SOLID SOLUTION IN THE ADELITE GROUP OF ARSENATES

J.L. JAMBOR, D.R. OWENS AND J.E. DUTRIZAC

Mineral Sciences Laboratories, CANMET, Department of Energy, Mines and Resources, 555 Booth Street, Ottawa, Ontario K1A 0G1

ABSTRACT

Duftite and conichalcite specimens from Tsumeb, Namibia (South West Africa) are commonly zoned in color and composition. Microprobe analyses and X-ray powder-diffraction studies indicate extensive Cu–Zn and Pb–Ca substitutions, which represent solid solution among conichalcite (CaCuAsO₄(OH)), austinite (CaZnAsO₄(OH)) and duftite (PbCuAsO₄(OH)), all of the adelite group of arsenates. Cell dimensions of end-member duftite are a 7.778(4), b 9.207(3), c 6.000(5) Å, V 429.7 Å³.

Keywords: adelite group, duftite, austinite, conichalcite, Tsumeb, compositional and color zoning in minerals, solid solution, X-ray powder data, cell volumes.

SOMMAIRE

Les échantillons de duftite et de conichalcite de Tsumeb, Namibie (Afrique du Sud-Ouest) montrent souvent une zonation en couleur et en composition. Les études à la microsonde et à la diffraction X sur poudres indiquent des substitutions importantes Cu–Zn et Pb–Ca, et donc des solutions solides entre la conichalcite CaCuAsO₄(OH), l'austinite CaZnAsO₄(OH) et la duftite PbCuAsO₄(OH), toutes trois membres du groupe de l'adelite. Les dimensions de la maille au pôle duftite sont a 7.778(4), b 9.207(3), c 6.000(5) Å, V 429.7 Å³.

Mots-clés: groupe de l'adelite, duftite, austinite, conichalcite, Tsumeb, zonation en composition et en couleur dans les minéraux, solution solide, diffraction X sur poudres, volume de la maille.

INTRODUCTION

Six members of the adelite group of arsenates are known (Table 1). Although published chemical data indicate that little solid solution occurs among members of the group, all are believed to be isostructural, with space group P2₁2₁2₁ (Radcliffe & Simmons 1971).

A specimen labeled “duftite” from the type locality, Tsumeb, Namibia (South West Africa), was examined in 1976 to obtain X-ray verification and to ascertain its possible use as a powder-diffraction standard. A microprobe analysis showed that the material varied substantially in Pb, Ca and Zn, but that Cu was fairly constant under the expanded beam used for the analysis. The material seemed to belong to the adelite group, but a precise identification could not be made. Re-examination of the above specimen, as well as others labeled “duftite”, was undertaken and the results form the basis of this report. Part of the Tsumeb specimen has been deposited in the National Mineral Collection, Ottawa (NMC 61459).

ORIGINAL TSUMEB SPECIMEN

The specimen is dark green and about 3 cm in diameter. Broken and cut edges show a random oscillation of color zones, all in muted shades of green, that conform with the coarsely botryoidal surface. Microscope and microprobe examinations of a polished thin section revealed that color and composition zoning occurs on such a fine scale that areas sufficiently large and homogeneous for microprobe and X-ray powder-diffraction analyses are difficult to find.

Microprobe analyses

Analyses were performed with a Materials Analysis Company model 400 electron microprobe operated at 20 kV and a specimen current of 0.03 μA. Counting periods of 10 seconds

