ABSTRACT

Lead-210 dating, chemical extraction and Mössbauer spectral methods have been used to study the age and origin of an iron- and phosphorus-rich crusty red layer in sediment cores retrieved from the Niagara Basin of Lake Ontario. Immediately overlying the ~ 0.5-cm-thick red layer is a thin Mn-rich black layer. The results suggest that the layer formed ~ 65 years ago at the sediment–water interface during a brief period (a few years) of very low sedimentation, permitting crystallization of brown surficial ferric hydroxides to red ferrihydrite. There is no loss of adsorbed P on crystallization. The red layer invariably overlies 3 to 4 cm of very light grey Fe3+- and P-deficient muds. The cores depict three Eh regimes upon deposition: (i) the last ~ 65 years of continuous deposition of well-oxidized muds, (ii) a few years of very low sedimentation corresponding to high surficial Eh and formation of the red layer, and (iii) the pre-red-layer period of more strongly reduced muds featuring significant reduction of ferric ions bonded to clays and in amorphous ferric aluminosilicates. Production of organic matter has presumably decreased since pre-red-layer times, suggesting an improved trophic status in the Niagara Basin.

Keywords: sediments, Lake Ontario, red layer, ferrihydrite, dating.

INTRODUCTION

Stones and rocks in streams and lakes commonly are coated with a ferromanganese crust (Ljunggren 1953, Landergren 1948, Gorham & Swaine 1965). Gorham & Swaine (1965) attributed crust formation to a low rate of sedimentation and a continuous supply of Fe3+ and Mn2+ ions to an unchanging high-Eh sediment–water interface, e.g., where modern sediments are thin or absent above basal glacial deposits. On this basis, Nussman (1965) attributed the Mn-rich yellow-brown crust in Lake Superior sediments to a period of low sedimentation; he observed no iron enrichment. Nevertheless, Fe- and Mn-rich layer does occur extensively in Lake Superior sediments to a period of low sedimentation; he observed no iron enrichment. Nevertheless, Fe- and Mn-rich layer does occur extensively in Lake Superior muds (Sly & Thomas 1974).

A 0.2- to 1-cm-thick red Fe- and P-rich layer is present in silty clay sediments covering ~ 100 km² of the bottom of the Niagara Basin of Lake Ontario (Manning et al. 1983, Sly & Thomas 1974). The red layer lies beneath a much thinner black Mn-rich layer; it also overlies, invariably from our sectioning of over a dozen red-layer cores, 3 to 4 cm of very light grey mud. The origins of the black, red and very light grey layers are clearly interrelated. The red oxide in an earlier core has Mössbauer parameters (Manning et al. 1983) and a particle-size distribution indicative of ferrihydrite 5Fe₂O₃·9H₂O, which is precipitated when percolating groundwaters meet an oxygen-rich horizon, e.g., in drainage ditches, freshwater springs and podzol B soil horizons (Coey & Readman 1973, Murad & Schwertmann 1980). A single red layer is present in each Niagara Basin core, hence its origin is related to a single event since the recession of the glaciers ~ 10000 years B.P.

In this article, we describe data on Mössbauer
TABLE 1. CONCENTRATIONS (wt%) OF IRON, PHOSPHORUS MANGANESE AND Mn IN SEDIMENT CORE RETRIEVED 27 JULY 1982

<table>
<thead>
<tr>
<th>Section</th>
<th>Color</th>
<th>Fe total</th>
<th>Fe(^{3+})</th>
<th>Fe(^{2+})</th>
<th>Mn total</th>
<th>Mn norm</th>
<th>P total</th>
<th>P norm</th>
<th>NAP total</th>
<th>NAP norm</th>
<th>Mg norm</th>
<th>Al norm</th>
<th>Si norm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>brown</td>
<td>3.81</td>
<td>2.06</td>
<td>2.06</td>
<td>0.63</td>
<td>0.16</td>
<td>0.16</td>
<td>0.07</td>
<td>2.15</td>
<td>15.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td>brown</td>
<td>3.89</td>
<td>1.65</td>
<td>1.96</td>
<td>1.76</td>
<td>0.25</td>
<td>0.14</td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-3</td>
<td>olive/grey</td>
<td>3.78</td>
<td>1.84</td>
<td>1.68</td>
<td>1.35</td>
<td>0.17</td>
<td>0.16</td>
<td>0.13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-4</td>
<td>dark grey</td>
<td>4.08</td>
<td>1.91</td>
<td>1.89</td>
<td>1.46</td>
<td>0.15</td>
<td>0.12</td>
<td>0.11</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-5</td>
<td>dark grey</td>
<td>4.15</td>
<td>1.99</td>
<td>1.87</td>
<td>1.39</td>
<td>0.10</td>
<td>0.08</td>
<td>0.08</td>
<td>1.72</td>
<td>5.39</td>
<td>17.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-6</td>
<td>light grey</td>
<td>4.48</td>
<td>2.11</td>
<td>2.06</td>
<td>1.44</td>
<td>0.10</td>
<td>0.07</td>
<td>0.07</td>
<td>1.70</td>
<td>4.93</td>
<td>13.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a-Fe\(_2O_3\) contains % of total Fe. A thin black Mn-rich layer overlies the red crust but it could not be isolated. The 17-to-17.2 cm red crust is texturally harder than the red cake. Very light grey sediment lies immediately beneath the red crust. Normalized concentrations are represented by norm.

