterior. POLY-
VOL computps the volume of the convex poly-
hedronn however, resulting in the generation
of an incorrect number of tetrahedra. The
point(s) that causes the concave arrangement
of exterior faces can be identified. since it is
not eliminated as being collinear or coplanar
and does not occur as one of the polyhedron's
vertices.

For some concave polyhedra, it is necessary
to correct for the re-entrant volume. which is
calculated in a similar manner and subtracted
from the volume calculated assuming con-
vexity. If the problem is more complex than
this, it is then necessary to divide the large
concave polyhedron into smaller convex seg-
ments and sum their respective volumes.

An additional test sums the cross-product
vectors (with magnitudes proportional to the
areas of their respective faces) of the 7 exterior
faces. If the polyhedron's surface has been
correctly closed, this results in a zero vector.
A scalar sum of the cross-product vector mag-
nitudes is equal to twice the total surface area
of the polyhedron.

Polyuepner Voluvrns tN e Znollrn

The synthetic zeolite type A was first de-
scribed by Reed & Breck (1956) as a cubic
aluminosilicate framework structure with space
group Pm3m and a cell edge of 12.32 A. The
sodium analogue of this structure has the for-
mula Nare[(AlOr)r:(SiOs)rr). 27HzO and con-
tains two large cavities, each of which is ca-
pable of occluding water. The smaller, 36-coor-
dinated B cage is located at each corner of the
primitive cell, whereas the larger, 72-coordinated
cv cage occupies the centre of the unit cell
(Breck 1974).

Water molecules have a minimum kinetic
diameter of.2.65 A (Hirschfelder et al.1954),

so that they pass easily into the a cage through
an 8-membered oxygen ring, with an aperture
of. 4.2 A. For water to occupy the smaller B
cage, it must pass through a 6-membered oxygen
ring with an aperture of 2.2 A and displace the
sodium atoms that occupy the centres of these
rings. It has been suggested that this requires
dipole-cation interaction (Breck 1974),

The sodium type-A structure was found to
hold 27 water molecules, which is equivalent
to an occlusion volume of 833 A" (Reed &
Breck 1956). Reed & Breck estimated the
volume of each cavity by inscribing the largest
possible sphere within that cavity, giving cal-
culated volumes of 775 A" for the a cage and
157 N for the 0 cage. To account for the 833
A' of occluded water, they reasoned that the
water must fill both cavities. The water mole-
cules are thought to adopt a pentagonal dode-
cahedral arrangement inside the a cage and to
be bonded to the framework oxygens in the B
cage (Gramlich & Meier 197 l). This is incon-
sistent with n.m.r. data, which show the water
to be present as an isolated liquid phase inside
the o cage (Breck 1974).

The volume of the a cage, as computed by
POLYVOL, is 1310 A'. the actual void volume
of this cavity is less, because the coordinating
atoms are actually spheres of finite volume. The
volume taken trp by these atoms, calculated by
POLYVOL using the appropriate radii from
Shannon & Prewitt (1969), was found to be
266 N. This results in a net volume for the a
cage of 1044 4", which is large enough to hold
the 833 A'of adsorbed water.

In summary, the volume data indicate that
water may occupy only the cu cage and does
not enter the B cage. This eliminates the need
for dipole-cation interaction and is also con-
sistent with the n.m.r. data.
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