THE CRYSTAL STRUCTURE OF BØGGILDITE

F. C. HAWTHORNE

Department of Earth Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2

ABSTRACT

The crystal structure of bøggildite, Sr₂Na₂-[Al₂(PO₄)F₈], a 5.251(3), b 10.464(5), c 18.577(9) Å, β 107.53(3)°, V 973.3(2) Å³, Z = 4, space group $P2_1/c$ has been solved by Patterson and Fourier methods and refined by a full-matrix least-squares method to an R index of 5.5% for 1736 observed (3σ) reflections. Each (PO₄) tetrahedron corner-links to two Al $Ø_6$ octahedra to form an Al₂(PO₄) $Ø_{10}$ unit (\emptyset : unspecified anion); these units link by cornersharing between octahedra and tetrahedra to form an infinite chain of composition $(Al_2(PO_4)F_9)$ that is the fundamental basis of the structure. This chain extends parallel to the Y axis, and adjacent chains nestle closely together to form a sheet in the (100) plane. Bonding within the sheet and between adjacent sheets is by the Sr and Na cations that have coordination numbers [7], [8] and [9]. Bøggildite, with its mixed corner-linked octahedral-tetrahedral chains, is radically different from the other aluminofluoride minerals containing tetrahedral oxyanions. In creedite, Ca₃Al₂(SO₄)F₈(OH)₂•2H₂O, and chukhrovite, Ca₃(Y,Ce)Al₂(SO₄)F₁₃•10H₂O, there is no linkage between the Al $Ø_6$ octahedra and the tetrahedra. This is the result of the different bond-valence requirement of the oxygen atoms co-ordinating the P and S in different structures.

Keywords: bøggildite, crystal structure, aluminofluoride, phosphate.

Sommaire

La structure cristalline de la bøggildite, Sr₂Na₂- $[Al_2(PO_4)F_9]$, a 5.251(3), b 10.464(5), c 18.577(9) Å, β 107.53(3)°, V 973.3(2) Å³, Z = 4, de groupe spatial $P2_1/c$, a été établie par les méthodes Patterson et Fourier, et affinée par la méthode des moindres carrés à matrice entière, sur 1736 réflexions observées (3σ) , jusqu'à un résidu de 5.5%. Chaque tétraèdre PO_4 s'unit à deux octaèdres Al $Ø_6$ (Ø: groupe anionique non-spécifié) en mettant un atome d'oxygène en commun avec chacun d'eux, de façon à former un groupe $Al_2(PO_4) Ø_{10}$. De tels groupes s'unissent, par le même processus de partage d'atome d'oxygène entre octaèdre et tétraèdre, pour donner une chaîne infinie de composition $Al_2(PO_4)F_8$, élément structural fondamental, parallèle à l'axe des y. Un ensemble de pareilles chaînes proches l'une de l'autre forme un feuillet structural d'orientation (100). Les liaisons, tant à l'intérieur des feuillets qu'entre feuillets contigus, sont assurées par les cations Sr et Na en coordinence 7, 8 ou 9. Par ses chaînes

mixtes d'octaèdres et tétraèdres à coins communs, la bøggildite diffère radicalement des autres aluminofluorures naturels à oxy-anions tétraédriques. Dans la créedite Ca₃Al₂(SO₄)F₈(OH)₂•2H₂O et la tchoukhrovite Ca₃(Y,Ce)Al₂(SO₄)F₁₃•10H₂O, on n'observe pas d'assemblage entre octaèdres AlØ₆ et tétraèdres, fait qui résulte des différences entre les exigences des valences de liaison des atomes d'oxygène coordonnés à P et à S dans des structures différentes.

(Traduit par la Rédaction)

Mots-clés: bøggildite. structure cristalline, aluminofluorure, phosphate.

INTRODUCTION

Bøggildite is a rare flesh-red phosphate aluminofluoride mineral, $Sr_2Na_2Al_2(PO_4)F_9$, found at the Ivigtut cryolite locality, Greenland, where it occurs together with siderite, fluorite, black cryolite, quartz, green mica and sphalerite at the contact of the cryolite body with adjacent greisen (Bøgvad 1951, Nielsen 1954, Pauly 1956). Møller (1956) showed bøggildite to be monoclinic, with space group $P2_1/c$. Møller's orientation is retained here.

As part of a continuing study of the structures of the aluminofluoride minerals (Hawthorne & Ferguson 1975, 1981, in prep.), the structure of bøggildite has been solved to determine its structural relationship to the other aluminofluorides. Although there are no other phosphate aluminofluorides, there are sulfate aluminofluorides, namely creedite, Ca₃Al₂(SO₄)F₈ (OH)₂•2H₂O, and chukhrovite, Ca₃(Y.Ce)Al₂ (SO₄)F₁₃•10H₂O, the structures of which are known. Consideration of bond valences in these three minerals suggested that the structure of bøggildite would be based on $(PO_4)-(A1\emptyset_6)$ linkages and that the structures of creedite and chukhrovite should be based on $(SO_4)-(Ca\emptyset_{8,9})$ linkages (Ø: unspecified anion). As this is the case for creedite and chukhrovite, solution of the bøggildite structure acquired added interest.

