REFINEMENT OF THE CRYSTAL STRUCTURE OF BLOEDITE:
STRUCTURAL SIMILARITIES IN THE $[\text{VI}M^{IV}T_{2}\Phi_{4}]_{2}\Phi_{n}$ FINITE-CLUSTER MINERALS

FRANK C. HAWTHORNE
Department of Earth Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2

ABSTRACT

The crystal structure of bloedite, Na$_2$Mg(SO$_4$)$_2$·4H$_2$O, monoclinic, a 11.126(2), b 8.242(1), c 5.539(1) Å, β 100.84(1)$^\circ$, V 498.8(1) Å3, $Z = 2$, space group $P2_1/a$, has been refined to a residual R of 3.1% on 1304 observed (4σ) reflections of graphite-monochromated MoKα radiation. Hydrogen atoms were located, and a sensible hydrogen-bond arrangement shows up in the refined structure. The fundamental building block (FBB) of the structure is the $[$Mg(H$_2$O)$_6$(SO$_4$)$_2$]$^{2-}$ finite heteropolyhedral cluster, which is repeated by translations to form rather open sheets // (01); these sheets are linked together by octahedrally co-ordinated sodium and hydrogen bonding. The $[$VI$M^{IV}T_{2}\Phi_{4}]_{2}\Phi_{n}$ cluster is the FBB of the bloedite, leonite, anapaite and schertelite structures, and the open sheets of these clusters form a structure module that is also common to all four types of structure.

Keywords: crystal structure, sulfate, mineral, bloedite.

INTRODUCTION

Bloedite is a hydrated sodium magnesium sulfate mineral that is a common phase in salt deposits of marine and lacustrine origin. It has a wide field of stability at 25°C in the reciprocal salt system Na–Mg–Cl–SO$_4$ (Eugster & Hardie 1980), and precipitates directly as a result of evaporative concentration from saline waters. The structure of bloedite was solved by Rumanova (1958), and the structure of the zinc analogue was reported by Giglio (1958). A neutron structure-refinement of the cobalt analogue was given by Bukin & Nozik (1975).

In a recent examination of the $[$VI$M^{IV}T_{2}\Phi_{4}]_{2}\Phi_{n}$ (unspecified ligand) minerals (Hawthorne 1985), bloedite was one of a number of minerals whose structure was shown to be based on finite $M(T\Phi_{4})_{2}\Phi_{n}$ clusters. A more detailed examination of these structures was thought desirable, together with more accurate information on the structure of bloedite itself, and thus the current study was undertaken.

EXPERIMENTAL

The material used in this study is from Soda Lake, San Luis Obispo County, California, and was obtained from the Department of Mineralogy and Geology, Royal Ontario Museum, collection number M35298. A crystal was mounted on a Nicolet R3m automated four-circle diffractometer equipped with a molybdenum-target X-ray tube and a crystal monochromator of highly oriented graphite mounted with equatorial geometry. Twenty-five reflections were centred, and least-squares refinement of the setting aneiles produced the monoclinically constrained cell-dimensions given in Table 1, together with the orientation matrix relating the crystal axes to the diffractometer axes.

Intensity data were collected in the θ-2θ scan mode, using 96 steps with a scan range from $[2θ(\text{MoKα})]-1$ to $[2θ(\text{MoKα})]+1$° and a variable scan-rate between 4.0 and 29.3°/minute depending on the intensity of an initial 1 s count at the centre of the scan range. Backgrounds were measured for half the scan time at the beginning and end of each scan. Two standard reflections were monitored every 48 measurements to check for stability and constancy of crystal alignment. A total of 1461 reflections were measured over one asymmetric unit out to a maximum 2θ of 60°. Ten strong reflections uniformly distributed with regard to 2θ were measured at 10° intervals of ψ (the azimuthal angle corresponding to rotation of the crystal about its diffraction vector) from 0 to 350°. These data were used to calculate an ellipsoidal empirical absorption-correction, the
TABLE 1. MISCELLANEOUS INFORMATION: BLOEDITE