TABLE 1. MINERALS OF THE ADELITE GROUP

<table>
<thead>
<tr>
<th>Name</th>
<th>Composition</th>
<th>a(Å)</th>
<th>b(Å)</th>
<th>c(Å)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>adellite</td>
<td>CaMgKAsO₄(OH)</td>
<td>7.47</td>
<td>8.94</td>
<td>5.86</td>
<td>Palache et al. (1951)</td>
</tr>
<tr>
<td>austinite</td>
<td>CaZnAsO₄(OH)</td>
<td>7.43</td>
<td>9.00</td>
<td>5.90</td>
<td>Palache et al. (1951)</td>
</tr>
<tr>
<td>conichalcite</td>
<td>CaCuAsO₄(OH)</td>
<td>7.42</td>
<td>9.20</td>
<td>5.85</td>
<td>Palache et al. (1951)</td>
</tr>
<tr>
<td>duftite</td>
<td>PbCuAsO₄(OH)</td>
<td>7.52</td>
<td>9.14</td>
<td>5.91</td>
<td>Palache et al. (1951)</td>
</tr>
<tr>
<td>gabrielsonite</td>
<td>PbFeAsO₄(OH)</td>
<td>7.86</td>
<td>8.62</td>
<td>5.98</td>
<td>PDF 20-583</td>
</tr>
<tr>
<td></td>
<td>PbZnAsO₄(OH)</td>
<td></td>
<td></td>
<td></td>
<td>Taggart & Foord (1980)</td>
</tr>
</tbody>
</table>

*αι and c interchanged from the referenced setting.

191
TABLE 2. MICROPROBE ANALYSES OF TSUMEB "DUFTITE" (NMG 61459) = PLUMBIAN, ZINCIAN CONICHALCITE

<table>
<thead>
<tr>
<th>Color</th>
<th>Av. wt% mol. range, wt%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Colorless</td>
<td>15.4</td>
<td>.247</td>
<td>12.0-17.6</td>
<td>14.3</td>
</tr>
<tr>
<td>2. Medium green</td>
<td>16.4</td>
<td>.069</td>
<td>8.9-22.0</td>
<td>16.5</td>
</tr>
<tr>
<td>3. Dark green</td>
<td>19.5</td>
<td>.246</td>
<td>16.8-21.9</td>
<td>20.2</td>
</tr>
<tr>
<td>4. Brownish green</td>
<td>9.1</td>
<td>.112</td>
<td>7.8-11.8</td>
<td>7.7</td>
</tr>
</tbody>
</table>

CaO	PbO	CuO	ZnO	MnO	As2O5	Al2O3
15.4 | .247 | 1 | .0 | 0.1 | .326 | 96.9 |
16.4 | .069 | 3 | .1 | 0.1 | .326 | 96.5 |
19.5 | .246 | 9 | .2 | 0.1 | .326 | 96.2 |
9.1 | .112 | 1 | .0 | 0.1 | .326 | 96.6 |

34.1 | 37.7 | 0.1 | 0.1 | 37.9 | 0.1 |

Av. Ca:Pb = 59:41 Cu:Zn = 90:10
Av. Ca:Pb = 80:20 Cu:Zn = 69:31
Av. Ca:Pb = 84:16 Cu:Zn = 71:29
Av. Ca:Pb = 78:22 Cu:Zn = 73:27
Av. Ca:Pb = 77:23 Cu:Zn = 78:22

and the following X-ray lines and standards were used: Pb Mα, galena; Ca Kα, apatite; Cu Kα, CuS; Zn Kα, ZnO; Mn Kα, rhodochrosite; As Lα, CoAs. Areas in the polished thin section of the Tsumeb specimen were selected as representative of the various color ranges.

The microprobe analyses (Table 2) show that the different color zones are variable in composition and apparently represent extensive solid solution in the adelite group. All the analyzed zones have Ca > Pb and Cu > Zn; thus the mineral is plumbian, zincian conichalcite. Although one could infer from the first four analyses in Table 2 that conichalcite becomes darker green as the copper content increases, analyses in another area of the section, consisting of numerous but narrow zones of different shades of green, do not confirm the apparent trend (Table 2). Analyses obtained from a second polished section give compositions in the same ranges as those in Table 2 and confirm the lack of correlation between color and composition. The presence of over 20% CuO in the almost colorless areas is notable.