EXPERIMENTAL

Single-crystal X-ray precession photographs display monoclinic symmetry with systematic absences 0k0, k = 2n + 1; h0l, l = 2n + 1, uniquely determining the space group as $P2_1/c$. Precession photographs of several crystals were characterized by large spots, indicative of a considerable degree of mosaicity. Cell dimensions were determined by least-squares refinement of 15 reflections automatically aligned on a Syntex P2, automatic 4-circle diffractometer.

An equidimensional fragment of ~ 0.18 mm diameter was used to collect the intensity data according to the experimental method of Hawthorne & Grundy (1976). Two standard reflections were monitored every 50 reflections to check for intensity fluctuations; no significant change in their intensities was observed during data collection. A total of 2383 reflections were measured over one asymmetric unit to a maximum 2θ of 60° ($\sin\theta/\lambda = 0.704$). The data were corrected for Lorentz, polarization, absorption and background effects, and reduced to structure factors. A reflection was considered as observed if its magnitude exceeded that of three standard deviations based on counting statistics. Of the 2383 unique reflections, 1736 were considered as observed.

STRUCTURE SOLUTION AND REFINEMENT

Scattering curves for neutral atoms were taken from Cromer & Mann (1968), with anomalous dispersion coefficients from Cromer & Liberman (1970). *R* indices are of the form given in Table 1 and are expressed as percentages.

The three-dimensional Patterson synthesis, P(uvw), suggested atoms at the Wykoff positions 2a and 2c. These were assumed to be Al, and a successful solution for the two Sr positions was subsequently derived. The remaining atoms were found by successive difference

TABLE 1. MISCELLANEOUS INFORMATION: BØGGILDITE

a	5.251(3)Å	Crystal size ∿0	.20 mm
Ь	10.464(5)	Rad/Mono	Mo/C
с	18.577(9)	Total No. of F_	2383
β	107.53(3)	No. of F_ >30	1736
v	973.3(2)	Final R (obs)	5.5%
Space group	P2 ₁ /c	Final R _w (obs)	6.5%
Unit cell co	ntents	4[Sr_Na_A1_(P04)Fg]
D _{calc} = 3.692	'g cm ^{−3}		
Temperature	factor form u	sed: exp[-ΣΣh _i h _i ß _i	,]
$R = \Sigma(F_0 - $	$F_{c}[)/\Sigma[F_{o}]$,
$R_{W} = [\Sigma w(F_{O}$	- F _c) ² / ₂ wF _o	$[2]^{\frac{1}{2}}, w = 1$	

TABLE 2. ATOMIC POSITIONS AND EQUIVALENT ISOTROPIC TEMPERATURE FACTORS FOR BØGGILDITE

×	У	z	B [*] equiv ^{(Å2})
x 0.3393(2) 0.3566(2) 0.9466(6) 0 0 0.6951(7) 0.1105(11) 0.5408(10) 0.2226(16) 0.8644(17) 0.9347(18) 0.3030(14) 0.4397(14) 0.8513(15) 0.9380(14) 0.9322(14) 0.3431(14)	y 0.0396(1) 0.4632(1) 0.2500(3) 0 0 0.2469(3) 0.2425(6) 0.2194(5) 0.2435(8) 0.1730(8) 0.1730(8) 0.3031(8) 0.0913(7) 0.1243(7) 0.0919(7) 0.1315(7) 0.2141(7) 0.0339(8)	2 0.33111(5) 0.35754(5) 0.9092(2) 0 2404(2) 0.6310(3) 0.5194(3) 0.5194(3) 0.5194(3) 0.5194(3) 0.4784(4) 0.4784(4) 0.9189(4) 0.2324(4) 0.2324(4) 0.7629(3) 0.6431(3) 0.5480(4)	Dequit (1 /) 0.96(2) 1.04(2) 0.88(4) 0.77(7) 0.82(8) 0.86(5) 2.5(1) 1.7(1) 1.3(1) 1.2(1) 1.3(1) 1.5(1) 1.3(1) 1.3(1) 1.5(1) 1.5(1)
0.4413(15)	0.1359(7) 0.9663(7)	0.7395(4) 0.4117(3)	1.3(1)
	x 0.3393(2) 0.3566(2) 0.9466(6) 0 0.6951(7) 0.1105(11) 0.5408(10) 0.2226(16) 0.8644(17) 0.8644(17) 0.8644(17) 0.9347(18) 0.7299(18) 0.3030(14) 0.4397(14) 0.4397(14) 0.9380(14) 0.9382(14) 0.6396(15) 0.3431(14) 0.4413(15) 0.0709(14)	x y 0.3393(2) 0.0396(1) 0.3566(2) 0.4632(1) 0.9466(6) 0.2500(3) 0 0 0 0 0 0 0 0 0.105(11) 0.24269(3) 0.1105(11) 0.2425(6) 0.5408(10) 0.2194(5) 0.2226(16) 0.2435(8) 0.3031(16) 0.3031(8) 0.3030(14) 0.0913(7) 0.4397(14) 0.1243(7) 0.8513(15) 0.0913(7) 0.9380(14) 0.0313(7) 0.9380(14) 0.0313(7) 0.9380(14) 0.1261(7) 0.6396(15) 0.2141(7) 0.4313(14) 0.0339(8) 0.413(15) 0.359(7) 0.413(15) 0.3653(7)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