<table>
<thead>
<tr>
<th>Site</th>
<th>Crystal Size (mm)</th>
<th>a 11.126(2)</th>
<th>b 8.242(2)</th>
<th>c 5.539(1)</th>
<th>b 8.242(1)</th>
<th>V 598.8(1)</th>
<th>a 1.16x0.22x0.35</th>
</tr>
</thead>
</table>

Space Group P2_1/a Final R(obs) 3.1%

Unit cell contents: 2(Na_2Mg(SO_4)_2(6H_2O)_4)

Description of the bloedite structure

The structure reported by previous authors is confirmed. Sulfur is surrounded by an irregular tetrahedral array of oxygen atoms; deviations from ideal tetrahedral geometry are not large, and the small variations in individual S-O bond lengths may be interpreted in terms of local bond-valence requirements. Magnesium is co-ordinated by two oxygen atoms and four (H_2O) groups, arranged in a slightly distorted octahedral array; the observed <Mg-O> distance of 2.076 Å agrees closely with the sum of the ionic radii (Shannon 1976). Sodium is co-ordinated by four oxygen atoms and two (H_2O) groups, arranged in a very distorted octahedral configuration. The O-Na-O bond angles deviate by up to ~25° from the ideal values.

Structure Refinement

Scattering curves for neutral atoms, together with coefficients of anomalous dispersion, were taken from Cromer & Mann (1968) and Cromer & Liberman (1970). R indices are of the form given in Table 1 and are expressed as percentages. The SHELXTL (Sheldrick 1981) system of programs was used for the computational aspects of this work.

Using the structural parameters given by Giglio (1958) for synthetic Na_2Zn(SO_4)_2·4H_2O, least-squares refinement of all positional parameters for an isotropic thermal model converged to an R index of 4.1%. At the time of the refinement, I was not aware of the neutron study of Bukin & Nozik (1975). Consequently the H positions were not taken from the neutron study, but were directly determined in this work.

A difference-Fourier map calculated at this stage clearly revealed all hydrogen atoms. Insertion of these positions into the least-squares refinement (with fixed isotropic temperature-factors) together with conversion of non-hydrogen-atom temperature-factors to the anisotropic form resulted in convergence at an R index of 3.1%. Final positional parameters are given in Table 2, and anisotropic temperature-factor coefficients are given in Table 3. Selected interatomic distances are listed in Table 4 and a bond-valence analysis is given in Table 5.

Observed and calculated structure-factors may be obtained from the Depository of Unpublished Data, CISTI, National Research Council of Canada, Ottawa, Ontario K1A 0S2.

TABLE 2. POSITIONAL PARAMETERS FOR BLOEDITE

<table>
<thead>
<tr>
<th>Site</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U^2equiv.</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>0.1364(4)</td>
<td>0.29075(6)</td>
<td>0.36935(8)</td>
<td>1.05(1)</td>
</tr>
<tr>
<td>Mg</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.07(1)</td>
</tr>
<tr>
<td>Na</td>
<td>0.36178(6)</td>
<td>0.0705(1)</td>
<td>0.1305(2)</td>
<td>2.01(3)</td>
</tr>
<tr>
<td>O(1)</td>
<td>0.2663(1)</td>
<td>0.2712(2)</td>
<td>0.3476(3)</td>
<td>1.96(4)</td>
</tr>
<tr>
<td>O(2)</td>
<td>0.0802(1)</td>
<td>0.4214(2)</td>
<td>0.2091(3)</td>
<td>2.03(5)</td>
</tr>
<tr>
<td>O(3)</td>
<td>0.0704(2)</td>
<td>0.1372(2)</td>
<td>0.3568(3)</td>
<td>1.90(4)</td>
</tr>
<tr>
<td>O(4)</td>
<td>0.1321(2)</td>
<td>0.3283(2)</td>
<td>0.6297(3)</td>
<td>1.96(5)</td>
</tr>
<tr>
<td>O(5)</td>
<td>0.1603(1)</td>
<td>0.0378(2)</td>
<td>0.8727(3)</td>
<td>1.47(4)</td>
</tr>
<tr>
<td>O(6)</td>
<td>0.0809(2)</td>
<td>0.7908(2)</td>
<td>0.1774(3)</td>
<td>1.73(4)</td>
</tr>
</tbody>
</table>