TABLE 2. TOTAL ELEMENTAL CONCENTRATIONS IN SEDIMENT CORE RETRIEVED 7 JULY 1982

<table>
<thead>
<tr>
<th>Section</th>
<th>Color</th>
<th>Fe wt.%</th>
<th>Al wt.%</th>
<th>Mn wt.%</th>
<th>P wt.%</th>
<th>PNa wt.%</th>
<th>MnNa wt.%</th>
<th>Fe(^{2+}) wt.%</th>
<th>Fe(^{3+}) wt.%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>brown</td>
<td>4.90</td>
<td>1.08</td>
<td>1.31</td>
<td>1.47</td>
<td>1.37</td>
<td>0.13</td>
<td>0.16</td>
<td>0.17</td>
</tr>
<tr>
<td>1-2</td>
<td>brown</td>
<td>4.30</td>
<td>1.05</td>
<td>1.31</td>
<td>1.48</td>
<td>1.28</td>
<td>0.11</td>
<td>0.15</td>
<td>0.10</td>
</tr>
<tr>
<td>2-3</td>
<td>grey</td>
<td>4.14</td>
<td>1.03</td>
<td>1.44</td>
<td>1.38</td>
<td>1.19</td>
<td>0.10</td>
<td>0.14</td>
<td>0.10</td>
</tr>
<tr>
<td>3-4</td>
<td>grey</td>
<td>4.63</td>
<td>1.07</td>
<td>1.44</td>
<td>1.38</td>
<td>1.19</td>
<td>0.10</td>
<td>0.14</td>
<td>0.10</td>
</tr>
<tr>
<td>4-5</td>
<td>brown/grey</td>
<td>5.06</td>
<td>1.08</td>
<td>1.35</td>
<td>1.48</td>
<td>1.30</td>
<td>0.10</td>
<td>0.14</td>
<td>0.10</td>
</tr>
<tr>
<td>5-6</td>
<td>mature red +</td>
<td>5.48</td>
<td>1.08</td>
<td>1.35</td>
<td>1.48</td>
<td>1.30</td>
<td>0.10</td>
<td>0.14</td>
<td>0.10</td>
</tr>
<tr>
<td>6-7</td>
<td>black, gritty</td>
<td>4.80</td>
<td>1.08</td>
<td>1.35</td>
<td>1.48</td>
<td>1.30</td>
<td>0.10</td>
<td>0.14</td>
<td>0.10</td>
</tr>
<tr>
<td>7-8</td>
<td>red layer</td>
<td>4.50</td>
<td>1.05</td>
<td>1.31</td>
<td>1.47</td>
<td>1.30</td>
<td>0.10</td>
<td>0.14</td>
<td>0.10</td>
</tr>
<tr>
<td>8-9</td>
<td>very light grey</td>
<td>5.06</td>
<td>1.07</td>
<td>1.44</td>
<td>1.38</td>
<td>1.19</td>
<td>0.10</td>
<td>0.14</td>
<td>0.10</td>
</tr>
<tr>
<td>9-10</td>
<td>very light grey</td>
<td>5.06</td>
<td>1.05</td>
<td>1.31</td>
<td>1.47</td>
<td>1.30</td>
<td>0.10</td>
<td>0.14</td>
<td>0.10</td>
</tr>
<tr>
<td>10-11</td>
<td>very light grey</td>
<td>4.90</td>
<td>1.08</td>
<td>1.31</td>
<td>1.47</td>
<td>1.30</td>
<td>0.10</td>
<td>0.14</td>
<td>0.10</td>
</tr>
<tr>
<td>11-12</td>
<td>dark</td>
<td>5.17</td>
<td>1.08</td>
<td>1.31</td>
<td>1.47</td>
<td>1.30</td>
<td>0.10</td>
<td>0.14</td>
<td>0.10</td>
</tr>
<tr>
<td>12-13</td>
<td>mottled dark</td>
<td>5.11</td>
<td>1.07</td>
<td>1.31</td>
<td>1.47</td>
<td>1.30</td>
<td>0.10</td>
<td>0.14</td>
<td>0.10</td>
</tr>
<tr>
<td>13-14</td>
<td>and light</td>
<td>5.00</td>
<td>1.05</td>
<td>1.31</td>
<td>1.47</td>
<td>1.30</td>
<td>0.10</td>
<td>0.14</td>
<td>0.10</td>
</tr>
</tbody>
</table>