 $B_{equiv} = \frac{4}{3} \sum_{i j} g_{ij}\beta_{ij}; g_{ij}: real-space metric tensor$

TABLE 3. ANISOTROPIC TEMPERATURE FACTORS (×10⁴)* FOR BØGGILDITE

β ₁₁	^β 22	β33	^β 12	^β 13	^β 23
1294(45)	244(9)	27(2)	-15(16)	-8(7)	1(4)
1358(47)	249(9)	35(3)	-16(17)	-17(7)	7(4)
132(11)	20(2)	2(1)	-1(4)	-3(2)	-0(1)
88(19)	24(4)	2(1)	0	-1(3)	0
117(20)	25(4)	1(1)	0	1(3)	0
110(13)	21(3)	2(1)	2(5)	-7(3)	-1(1)
193(23)	50(5)	19(1)	1(9)	-25(5)	-4(2)
176(22)	63(5)	4(1)	2(8)	0(4)	3(2)
143(33)	28(7)	5(2)	-5(13)	-9(7)	2(3)
204(37)	19(7)	3(2)	-2(12)	-6(7)	3(3)
214(39)	31(7)	3(2)	0(13)	5(7)	1(3)
579(44)	87(8)	23(2)	27(16)	7(8)	4(4)
123(30)	33(6)	10(2)	-17(11)	-16(6)	5(3)
128(28)	33(6)	4(2)	-8(10)	0(5)	-2(3)
208(33)	37(6)	6(2)	6(12)	13(6)	1(3)
132(29)	27(6)	9(2)	20(11)	5(6)	-2(3)
149(30)	29(6)	6(2)	20(11)	-5(5)	-1(3)
166(30)	54(7)	2(2)	1(11)	6(6)	-3(3)
119(28)	47(7)	7(2)	7(12)	-1(5)	6(3)
173(32)	31(6)	8(2)	-16(11)	6(6)	2(3)
189(30)	37(6).	2(2)	-3(12)	10(5)	1(3)
	 β11 1294(45) 1358(47) 132(11) 88(19) 117(20) 103(23) 176(22) 143(33) 204(37) 204(37) 214(39) 579(44) 123(30) 128(28) 208(33) 132(29) 149(30) 166(30) 119(28) 173(32) 189(30) 	$\begin{array}{c cccc} & \beta_{11} & \beta_{22} \\ \hline 1294(45) & 244(9) \\ 1358(47) & 249(9) \\ 132(11) & 20(2) \\ 88(19) & 24(4) \\ 117(20) & 25(4) \\ 110(13) & 21(3) \\ 193(23) & 50(5) \\ 176(22) & 63(5) \\ 176(22) & 63(5) \\ 143(33) & 28(7) \\ 204(37) & 19(7) \\ 204(37) & 19(7) \\ 204(37) & 19(7) \\ 204(37) & 19(7) \\ 204(37) & 19(7) \\ 204(37) & 19(7) \\ 204(37) & 19(7) \\ 204(37) & 31(7) \\ 579(44) & 87(8) \\ 123(30) & 33(6) \\ 128(28) & 3$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

 $*x10^5$ for Sr(1) and Sr(2)

Fourier synthesis, and full-matrix least-squares refinement of all positional variables and individual isotropic temperature-factors converged to an R index of 9.1%. Temperature factors were converted to an anisotropic form as given in Table 1, and full-matrix refinement of all variables, together with an isotropic extinction correction (final value $1.0(2) \times 10^{-6}$), resulted in convergence at an R index of 5.5%. This value is somewhat higher than that normally obtained in this laboratory; this may result from the fact the bøggildite is not as perfectly