*fixed *U^2equiv. = U^2equiv. x 10^2

TABLE 3. ANISOTROPIC TEMPERATURE-FACTOR COEFFICIENTS FOR BLOEDITE

<table>
<thead>
<tr>
<th>Atom</th>
<th>U_11</th>
<th>U_22</th>
<th>U_33</th>
<th>U_12</th>
<th>U_13</th>
<th>U_23</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>108(2)</td>
<td>107(2)</td>
<td>96(2)</td>
<td>-92(2)</td>
<td>11(1)</td>
<td>4(2)</td>
</tr>
<tr>
<td>Mg</td>
<td>106(4)</td>
<td>100(4)</td>
<td>114(4)</td>
<td>-133(3)</td>
<td>21(3)</td>
<td>-5(3)</td>
</tr>
<tr>
<td>Na</td>
<td>177(4)</td>
<td>196(4)</td>
<td>221(4)</td>
<td>15(3)</td>
<td>18(3)</td>
<td>-8(4)</td>
</tr>
<tr>
<td>O(1)</td>
<td>114(6)</td>
<td>214(8)</td>
<td>263(8)</td>
<td>15(6)</td>
<td>47(6)</td>
<td>21(7)</td>
</tr>
<tr>
<td>O(2)</td>
<td>173(7)</td>
<td>200(8)</td>
<td>225(8)</td>
<td>41(6)</td>
<td>14(6)</td>
<td>106(6)</td>
</tr>
<tr>
<td>O(3)</td>
<td>248(8)</td>
<td>172(7)</td>
<td>148(7)</td>
<td>-104(6)</td>
<td>23(6)</td>
<td>-40(6)</td>
</tr>
<tr>
<td>O(4)</td>
<td>312(9)</td>
<td>166(7)</td>
<td>116(6)</td>
<td>-35(6)</td>
<td>52(6)</td>
<td>-42(6)</td>
</tr>
<tr>
<td>O(5)</td>
<td>158(7)</td>
<td>142(7)</td>
<td>154(7)</td>
<td>4(6)</td>
<td>61(6)</td>
<td>7(6)</td>
</tr>
<tr>
<td>O(6)</td>
<td>161(7)</td>
<td>149(7)</td>
<td>179(7)</td>
<td>-15(6)</td>
<td>-43(6)</td>
<td>29(6)</td>
</tr>
</tbody>
</table>

*U^2_u = U^2_u x 10^4
ideal value of 90°; it is notable that the mean value of the O–Na–O bond angles differs from 90°, a characteristic of highly distorted octahedral co-ordination polyhedra. The O–H bond lengths in the

\[\text{(H}_2\text{O)} \text{ groups are slightly shorter than their ideal values. However, the local geometry is compatible with the range of values found by neutron diffraction in many hydrates (Baur 1972, Ferraris & Franchini-Angela 1972), and shows good agreement with the neutron-diffraction results of Bukin & Nozik (1975) on the synthetic cobalt analogue. The arrangement leads to a sensible distribution of hydrogen bonds (Table 4, Fig. 1). Both O(5) and O(6) are hydrogen-bond donors to O(1) and O(4); as shown in Table 5, the hydrogen bonds have a major role in the satisfaction of local bond-valence requirements for O(1) and O(4), both of which have bond-valence sums of ~1.6 v.u. when hydrogen bonding is not considered.

The overall structural arrangement of bloedite is shown in Figure 2. The fundamental building block (FBB) of the structure is the \([\text{Mg(H}_2\text{O)}\text{4(SO}_4\text{)}_2]\) finite heteropolyhedral cluster, shown shaded in Figure 2. These are repeated by the translational symmetry operations of the structure to form rather open sheets parallel to (001); these are linked together by octahedrally co-ordinated Na and inter-FBB hydrogen bonding.