* Phosphorus extractable by a modified method of Tessier et al. (1979).

Methods of retrieval, sectioning and processing of sediment cores have been described earlier (Manning et al. 1981, 1983). Mössbauer spectra of freeze-dried sections of the 27 July 1982 core have been recorded and computer-fitted following earlier methods (Manning et al. 1981, 1983). Area ratios and half widths within a quadrupole doublet were constrained to be equal. Chi-squared values and visual examination of whole spectra were used as criteria of goodness of fit.

The cores were dated using the \(^{210}\)Pb method (Robbins & Edgington 1975, Matsumoto 1975, Nriagu et al. 1979). Approximately 2 g of dry sediment and 10 mL of aqua regia were heated for two hours at 95 ± 5°C. The mixture was cooled, and 5 mL of perchloric acid added. The mixture was heated, cooled, filtered and evaporated to near dryness. Ten mL of concentrated HCl were added, and the solution evaporated to near-dryness; this step was repeated three times to eliminate the nitrate ion. The residues were dissolved in dilute HCl, and calculated amounts of ascorbic acid were added to bind the ferric iron. The solution was adjusted to pH 1.4 and then transferred to polyethylene bottles for plating on a silver disk. Alpha activity was monitored using a NMC-2 proportional counter. Dates were estimated...
assuming that the concentration of unsupported 210Pb in the depositing material is constant with time (Nriagu et al. 1979). The supported 210Pb activities were taken as the measured background-activities (= 0.4 pCi g$^{-1}$) for the Niagara Basin.

Concentration of excess 210Pb activity is plotted against sediment depth in Figure 1. The 210Pb profile for the 27 July 1982 core shows an obvious discontinuity coincident with the appearance of the sandy, brown, 9- to 17-cm portion of the core. Presumably, soon after its formation, the red layer was covered rapidly by the ~ 8 cm of dredged material or by underwater slump. The excision of this sandy section of the core from the plot (Fig. 1) indicates that the red layer is overlain by ~ 83 years of silty clay deposition, in reasonable agreement with the ages (~ 53, ~ 60 and ~ 70 years) measured for the other cores. Formation of the red layer in all cores was probably concurrent and occurred 65 ± 15 years ago. The plots (Fig. 1) further suggest that the layers were formed over a short period of a few years.

Sequential extractions of phosphorus were performed on the 7 July 1982 core using slight modifications of the method of Tessier et al. (1979), namely: (1) extraction by a 0.75 M LiCl + 0.25 M
Mössbauer spectra

The room-temperature Mössbauer spectrum of the 1- to 2-cm-sediment residual (Fig. 2) is representative, qualitatively, of all sections of the 27 July 1982 core, showing in the range of +4 to −4 mm s⁻¹ the major quadrupole doublets marking Fe²⁺ in chlorite (outer doublet) and Fe³⁺ ions in silicates and in amorphous hydrated oxides (a broadened innermost doublet) (Manning et al. 1981, Manning & Jones 1982). The ferric-ion envelope comprises absorptions of (a) brown Eh-sensitive "ferric hydroxide" in the oxidized surface-layer and (b) ferric ions that are present in the oxidized and reduced zones of sediments (Manning et al. 1981, Manning & Jones 1982). The concentration of Fe³⁺ ions in (b) is strongly correlated with clay concentration (Manning et al. 1984), the principal forms being ferric ions in clay lattices, ferric ions in hydrated oxides coating clay surfaces, and ferric ions in amorphous aluminosilicates formed surficially from the coprecipitation of brown "ferric hydroxide", hydrated silica and hydrated alumina (Nriagu 1978).