TABLE 4.	INTERATOMIC DI	STANCES AND ANGLES IN	BØGGILDITE	F(1)-F(3)	2.541(11)	F(1)-Na(1)-F(3)	57.4(3)
Sr(1)-F(2) Sr(1)-F(4) Sr(1)-F(5) Sr(1)-F(6) Sr(1)-F(7) Sr(1)-F(8) Sr(1)-F(9) Sr(1)-0(1) Sr(1)-0(4)	2.596(6) 2.530(7) 2.569(7) 2.693(8) 2.481(6) 2.707(8) 2.468(6) 2.468(6) 2.643(9) 2.599(9)	$\begin{array}{c} Sr(2)-F(1)\\ Sr(2)-F(2)\\ Sr(2)-F(3)\\ Sr(2)-F(4)\\ Sr(2)-F(5)\\ Sr(2)-F(5)\\ Sr(2)-F(8)\\ Sr(2)-0(1)\\ Sr(2)-0(2)\\ Mean \end{array}$	2.597(7) 2.537(7) 2.515(7) 2.594(7) 2.560(7) 2.582(7) 2.589(9) 2.683(9) 2.582	F(1)-F(6)' F(1)-0(3) F(2)-F(3) F(2)-F(4) F(2)-F(6)' F(2)-F(6) F(3)-F(4) F(3)-F(6) F(3)-F(6) F(4)-F(6)	3.014(10) 3.120(11) 3.505(12) 2.780(10) 2.521(10) 2.563(10) 3.116(9) 2.957(10) 2.955(11) 2.905(11)	F(1)-Na(1)-F(6)' F(2)-Na(1)-F(3) F(2)-Na(1)-F(3) F(2)-Na(1)-F(4) F(2)-Na(1)-F(6) F(2)-Na(1)-F(8) F(3)-Na(1)-F(6) F(3)-Na(1)-F(6) F(3)-Na(1)-F(6)	65.1(3) 66.9(3) 96.2(3) 66.7(3) 58.7(3) 63.6(3) 76.5(3) 70.6(3) 57.0(3)
Mean P-0(1) P-0(2) P-0(3) P-0(4) Mean	2.587 1.519(9) 1.532(8) 1.535(8) 1.553(8) 1.535	A1(2)-F(7)x2 A1(2)-F(9)x2 A1(2)-O(3)x2 Mean A1(3)-F(2)	1.789(7) 1.822(6) <u>1.863(8)</u> <u>1.825</u> 1.816(8)	F(4)-F(8) F(6)-F(8) F(6)-F(9) F(6)-0(3) F(6)'-F(8) F(6)'-O(3)	3.564(12) 4.130(13) 2.801(10) 3.848(12) 2.466(10) 4.056(12)	F(4)-Na(1)-F(8) F(6)-Na(1)-F(8) F(6)-Na(1)-F(9) F(6)-Na(1)-F(9) F(6)'-Na(1)-F(8) F(6)'-Na(1)-F(8) F(6)'-Na(1)-O(3)	87.2(3) 109.4(3) 68.3(3) 91.5(3) 56.1(3) 94.2(3)
A1(1)-F(1)x2 A1(1)-F(3)x2 A1(1)-O(2)x2 Mean	1.804(7) 1.823(7) 1.873(7) 1.833	A1(3)-F(4) A1(3)-F(5) A1(3)-F(6) A1(3)-F(8) A1(3)-O(4)	1.794(8) 1.786(8) 1.788(7) 1.808(8) 1.861(8)	F(8)-F(9) F(9)-O(3) Mean	3.423(9) <u>2.515(10)</u> <u>3.077</u>	F(8)-Na(1)-F(9) F(9)-Na(1)-O(3) Mean	88.3(3) 57.1(3) 73.9
Na(1)-F(1) Na(1)-F(2)	2.862(10)	Mean	1.809	F(1)-F(3)	2.778(11)	F(1)-Na(2)-F(3)	68.4(3)
Na(1)-F(2) Na(1)-F(4) Na(1)-F(6) Na(1)-F(6) Na(1)-F(8) Na(1)-F(9) Na(1)-O(3) Mean	2.344(9) 2.672(9) 2.567(9) 2.735(9) 2.493(9) 2.419(9) 2.800(9) 2.584	Na(2)-F(1) Na(2)-F(3) Na(2)-F(6) Na(2)-F(7) Na(2)-F(7) Na(2)-O(1) Na(2)-O(3) Maan	2.412(9) 2.528(9) 2.198(8) 2.336(9) 2.828(9) 2.368(9) 2.459(10)	F(1)-F(6) F(1)-F(7) F(1)-0(1) F(3)-F(6) F(3)-F(9) F(3)-0(3) F(6)-F(7) F(6)-F(9)	3.014(10) 3.930(12) 3.007(11) 2.957(10) 3.957(11) 2.995(11) 2.729(10) 2.801(10)	F(1)-Na(2)-F(6) F(1)-Na(2)-F(7) F(1)-Na(2)-F(7) F(3)-Na(2)-F(6) F(3)-Na(2)-F(9) F(3)-Na(2)-F(9) F(6)-Na(2)-F(7) F(6)-Na(2)-F(9)	81.5(3) 111.7(3) 78.0(3) 77.1(3) 95.1(3) 73.8(3) 73.9(3) 66.4(3)
	P te	atrahedron	<u> 2.447</u>	F(7)-F(9) F(7)-O(1)	2.940(10) 3.437(10)	F(7)-Na(2)-F(9) F(7)-Na(2)-O(1)	68.6(3) 93.9(3)
0(1) - 0(2)	2.525(12)	0(1)-P-0(2)	111.7(5)	F(9)-O(3) O(1)-O(3)	2.515(10) 3.657(11)	F(9) - Na(2) - O(3) O(1) - Na(2) - O(3)	56.3(3)
0(1)-0(3) 0(1)-0(4)	2.520(12)	0(1) - P - 0(3) 0(1) - P - 0(4)	111.3(5) 111.4(5)	Mean	3.132	Mean	80.2
0(2)-0(4) 0(3)-0(4)	2.463(11)	0(2) - P - 0(3) 0(2) - P - 0(4) 0(3) - P - 0(4)	108.2(5)		<u>Sr(1)</u>	polyhedron	