X-ray-diffraction study

Few of the areas analyzed by microprobe were homogeneous, but the composition ranges were consistently those expected for adelite-group minerals. If the compositional heterogeneity represented physical combinations of end-member conichalcite, duftite and austinite (rather than extensive solid solution), then these mixtures should have been detectable by powder X-ray diffraction because the Ca–Pb–Cu–Zn variation is large. The cell dimensions of the relevant members of the adelite group, although similar, differ sufficiently that anomalously large diffraction-line broadening, as well as distinct lines for the individual phases, should appear on 114.6 mm films. These features are not evident on X-ray patterns of the Tsumeb material (Cu and Co radiations), but distinct diffraction-line shifts are present. These shifts are sufficiently large to indicate that the conichalcite end-member is absent in the Tsumeb material.

Powder-diffraction patterns from several of the analyzed areas were sharp even though incorporation of multiple zones, as indicated by the composition ranges in Table 2, was unavoidable. To obtain comparisons with the cell dimensions given for austinite and conichalcite by Radcliffe & Simmons (1971), MgO was added subsequently to the X-ray spindles to provide back-reflections for shrinkage corrections. Least-squares refinements were done with Cu Kα radiation (λ 1.54051 Å). Although the refined parameters are near those of duftite and conichalcite, the PDF cell data for duftite differ so substantially (Table 1) that specific dimensions for the end member could not be selected.
Therefore, the PDF data were treated to least-squares refinement, and additional “duftite” specimens were studied.

Duftite

The powder data reported by Claringbull (1951, PDF 6-0322) were refined using Cu Kα₂ radiation. The cell dimensions obtained are a 7.51(1), b 9.25(2), c 5.920(5) Å, but discrepancies between measured and calculated d-values are substantial for several diffraction lines. Similar refinement of the powder data by Guillemín (1956, PDF 14-169) gave a 7.716 (8), b 9.178(8), c 5.954(12) Å. Guillemín’s pattern, which is for duftite with Pb:Ca = 93:7 and Cu:Zn = 96:4, is considered to be the better of the two, as there are no major deviations between measured and calculated d-values (Table 3).

In order to obtain cell parameters for end-member duftite, it was assumed that a of Guillemín’s mineral is slightly high because of the minor substitution of Zn for Cu. In accordance with the trend in the conichalcite-austinite series, a correction for the Zn substitution was applied by reducing a from 7.716 to 7.711 Å for the copper end-member which, in this case, has the ratio Pb:Ca = 93:7. Graphical extrapolation to adjust for the calcium content leads to a of about 7.734 Å for pure duftite. Application of the same kind of correction leads to b 9.182 and c 5.958 Å, V 423.1 Å³ for duftite. These extrapolations are simplistic in that the Cu–Zn and Pb–Ca substitutions are treated independently, and thus the cell volume is only approximate.

Other “duftite” specimens

Two specimens labeled “duftite” were borrowed from the Royal Ontario Museum. Both are from Tsumeb and both proved to be strongly zoned. Microprobe analysis of one specimen (M 29503) gave compositions that vary from calcian duftite to plumbian conichalcite (Table 4). The other specimen (M 34851) also proved highly variable in composition and is plumbian conichalcite with an outermost zone containing appreciable vanadium in substitution for arsenic.

Four specimens labeled “duftite” were obtained from the Systematic Reference Series of the National Mineral Collection, Ottawa. After examination of the specimens with a binocular microscope, two were judged unsuitable because of impurities and visible zoning. The others were given a preliminary calcium analysis by means of an energy-dispersion SEM system. Material from Can Pey, France (NMC 13540) was found to contain abundant calcium, but the other, from Tsumeb (NMC 13538), proved to be mainly duftite.