A weak Fe²⁺ doublet, marking Fe²⁺ ions in the second octahedral layer in chlorite, is easily resolved in all spectra (Fig. 2) except in that of the high-Fe³⁺ red layer. Spectra recorded over a wide range of energy display additional peaks of magnetically ordered well-crystallized hematite (αFe₂O₃), the two weak innermost peaks of the six-line pattern being obscured by the major Fe²⁺ and Fe³⁺ absorptions (Manning et al. 1983). Computation of spectra showed ~7% total iron contained in each of hematite and the minor Fe²⁺ ion. Calculated Mössbauer spectral parameters and ferrous and ferric iron concentrations are listed in Table 4.

The Mössbauer spectra of the 0- to 1-cm section and of the red layer (17 to 17.2 cm), recorded at 4 K, show prominent broad six-line magnetic patterns (Figs. 3, 4). Approximately 50% of total Fe in the top cm and ~85% of total Fe in the red layer are magnetically ordered at 4 K (Table 4). In the 23 July 1981 core (Manning et al. 1983), the iron in the 0- to 1-cm section remains paramagnetic at 4 K. Calculated Mössbauer parameters for the magnetically ordered oxides are listed in Table 4. The relatively high value of the ferric ion quadrupole splitting at 298 K, the value of the hyperfine field (~460 kOe) at 4 K and the temperature dependence of ordering suggest that the oxide in the red layer is ferrihydrite 5Fe₂O₃·9H₂O (Coey & Readman 1973, Murad & Schwertmann 1980, Manning et al. 1983).

RESULTS AND DISCUSSION

Mössbauer spectra

The room-temperature Mössbauer spectrum of the 1- to 2-cm-sediment residual (Fig. 2) is representative, qualitatively, of all sections of the 27 July 1982 core, showing in the range of +4 to −4 mm s⁻¹ the major quadrupole doublets marking Fe²⁺ in chlorite (outer doublet) and Fe³⁺ ions in silicates and in amorphous hydrated oxides (a broadened innermost doublet) (Manning et al. 1981, Manning & Jones 1982). The ferric-ion envelope comprises absorptions of (a) brown Eh-sensitive "ferric hydroxide" in the oxidized surface-layer and (b) ferric ions that are present in the oxidized and reduced zones of sediments (Manning et al. 1981, Manning & Jones 1982). The concentration of Fe³⁺ ions in (b) is strongly correlated with clay concentration (Manning et al. 1984), the principal forms being ferric ions in clay lattices, ferric ions in hydrated oxides coating clay surfaces, and ferric ions in amorphous aluminosilicates formed surficially from the coprecipitation of brown "ferric hydroxide", hydrated silica and hydrated alumina (Nriagu 1978).

A weak Fe²⁺ doublet, marking Fe²⁺ ions in the second octahedral layer in chlorite, is easily resolved in all spectra (Fig. 2) except in that of the high-Fe³⁺ red layer. Spectra recorded over a wide range of energy display additional peaks of magnetically ordered well-crystallized hematite (αFe₂O₃), the two weak innermost peaks of the six-line pattern being obscured by the major Fe²⁺ and Fe³⁺ absorptions (Manning et al. 1983). Computation of spectra showed ~7% total iron contained in each of hematite and the minor Fe²⁺ ion. Calculated Mössbauer spectral parameters and ferrous and ferric iron concentrations are listed in Table 4.

The Mössbauer spectra of the 0- to 1-cm section and of the red layer (17 to 17.2 cm), recorded at 4 K, show prominent broad six-line magnetic patterns (Figs. 3, 4). Approximately 50% of total Fe in the top cm and ~85% of total Fe in the red layer are magnetically ordered at 4 K (Table 4). In the 23 July 1981 core (Manning et al. 1983), the iron in the 0- to 1-cm section remains paramagnetic at 4 K. Calculated Mössbauer parameters for the magnetically ordered oxides are listed in Table 4. The relatively high value of the ferric ion quadrupole splitting at 298 K, the value of the hyperfine field (~460 kOe) at 4 K and the temperature dependence of ordering suggest that the oxide in the red layer is ferrihydrite 5Fe₂O₃·9H₂O (Coey & Readman 1973, Murad & Schwertmann 1980, Manning et al. 1983).