Mean	2.505	Mean	108.1(5)	F(2)-F(4) F(2)-F(8)	2.780(10) 2.882(10)	F(2)-Sr(1)-F(4) F(2)-Sr(1)-F(8)	65.7(2) 65.8(2)
	<u>A1(1)</u>	octahedron		F(2)-0(4) F(4)-F(5)	2.522(9) 2.775(9)	F(2)-Sr(1)-O(4) F(4)-Sr(1)-F(5)	58.1(2)
F(1)-F(3)x2 F(1)-F(3)'x2 F(1)-O(2)x2 F(1)-O(2)'x2 F(3)-O(2)'x2 F(3)-O(2)'x2 F(3)-O(2)'x2 Mean	2.542(11) 2.588(10) 2.663(10) 2.536(11) 2.659(10) 2.567(11) 2.593	F(1)-A1(1)-F(3)x2 F(1)-A1(1)-F(3)'x2 F(1)-A1(1)-O(2)x2 F(1)-A1(1)-O(2)x2 F(3)-A1(1)-O(2)x2 F(3)-A1(1)-O(2)'x2 Mean	89.0(4) 91.0(4) 92.8(3) 87.2(3) 92.0(3) 88.0(3) 90.0	F(4)-F(9) F(4)-O(1) F(5)-F(6) F(5)-F(8) F(5)-F(9) F(6)-F(9) F(6)-F(9) F(6)-F(9) F(7) F(6)-F(9)	3.629(11) 3.224(10) 2.472(9) 2.489(10) 3.379(9) 2.729(10) 2.466(10) 2.801(10) 2.601(10)	F(4)-Sr(1)-F(9) F(4)-Sr(1)-O(1) F(5)-Sr(1)-F(6) F(5)-Sr(1)-F(8) F(5)-Sr(1)-F(9) F(6)-Sr(1)-F(7) F(6)-Sr(1)-F(8) F(6)-Sr(1)-F(9) F(6)-Sr(1)-F(9)	93.1(2) 77.1(2) 56.0(2) 56.2(2) 84.2(2) 63.5(2) 54.3(2) 65.6(2)
	<u>A1(2</u>) octahedron		F(7) - F(9) F(7) - F(9)	2.940(10)	F(7) - Sr(1) - F(8) F(7) - Sr(1) - F(9)	87.7(2) 72.9(2)
F(7)-F(9)x2 F(7)-F(9)'x2 F(7)-0(3)x2 F(7)-0(3)'x2 F(9)-0(3)x2 F(9)-0(3)'x2	2.503(10) 2.603(9) 2.592(11) 2.573(12) 2.515(10) 2.694(11)	F(7)-A1(2)-F(9)x2 F(7)-A1(2)-F(9)'x2 F(7)-A1(2)-0(3)x2 F(7)-A1(2)-0(3)'x2 F(7)-A1(2)-0(3)'x2 F(9)-A1(2)-0(3)'x2	87.8(3) 92.2(3) 90.4(4) 89.6(4) 86.1(3) 93.9(3)	F(7)-0(4) F(8)-0(4) F(8)-0(1) F(9)-0(1) 0(1)-0(4) Mean	3.038(11) 3.297(11) 3.036(11) <u>3.220(13)</u> 3.033	F(7)-Sr(1)-O(1) F(7)-Sr(1)-O(4) F(8)-Sr(1)-O(4) F(9)-Sr(1)-O(1) O(1)-Sr(1)-O(4) Mean	90.4(2) 80.9(2) 90.8(3) 72.8(3) 75.8(3) 72.5
Mean	2.580	Mean	90.0		<u>Sr(2)</u>	polyhedron	
E(2) E(4)	<u>A1(3</u>) octahedron	/	F(1)-F(2) F(1)-F(3)	3.123(9)	F(1)-Sr(2)-F(2)	74.9(2)
F(2)-F(4) F(2)-F(6) F(2)-F(8) F(4)-F(5) F(4)-F(6) F(4)-F(6) F(5)-F(8) F(5)-F(8) F(5)-O(4) F(6)-F(8) F(8)-O(4) Mean	2.527(10) 2.521(10) 2.563(10) 2.5600(9) 2.500(10) 2.624(11) 2.472(9) 2.439(10) 2.734(11) 2.466(10) 2.662(11) 2.557	F(2)-A1(3)-F(6) F(2)-A1(3)-F(6) F(2)-A1(3)-F(6) F(4)-A1(3)-F(5) F(4)-A1(3)-F(6) F(4)-A1(3)-F(6) F(5)-A1(3)-F(6) F(5)-A1(3)-F(8) F(5)-A1(3)-F(8) F(6)-A1(3)-F(8) F(6)-A1(3)-G(4) F(8)-A1(3)-O(4) F(8)-A1(3)-O(4)	88.8(4) 88.8(3) 90.0(2) 86.6(4) 93.2(4) 88.5(4) 91.8(4) 87.5(4) 87.7(4) 97.1(4) 93.0(4) 90.0	F(1)-F(3) F(1)-O(1) F(2)-F(4) F(2)-F(8) F(2)-O(2) F(3)-F(4) F(3)-F(5) F(3)-F(5) F(4)-F(5) F(4)-F(8) F(5)-F(8) F(5)-O(1) F(8)-O(1)	2.778(11) 4.369(11) 2.536(11) 2.527(10) 2.882(10) 3.491(10) 3.116(9) 3.882(12) 3.766(11) 2.775(9) 3.563(10) 2.831(10) 2.831(10) 2.8372(10)	F(1)-Sr(2)-F(3) F(1)-Sr(2)-O(1) F(1)-Sr(2)-O(2) F(2)-Sr(2)-F(4) F(2)-Sr(2)-F(8) F(2)-Sr(2)-F(4) F(3)-Sr(2)-F(4) F(3)-Sr(2)-F(5) F(3)-Sr(2)-F(5) F(3)-Sr(2)-F(5) F(4)-Sr(2)-F(8) F(5)-Sr(2)-F(8) F(5)-Sr(2)-O(1) F(8)-Sr(2)-O(1)	65.8(2) 114.8(2) 57.4(2) 59.0(2) 68.5(2) 99.5(2) 99.5(2) 95.1(3) 65.1(2) 87.0(2) 66.8(2) 67.8(2) 91.6(2)
	Na(1) polyhedron		P(8)-0(2) 0(1)-0(2)	3.413(9) 3.610(12)	F(8)-Sr(2)-0(2) 0(1)-Sr(2)-0(2)	80.8(2) 86.4(3)
F(1)-F(2)	3.123(9)	F(1)-Na(1)-F(2)	72.7(3)	Mean	3.249	Mean	78.8