Several fragments of the NMC duftite from Tsumeb, S.W.A. (NMC 13538) with narrow, darker zones of calcian duftite. SEM back-scattered electron image.
Tsumeb were mounted in a polished section for electron-microprobe and scanning-electron-microscope analysis. The grains are zoned, but are mainly end-member duftite with narrow bands containing small amounts of Ca and traces of Zn (Fig. 1). The bands are too small for quantitative analysis, but the broader duftite zones contain <0.1 wt. % CaO and <0.1 wt. % ZnO.

X-ray powder data for duftite from the polished section are given in Table 5. Shrinkage corrections and least-squares refinement were performed as outlined previously. The resultant cell volume, 429.7 Å³, is higher than that obtained by extrapolation from Guillemín’s data. The difference may be due to the simplistic nature of the extrapolation, the possibility of undetected zoning in Guillemín’s material or a combination of both.

Acknowledgements

Specimens from the Royal Ontario Museum were provided through the courtesy of J.A. Mandarino; those from the National Mineral Collection were obtained from H.G. Ansell of the Geological Survey of Canada, who also arranged for some of the SEM studies. The writers are also indebted to J.H.G. Laflamme.
TABLE 6. CELL DIMENSIONS OF THE AUSTINITE–CONICHALCITE–DUFJITE SERIES

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Cu:Zn</th>
<th>Ca:Pb</th>
<th>a(Å)</th>
<th>b(Å)</th>
<th>c(Å)</th>
<th>V(Å³) meas</th>
<th>V(Å³)calc*</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>austinite</td>
<td>0:100</td>
<td>100:0</td>
<td>7.506(6)</td>
<td>9.046(6)</td>
<td>5.932(6)</td>
<td>402.8</td>
<td></td>
<td>Radcliffe & Simmons (1971)</td>
</tr>
<tr>
<td>conichalcite</td>
<td>100:0</td>
<td>100:0</td>
<td>7.392(7)</td>
<td>9.220(15)</td>
<td>5.830(9)</td>
<td>397.4</td>
<td></td>
<td>Radcliffe & Simmons (1971)</td>
</tr>
<tr>
<td></td>
<td>69:31</td>
<td>80:20</td>
<td>7.465(6)</td>
<td>9.185(12)</td>
<td>5.892(5)</td>
<td>404.0</td>
<td>405.5</td>
<td>Analysis 1, Table 2</td>
</tr>
<tr>
<td></td>
<td>89:11</td>
<td>60:40</td>
<td>7.461(6)</td>
<td>9.202(11)</td>
<td>5.864(7)</td>
<td>402.6</td>
<td>410.9</td>
<td>Table 2</td>
</tr>
<tr>
<td></td>
<td>90:10</td>
<td>59:41</td>
<td>7.446(7)</td>
<td>9.255(23)</td>
<td>5.881(5)</td>
<td>408.5</td>
<td>411.2</td>
<td>Table 2</td>
</tr>
<tr>
<td>dufite</td>
<td>96:4</td>
<td>7:93</td>
<td>7.716(8)</td>
<td>9.176(8)</td>
<td>5.954(12)</td>
<td>421.6</td>
<td>427.7</td>
<td>PDF 14-169, newly refined</td>
</tr>
<tr>
<td></td>
<td>100:0</td>
<td>0:100</td>
<td>7.734</td>
<td>9.182</td>
<td>5.958</td>
<td>423.1</td>
<td></td>
<td>Extrapolated from PDF 14-169</td>
</tr>
<tr>
<td></td>
<td>100:0</td>
<td>0:100</td>
<td>7.778(4)</td>
<td>9.207(3)</td>
<td>6.000(5)</td>
<td>429.7</td>
<td></td>
<td>NMC 13538 (Table 5)</td>
</tr>
</tbody>
</table>

*V meas is that obtained from X-ray powder data; V calc is that obtained by extrapolation from the cell dimensions of end-member dufite, conichalcite, and austinite.

and J.M. Beaulne of CANMET for technical assistance, and to E.J. Murray of CANMET for help with the X-ray studies.

REFERENCES

Received January 1980, revised manuscript accepted February 1980.