TABLE 4. MÖSSBAUER PARAMETERS MEASURED FOR IONS IN LAKE ONTARIO SEDIMENT

<table>
<thead>
<tr>
<th>Temp.</th>
<th>Ion</th>
<th>IS</th>
<th>QS</th>
<th>H₀₁</th>
<th>H₂₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>298 K</td>
<td>Fe²⁺ major</td>
<td>1.11</td>
<td>2.65</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>298 K</td>
<td>Fe²⁺ minor</td>
<td>1.06</td>
<td>2.20</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td>298 K</td>
<td>Fe³⁺ red oxide</td>
<td>0.38</td>
<td>0.62</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>4 K</td>
<td>Mag., Oxide (0-1 cm sect.)</td>
<td>0.35 - 0.40</td>
<td>405</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 K</td>
<td>Magn. Oxide (17-17.2 cm sect.)</td>
<td>0.29 - 0.32</td>
<td>463</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IS = isomer shift, relative to Fe foil. **QS** = quadrupole splitting, **H₀₁** = half width. All values 0.02 mm s⁻¹. Fe²⁺ (major):Fe³⁺ (minor) ~7. α-Fe₂O₃ contains ~7% of total Fe. H = 468 kOe for red layer oxide in 23 July 1981 core.
Iron profiles

Ferrous ion concentrations increase with increasing depth of burial over the top 9 cm of the 27 July 1982 core (Table 1), reflecting loss of calcium carbonate and organic matter (Kemp & Thomas 1976, Manning & Jones 1982). The normalization of the concentrations of Fe$^{3+}$ ion over the top 9 cm (Table 1), using Fe$^{2+}$ concentrations as conservative indicators (Manning & Jones 1982), demonstrates the surficial enrichment in Eh-sensitive Fe$^{3+}$ ion of 0.65%, i.e., 2.06% minus 1.41%, where 1.41% Fe$^{3+}$ is the mean of ferric ion concentrations from 2 to 9 cm depth; this enrichment agrees well with those measured for nonlayered cores (Manning & Jones 1982, Manning et al. 1984). Moreover, concentrations of non-apatite inorganic P are consistent with the magnitude of this enrichment in Fe$^{3+}$ ion and also with total concentrations of P (Table 1; Manning & Jones 1982, Manning et al. 1984). Trends in the concentrations of total Ca, Pb, Al and Mn, above the red and black layers, are very similar to those in non-layered cores (Tables 1 to 3; Kemp & Thomas 1976, Manning et al. 1983, 1984). Computationally, deposition since layer formation has been representative of the Niagara Basin and of most of Lake Ontario.

The sediment immediately underlying the red layers in the present core (and in several others) is invariably a uniform very light grey, in marked contrast to the mottled grey of reduced muds in Lakes Ontario and Erie. Concentrations of Fe$^{3+}$ ions are significantly reduced in the very light grey zones of the 23 July 1981 (Manning et al. 1983) and 27 July 1982 (Table 1) cores, whereas Al is impoverished in the 23 July 1981 core (Manning et al. 1983). Also, total Al and total Fe concentrations are relatively low beneath the red layer in the 7 July 1982 core (Table 2). It is, therefore, likely that a high proportion of the Fe$^{3+}$, Mn, P and Al ions concentrated in the red and the black layers is derived from the reduction of illite and amorphous ferric aluminosilicates in the very light grey zone, with consequent upward mobilization to, and precipitation at, the oxic horizon. The magnitude of losses of the Fe$^{3+}$ ion over 3 to 4 cm of the very light grey zone and of the Fe concentrations in the ~0.5-cm-thick red layer are consistent (Table 1).