monocrystalline as most of the previous minerals examined. Observed and calculated structure factors may be obtained from The Depository of Unpublished Data, CISTI, National Research Council of Canada, Ottawa, Ontario K1A 0S2. Final atomic positions and equivalent isotropic temperature-factors are presented in Table 2, and anisotropic temperature-factor coefficients are listed in Table 3. Interatomic distances and angles, and the magnitude and orientations of the principal axes of the thermal ellipsoids, calculated with the program ERRORS (L. W. Finger, pers. comm.), are presented in Tables 4 and 5.

DISCUSSION

Description of the structure

The bøggildite structure (Fig. 1) has one crystallographically unique PO₄ tetrahedron that shows typical variations in bond lengths and angles (Table 4). There are three unique Al positions with point symmetries $\overline{1}$, $\overline{1}$ and 1, respectively. Al(1) and Al(2) are each coordinated by four fluorine and two oxygen anions, arranged in a slightly distorted octahedral array; in each polyhedron, the two oxygens are in a *trans* configuration. Al(3) is octahedrally coordinated by five fluorine and one oxygen anions, and shows slightly greater angular distortion than the other Al octahedra. Co-ordination polyhedra for the Sr and Na cations are illustrated in Figure 2. Sr(1) is surrounded by seven fluorine and two oxygen atoms arranged in a distorted augmented square antiprism. Sr(2) is surrounded by six fluorine and two oxygen atoms, arranged in a distorted square antiprism. Na(1) is surrounded by eight fluorine atoms and one oxygen atom in an arrangement that does not closely resemble any of the regular nine-vertex polyhedra. Na(2) is surrounded by five fluorine and two oxygen atoms in an arrangement that is a distorted augmented trigonal prism. The variation in mean bond-lengths among these polyhedra can be explained reasonably well as a result of variations in co-ordination number of both the cations and anions. A comparison of the observed mean bond-lengths with the sum of the relevant cation and anion radii [Sr(1) 2.59(2.63), Sr(2) 2.58(2.58), Na(1)]2.58(2.56), Na(2) 2.45(2.45) Å] for observed (calculated) distances shows very close agreement, except for Sr(1).

The empirical bond-valence table for bøggildite (Table 6), calculated using the curves of Brown & Wu (1976), confirms the assignment of anions in this study. The bond-valence sums around the fluorine anions closely approach the ideal value of unity (except for F(2), perhaps), indicating no significant substitution of OH for F, which would tend to result in sums significantly less than 1.0 v.u.

Each (PO₄) tetrahedron corner-links to two Al octahedra to form an $Al_2(PO_4)OF_9$ unit; this links by corner-sharing between octahedra and tetrahedra to form an infinite chain of composition $[Al_2(PO_4)F_9]^{6-}$ that is illustrated in Figure 3. Three of the tetrahedral vertices link to octahedra, and the remaining tetra-

TABLE 5. VIBRATION ELLIPSOIDS FOR BOGGILDITE

	R.M.S. Displacement	Angle to X—axis	Angle to Y-axis	Angle to Z-axis
	0.064(3)8	83(1)0	90(2)0	24(1) [°]
8+(1)	0 116(2)	95(5)	175(5)	88(3)
01(1)	0.138(2)	8(3)	95(5)	114(1)
	0.071(3)	80(1)	93(3)	27(1)
Sr(2)	0.117(2)	97(4)	173(4)	90(3)
	0.143(2)	12(2)	96(4)	117(1)
	0.051(11)	82(3)	91(6)	26(3)
Р	0.104(6)	92(7)	178(7)	90(7)
	0.141(5)	8(3)	92(8)	116(3)
	0.056(16)	82(9)	90	26(9)
A1(1)	0.114(11)	172(9)	90	64(9)
	0,115(9)	90	0	90
	0.030(28)	90(6)	90	17(6)
A1(2)	0.118(9)	90	0	90
	0.127(10)	0(6)	90	107(6)
	0.043(16)	75(4)	87(6)	33(4)
A1(3)	0.107(7)	81(10)	171(10)	92(8)
	0.139(7)	18(6)	81(10)	123(4)
	0.110(11)	51(4)	83(8)	57(3)
Na(1)	0.165(9)	80(6)	170(7)	92(7)
	0.236(8)	41(4)	83(6)	147(3)
	0.075(13)	84(5)	96(4)	24(5)
Na(2)	0.160(9)	173(10)	95(13)	67(6)
	0.187(8)	94(13)	8(9)	82(6)
	0.075(22)	69(9)	96(17)	39(8)
0(1)	0.122(15)	103(17)	167(16)	87(18)
	0.164(15)	25(11)	102(17)	129(8)
	0.061(25)	82(7)	109(20)	32(11)
0(2)	0.106(17)	98(10)	160(19)	105(18)
	0.178(14)	12(8)	95(9)	118(6)
	0.069(22)	92(7)	92(13)	15(7)
0(3)	0.131(15)	90(17)	178(14)	92(13)
	0.170(15)	2(7)	90(17)	105(7)
	0.184(10)	78(4)	110(12)	36(8)
0(4)	0.223(10)	86(7)	158(11)	112(11)
	0.292(11)	13(5)	82(7)	117(5)

