TAYLORITE DISCREDITED (= AMMONIAN ARCANITE)

LEE A. GROAT AND FRANK C. HAWTHORNE
Department of Earth Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2

ABSTRACT

Examination of the published chemical, optical and X-ray data of the potassium-ammonium sulfate mineral taylorite shows it to be an ammonian arcanite. Taylorite is discredited.

Keywords: sulfate, taylorite discredited, ammonian arcanite.

INTRODUCTION

Taylor (1859) described a potassium ammonium sulfate from the guano deposits on the Chincha Islands off the coast of Peru; he named this mineral 'glaserite(?)', but it was subsequently called taylorite by Dana (1868, quoted in Palache et al. 1951). The results of a chemical analysis (Table 1) show that this mineral is an intermediate phase in the solid-solution series arcanite \(K_2SO_4 \) – mascagnite \([(NH_4)_2SO_4] \), with \(x: K/(K + NHJ = 0.79 \). However, no crystallographical or optical data were reported. Frondel (1950) described ammonian aphythitalite [aphthitalite: \((K_2Na_3Na(SO_4) \)] from the guano deposits of the Guanape Islands, 650 km northwest of the Chincha Islands, and suggested that taylorite was either ammonian arcanite or ammonian aphythitalite. Winchell & Benoit (1951) re-examined what seems to be the original specimen of taylorite, and presented chemical data (Table 1), X-ray powder-diffraction data and optical data; this new chemical data also indicate an arcanite-type formula with \(x = 0.83 \).

DISCUSSION

There is a complete solid-solution between arcanite and mascagnite. The indices of refraction vary nonlinearly as a function of composition (El-Hinnawi 1963). The indices of refraction reported for taylorite by Winchell & Benoit (1951) are perfectly compatible with the contention that it is an intermediate member of the arcanite–mascagnite series, with the composition given in Table 1. The X-ray powder pattern of taylorite from Chincha, given by Winchell & Benoit (1951), can be indexed on an arcanite cell. Least-squares refinement gives the following unit-cell parameters; orthorhombic; \(a 7.540(9), b 10.161(8), c 5.770(8) \); these conform to the standard convention \(c<a<b \), the space group of arcanite being \(Pnam \) in this orientation. Assuming a linear variation of cell parameters as a function of composition in the arcanite–mascagnite series, these values are compatible with the proposal that the reported composition (Table 1) has the arcanite structure.

Optical data are also reported for taylorite by Larsen (1921) and Larsen & Berman (1934). The indices of refraction are beyond the limits for arcanite and mascagnite, but correspond reasonably well with stercorite \([H(NH_4)Na(PO_4)] \). The sample examined by Larsen (1921) was possibly stercorite (M. Fleischer, pers. comm.).

CONCLUSIONS

Taylorite is an unnecessary name for an intermediate member of the arcanite–mascagnite series. Discreditation of the name has been approved by the International Mineralogical Association, Commission on New Minerals and Mineral Names.

ACKNOWLEDGEMENTS

This work was supported by a fellowship and an operating grant from the Natural Sciences and Engineering Research Council of Canada.

TABLE 1. CHEMICAL DATA FOR 'TAYLORITE'

<table>
<thead>
<tr>
<th></th>
<th>Taylor (1859)</th>
<th>Winchell & Benoit (1951)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO_3</td>
<td>48.40</td>
<td>45.37</td>
</tr>
<tr>
<td>(NH_4)_2O</td>
<td>5.37</td>
<td>5.14</td>
</tr>
<tr>
<td>K_2O</td>
<td>43.45</td>
<td>47.50</td>
</tr>
<tr>
<td>Na_2O</td>
<td>1.68</td>
<td><0.01</td>
</tr>
<tr>
<td>x</td>
<td>98.90</td>
<td>97.87</td>
</tr>
<tr>
<td>K</td>
<td>0.79</td>
<td>0.83</td>
</tr>
<tr>
<td>K+NH_4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES

El-Hinnawi, E.E. (1963): Remarks on the variation of crystal-optical properties in the system mascagnite-

Frondel, C. (1950): Notes on arcanite, ammonian
aphthitalite and oxammite. Amer. Mineral. 35, 596-598.

Larsen, E.S. (1921): Microscopic determination of

Palache, C., Berman, H. & Frondel, C. (1951): The
System of Mineralogy of James Dwight Dana and
Edward Salisbury Dana, Vol. II. John Wiley & Sons,

Taylor, W.J. (1895): Mineralogical notes – No. II.

Winchell, H. & Benoit, R.J. (1951): Taylorite, mas-
cagnite, aphantitalite, lecontite, and oxammite from

Received October 1, 1984, revised manuscript accepted
October 25, 1984.