However, the release of Fe$^{3+}$ and Al$^{3+}$ from clay lattices and aluminosilicates is not considered a common process in Great Lakes sediments; Al is often used as a conservative element for procedures of normalization of concentration (Kemp et al. 1976, Kemp & Thomas 1976). Approximately 20% of the Fe$^{3+}$ ion is lost in the reduced zone of cores from an area of high sedimentation of Lake Ontario and from the Rochester Basin of Lake Ontario (Cores 6 and 8, Manning et al. 1984). Mostly, however, Lake
Ontario cores display little or no loss of Fe\(^{3+}\) ion in the reduced zone (Manning et al. 1981, 1984, Manning & Jones 1982). Abstraction of ferric ions from clay lattices can occur in anoxic marine sediments by reaction with sulfide ion (Drever 1971), Mg ions reoccupying the vacant sites. Significantly, Mg concentrations are elevated beneath the red layer in the 27 July 1982 core (Table 1). Ferric ions are completely removed from clay sites in anoxic sulfide-rich Lake St. George sediments (Manning et al. 1979). Elevated concentrations of sulfide are derived from the metabolism of organic matter by sulfate-reducing bacteria. Consequently, the abstraction of Fe\(^{3+}\) and Al ions from illite in these very light grey zones reflects past conditions of sediment anoxia, enhanced possibly by sulfide production. The absence of black ferrous sulfides as a remnant of sulfide formation is, however, puzzling; light grey to black mottling possibly by sulfide production. The absence of black ferrous sulfides as a remnant of sulfide formation is, however, puzzling; light grey to black mottling is characteristic of reduced Lake Ontario muds.

Phosphorus profiles

Phosphorus concentrations are considerably elevated in all the red layers (Tables 1 to 3) but are insignificantly elevated in the black Mn-rich layers (Table 2; Manning et al. 1983). The enrichment in normalized concentrations of P in the red layer in the 27 July 1982 core (Table 1) is 0.53 minus 0.07% P, or 0.46% P; the Fe\(^{3+}\) ion enrichment is 5.66 minus 1.41% Fe\(^{3+}\), or 4.25% Fe\(^{3+}\). Hence, the Fe\(^{3+}\) in the oxide of the red layer adsorbs ~11% of its weight of P, in reasonable agreement with the value of ~7% measured for the 23 July 1981 core (Manning et al. 1983) and with the ~8% measured for brown surficial Eh-sensitive "ferric hydroxide" (Manning & Jones 1982, Manning et al. 1984), averaged over seven cores.

Phosphorus is particularly abundant in the red layers of the 7 July 1982 and 26 October 1982 cores (Tables 2, 3), in marked contrast to the low values of P measured in the overlying Mn-rich layer. Hence, phosphorus is strongly associated with ferric ion in the red layer (Tables 1 to 3; Manning et al. 1983). Minor amounts of phosphorus are extracted by the method of Tessier et al. (1979) (Table 2; Manning et al. 1983) from both the brown surficial Eh-sensitive "ferric hydroxide" and the red layer. Hence, the value of the method in assessing crystalline and amorphous forms of P must be questioned. In contrast, almost all the P contained in the red oxide and in the "ferric hydroxide" is non-apatite inorganic P and extractable using the dithionite-citrate-bicarbonate reagent (Tables 1, 3).

Mn profiles

Mn concentrations are elevated in the oxidized surface-layer (Tables 1 to 3; Manning et al. 1983), beneath which concentrations steadily decrease until the sharp increase at the black layer is attained (Table 2; Manning et al. 1983). Above the black horizon the Mn profiles are those expected for Lake Ontario muds (Kemp & Thomas 1976). The dramatic concentration of Mn in the very thin black layer attests to an intense redox gradient and quiescent conditions at the time of precipitation. Mn concentrations are at, or below, background levels in the very light grey layer.

Origin of the red layer

Redox processes are strongly implicated in the formation of the red layers. Firstly, ferrhydrite is precipitated naturally as a reddish stain when percolating groundwaters containing ferrous ions and organic matter meet an oxygen-rich environment, e.g., in freshwater springs and in drainage ditches (Coey & Readman 1973, Schwertmann & Taylor 1977, Schwertmann & Fischer 1973, Murray 1979). The restriction of brown surficial Eh-sensitive ferric ion to the oxidized surface-layer (Table 1; Manning et al. 1983) indicates that oxygen does not diffuse in significant concentrations to a depth exceeding 2 cm of sediment. Hence, the red layer, occurring at depths of up to 18 cm, probably formed at the sediment-water interface and has since been buried. The strong cementing action of ferrhydrite (Schwertmann & Taylor 1977) promotes encrustation, and the increased order in crystals promotes resistance against reduction on burial. Extensive magnetic ordering in the 0- to 1-cm section of the 27 July 1982 core (Fig. 3) demonstrates that increased ordering in crystals does occur during early diagenesis under surficial conditions; however, it is not known whether a minor red layer is now being formed, or whether ordering does occur frequently at the surface but is insufficiently intense to promote cementation and increased resistance to reduction. The ordered surficial oxide also has a similar P-adsorption capacity to that of brown Eh-sensitive ferric hydroxide (Manning & Jones 1982, Manning et al. 1984). Conceivably, the brown Eh-sensitive ferric hydroxide is a precursor to ferrhydrite.