	0.082(17)	53(9)	90(16)	54(9)
F(1)	0.122(14)	109(12)	156(8)	71(13)
	0.191(12)	43(7)	114(8)	138(6)
	0.073(18)	80(10)	79(10)	30(10)
F(2)	0.133(13)	130(73)	136(73)	63(22)
	0.141(13)	42(73)	132(73)	103(35)
	0.092(16)	100(8)	96(13)	9(11)
F(3)	0.142(13)	76(25)	166(24)	97(13)
	0.164(13)	17(21)	77(25)	96(9)
	0.102(16)	52(16)	141(20)	97(37)
F(4)	0.117(13)	100(30)	103(35)	149(18)
	0.154(13)	40(12)	55(12)	120(15)
	0.085(16)	69(12)	96(22)	39(15)
F(5)	0.113(15)	67(13)	153(12)	111(22)
	0.168(12)	32(9)	64(11)	121(8)
	0.055(24)	96(8)	83(5)	13(7)
F(6)	0.147(13)	170(16)	83(19)	79(8)
	0.175(12)	82(19)	10(14)	98(6)
	0.092(15)	68(13)	106(9)	43(12)
F(7)	0.140(13)	157(14)	104(21)	55(16)
	0.167(12)	97(21)	22(15)	68(14)
	0.110(14)	95(27)	116(40)	29(27)
F(8)	0.123(14)	121(15)	138(35)	105(44)
	0.164(13)	31(15)	120(14)	114(11)
	0.054(22)	99(6)	94(8)	9(6)
F(9)	0.143(12)	101(41)	168(39)	92(10)
	0.157(13)	14(32)	102(41)	99(6)

hedral vertex does not; consequently, this remaining oxygen must bond to both Sr cations at least, in order to satisfy its bond-valence requirements. These $[Al_2(PO_4)F_9]^{6-}$ chains intercalate together in the (100) plane to form a sheet of parallel chains that is linked to adjacent sheets above and below by the Sr and Na cations (Fig. 4).

Related structures

Two other aluminofluoride minerals contain (XO_4) oxyanions: the structures of creedite $Ca_3Al_2(SO_4)F_8(OH)_2 \cdot 2H_2O$ and chukhrovite Ca₃(Y,Ce)Al₂(SO₄)F₁₃•10H₂O, have been solved by Borisov et al. (1965) and Bokiy & Gorogotskaya (1965), respectively. However, these two structures differ radically from the bøggildite structure. As shown above, the (XO_4) group in bøggildite links to three AlØs octahedra to form a tetrahedral/octahedral polymer that is the fundamental unit of the structure. In the creedite and chukhrovite structures, the (XO_4) groups do not link to AlØ₆ octahedra at all. but only to the Ca (and Y) polyhedra; in addition, in the creedite structure there is polymerization of the AlØ₆ octahedra that does not occur in bøggildite.

These major structural differences can be simply explained using bond-valence theory (Brown 1978), together with the supposition that the major imperative of a structure is the satisfaction of ion bond-valences. In the case of the bøggildite structure, the P- \emptyset and Al- \emptyset bonds have average bond valences of 1.25 and 0.50 valence units (*v.u.*), respectively, and the other cations have bond-valences of 0.13-

FIG. 1. The crystal structure of b ϕ ggildite projected down X.

FIG. 2. Co-ordination polyhedra in the b ϕ ggildite structure. Sr (1) in top left, Sr(2) in top right, Na(1) in bottom left, and Na(2) in bottom right.

F(7)

Sr(1)	Sr(2)	Na(1)	Na(2)	A](1)	A1(2)	A1(3)	P	Σ
0.230	0.266		0.197				1.325	2.018
	0.207	0.096	0.168	0.5394	0.552 ^{×2}		1.267	2.023
0.259	0,236	0.068	0.143	0.496×2	•	0.555	1.205	2.019 0.943
0.207	0.271	0.155	0 117	0 474×2		0.482		1.115
0.242	0.237	0.092	0.11,	00 40.14		0.508		1.079
0.166	0.257	0.083	0.213			0.515		1.086
0.271		0.109	0.164		0.514 ^{x2}			0.949
0.161 0.281	0.244	0.124 0.141	0.072		0.475 ^{×2}	0.491	1	0.969
2.038	2,004	1,029	1.074	3.018	3.082	3.069	5.074	
	Sr(1) 0.230 0.259 0.207 0.242 0.221 0.166 0.271 0.161 0.281 2.038	Sr(1) Sr(2) 0.230 0.266 0.207 0.236 0.207 0.271 0.286 0.221 0.221 0.257 0.166 0.271 0.161 0.244 0.281 2.038	Sr(1) Sr(2) Na(1) 0.230 0.266 0.207 0.259 0.096 0.255 0.266 0.165 0.266 0.207 0.257 0.155 0.226 0.161 0.242 0.221 0.257 0.092 0.166 0.109 0.271 0.161 0.244 0.124 0.261 0.244 0.124 0.261 0.244 0.124 0.281 0.141 2.038 2.004	Sr(1) Sr(2) Na(1) Na(2) 0.230 0.266 0.197 0.207 0.096 0.168 0.259 0.096 0.168 0.207 0.155 0.266 0.207 0.155 0.266 0.207 0.271 0.155 0.242 0.237 0.092 0.166 0.109 0.213 0.271 0.164 0.164 0.161 0.141 0.072 2.038 2.004 1.029 1.074	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