As an alternative, the red layers may be actively accreting, with two simple variations: firstly, the layers are immobile with respect to the clay background, and secondly, the layers are continuously dissolving and reprecipitating so as to maintain a fairly constant separation from the sediment–water interface. The action of Mn- and Fe-precipitating bacteria is inferred. The layers are characterized more by similar age than by constant distance from the interface, and a relatively dry crust further argues against the second variation. The first variation does not explain the loss of color and of ferric iron in the very light grey zone.
Hence, the layers are best considered fossil surficial horizons of high reductivity potential. This could not have arisen from a period of low production of organic matter in the Great Lakes because cultural eutrophication since ~1840 implies increased organic loadings to the lake. More easily envisaged are changes in rates of sedimentation over relatively small areas of the lake. Over, say, five years or so of very low sedimentation, the continuous supply of organic matter to the bottom is halted, and organic matter contained in the top 2 cm will be oxidized by diffusing molecular oxygen. Iron, manganese, and phosphate ions percolating upward in the pore water are now precipitated under conditions of low inputs of foreign organic and inorganic ions. Crystallization to ferricyanide will be promoted by (a) greater time in the oxic zone, (b) lower concentrations of adsorbed foreign ions (Schwertmann 1966), (c) high concentrations of Fe$^{3+}$ ions derived from the reduction of underlying silicates, and (d) lower concentrations of hydrated alumina and silica that would remove "ferric hydroxides" as aluminosilicates (Nriagu 1978). Moreover, under low-energy conditions, Mn ions will precipitate as a thin layer at higher Eh levels, i.e., at the immediate sediment–water interface. The very light grey layer is easily explained in terms of the elevation of Eh sufficiently over the top 3 or 4 cm to dissolve black ferrous sulfides during the period of low sedimentation.

General discussion

If abstraction of ferric iron from illite and from amorphous aluminosilicates is a measure of relatively strong reducing conditions, then surficial muds over this ~100-km² area of the Niagara Basin are now more strongly oxidized than they were >65 years ago. We attribute this change, which probably implies a higher P-binding capacity, to changes in sedimentation patterns locally. Between ~1840 and ~1910, sedimentation may have been greatly reduced, while the subsequent to colonial settlement along the shores.

The red layer may have formed contemporaneously with the ferromanganese-coated sands along the north shore of Lake Ontario. However, the coatings are enriched in trace elements (Cronan & Thomas 1972), whereas the layer contains background levels of, for example, Pb and Zn (Manning et al. 1983). Hence the coatings are still accreting heavy metal ions. The long-term stability of the layers and coatings is important because deteriorating quality of water would cause reduction and dissolution, with consequent release of massive quantities of P and trace metal ions to the overlying water. This would promote further eutrophication.

On the basis that eutrophication causes increased production of organic matter and, in turn, reduced reductivity potentials at the sediment–water interface, we can conclude that the trophic status of the Niagara Basin has improved since pre-red-layer times. This is in marked contrast to the trend for the Great Lakes generally; cultural eutrophication has been pronounced in both Lakes Erie and Ontario. Conceivably, much of the nutrient input to the Niagara Basin, possibly from the Niagara River, may have been diverted naturally ~65 years ago to the detriment of the eastern Rochester and Kingston basins.

Approximately 5000 tonnes of P is contained in the ~100 km² of red layer in the Niagara Basin. This is comparable to the current annual load of P to Lake Ontario (8500 tonnes, Great Lakes Water Qual. Board 1981). A red layer also occurs in sediments of the central Mississauga Basin (Sly & Thomas 1974). If dissolved, the P would pose a major nutrient problem, as the P would be highly bioavailable. The Mössbauer spectra reveal no vivianite peaks; consequently, reduction and dissolution of the red oxide have hitherto been minimal.

Acknowledgements

We thank T. Mayer, A. Mudroch, J.O. Nriagu, R.L. Thomas and staff of Technical Operations for assistance.

References

Received April 25, 1984, revised manuscript accepted July 11, 1984.