TABLE 6. EMPIRICAL BOND-VALENCE TABLE FOR BØGGILDITE

0.25 v.u. The oxygen atoms of the $(PO_4)^{3-}$ tetrahedron have the largest bond-valence deficiency, one that is most easily and simply satisfied by further bonding to an Al to contribute a further 0.50 v.u. This gives a total of 1.75 v.u., and the remaining bond-valence requirements can be satisfied by further bonding to the alkali and alkaline earth cations. The stoichiometry of bøggildite does not allow the (PO₄) group to link to four AlØ₆ octahedra. In the case of the creedite and chukhrovite

F(9)

structures, the S- \emptyset and Al- \emptyset bonds have average bond-valences of 1.50 and 0.50 v.u., respectively, and the other cations have bondvalences of ~0.25 v.u. If there were linkage between the (SO₄) and (Al \emptyset_8) polyhedra, the linking atoms would have ideal bond-valence sums and could not participate further in the bonding. This would leave fewer anions to coordinate such large cations as Ca (and Y), which prefer larger co-ordination numbers. If the (SO₄) and Al \emptyset_8 polyhedra do not link to-

F(9)

FIG. 3. The [Al₂(PO₄)F₉] infinite chain that is the fundamental basis of the bøggildite structure.

FIG. 4. Polyhedral representation of the bøggildite structure; legend as in Figure 1. Intercalation of the $[Al_2(PO_4)F_9]$ chains forms a sheet parallel to (100), that is illustrated here. Bonding within and between (indicated by bonds ending in arrows) sheets is from the Sr and Na cations as shown.

gether, this leaves far more anions free to participate in the co-ordination of Ca, allowing it to assume the co-ordination number it prefers, while still satisfying the bond-valence requirements of each anion. There are no other aluminofluorite minerals containing $(PO_4)^{3-}$ oxyanions to see if this argument holds true for other structures. However, the same argument can be applied to the mineral stenonite Sr₂Al $(CO_a)F_s$, which should thus have linked car-

bonate and aluminofluoride polyhedra. A structural study of stenonite is planned to test this argument.

ACKNOWLEDGEMENTS

This study was supported by the Natural Sciences Engineering Research Council of Canada, in the form of a Research Fellowship and a grant to the author.

References

- BØGVAD, R. (1951): Mineralogical observations on the cryolite deposit at Ivigtut, Greenland. Medd. Dansk Geol. Foren. 12, 109-110.
- BOKIY, G.B. & GOROGOTSKAYA, L.I. (1965): Crystal structure of chukhrovite. Dokl. Acad. Sci. USSR, Earth Sci. Sect. 163, 92-94.
- BORISOV, S.V., BRUSENISEV, F.A., KLEVTSOVA, R.F. & BELOV, N.V. (1965): Crystal structure of creedite, Ca₃Al₂(F,OH)₁₀SO₄•2H₂O. Dokl. Acad. Sci. USSR, Earth Sci. Sect. 155, 129-131.
- BROWN, I.D. (1978): Bond valences a simple structural model for inorganic chemistry. Chem. Soc. Rev. 7, 359-376.
- CROMER, D.T. & LIBERMAN, D. (1970): Relativistic calculation of anomalous scattering factors for X rays. J. Chem. Phys. 53, 1891-1898.
- 4 MANN, J.B. (1968): X-ray scattering factors computed from numerical Hartree–Fock wave functions. *Acta Cryst.* A24, 321-324.

- HAWTHORNE, F.C. & FERGUSON, R.B. (1975): Refinement of the crystal structure of cryolite. *Can Mineral.* 13, 377-382.
- definition of pachnolite. Geol. Assoc. Can./Mineral. Assoc. Can. Ann. Meet., Abstr. 6, A25.
- & GRUNDY, H.D. (1976): The crystal chemistry of the amphiboles. IV. X-ray and neutron refinements of the crystal structure of tremolite. *Can. Mineral.* 14, 334-345.
- Møller, C.K. (1956): X-ray investigation of boggildite. Medd. Grønland 137(6).
- NIELSEN, A.H. (1954): Chemical analysis of a new mineral, bøggildite, from Ivigtut, Greenland. Acta Chem. Scand. 8, 136.
- PAULY, H. (1956): Bøggildite, a new phosphatefluoride from Ivigtut, south Greenland. Medd. Grønland 137(6).
- Received November 1981, revised manuscript accepted February 1982.