The \([\text{VI}\text{M}(\text{IV}T\Phi_2)\Phi]_{\text{FBB}}\) finite-cluster structures

Hawthorne (1985) has shown that the structures of several minerals are based on finite heteropolyhedral clusters of the form \([\text{VI}\text{M}(\text{IV}T\Phi_2)\Phi]_{\text{FBB}}\). The trans \([\text{M}(\text{IV}T\Phi_2)\Phi]_{\text{FBB}}\) cluster is the most common, being the fundamental building block (FBB) of the

\[\text{(H}_2\text{O)} \text{ groups are slightly shorter than their ideal values. However, the local geometry is compatible with the range of values found by neutron diffraction in many hydrates (Baur 1972, Ferraris & Franchini-Angela 1972), and shows good agreement with the neutron-diffraction results of Bukin & Nozik (1975) on the synthetic cobalt analogue. The arrangement leads to a sensible distribution of hydrogen bonds (Table 4, Fig. 1). Both O(5) and O(6) are hydrogen-bond donors to O(1) and O(4); as shown in Table 5, the hydrogen bonds have a major role in the satisfaction of local bond-valence requirements for O(1) and O(4), both of which have bond-valence sums of ~1.6 v.u. when hydrogen bonding is not considered.

The overall structural arrangement of bloedite is shown in Figure 2. The fundamental building block (FBB) of the structure is the \([\text{Mg(H}_2\text{O)}\text{4(SO}_4\text{)}_2]\) finite heteropolyhedral cluster, shown shaded in Figure 2. These are repeated by the translational symmetry operations of the structure to form rather open sheets parallel to (001); these are linked together by octahedrally co-ordinated Na and inter-FBB hydrogen bonding.

The \([\text{VI}\text{M}(\text{IV}T\Phi_2)\Phi]_{\text{FBB}}\) finite-cluster structures

Hawthorne (1985) has shown that the structures of several minerals are based on finite heteropolyhedral clusters of the form \([\text{VI}\text{M}(\text{IV}T\Phi_2)\Phi]_{\text{FBB}}\). The trans \([\text{M}(\text{IV}T\Phi_2)\Phi]_{\text{FBB}}\) cluster is the most common, being the fundamental building block (FBB) of the
bloedite, leonite, schertelite and anapaite structures (Table 6). Despite the differences in chemistry and symmetry between these minerals, the clusters have a very similar arrangement in each structure. The clusters are arranged in open sheets, as shown in Figure 3, and bonding within and between the sheets involves both hydrogen bonding and linkage through large low-valence cations. Although the geometrical details of the cluster vary from structure to structure, the basic array of clusters within the sheets is the same. They are arranged in a centred rectangular array with the projection of the long axis of the cluster parallel to one of the crystallographic axes. The bloedite sheet (Fig. 2) is different from the others (Fig. 3) in that the nearest-neighbor clusters are canted in opposite directions.

The stacking of these open sheets is illustrated in Figure 4. Again it can be seen that adjacent clusters are canted in opposite directions in bloedite, and in the same direction in anapaite, leonite, and schertelite. The large low-valence cations are in layers parallel to the open sheets of clusters, and are the principal agent holding the sheets together.

Hence not only do these minerals have the (graphically) same type of fundamental building block, the \([\text{M}^{IV}\text{IV}\Phi_{2}]_{n}\) heteropolyhedral cluster, but they also have the same type of structure module (Hawthorne 1985), the \([\text{M}^{IV}\text{IV}\Phi_{2}]_{n}\) open sheet. The geometrical details of the sheets vary from structure to structure, presumably in response to the varying bond-valence requirements of the linking low-valence cations. Each different large low-valence cation has slightly different bonding requirements, and these open sheets are sufficiently flexible to adjust to these requirements and still maintain their general arrangement.

ACKNOWLEDGEMENTS

It is a pleasure to thank Drs. J.A. Mandarino and F.J. Wicks, Department of Mineralogy and Geology, Royal Ontario Museum, for the sample of bloedite. Financial support was provided by the Natural Sciences and Engineering Research Council in the form of a fellowship, operating grant, and major equipment grant to the author.
The crystal structure of bloedite

Leonite (Z~0)

Leonite (Z~1/2)

Anapaite

Schertelite (z~1/4)

Fig. 3. The open sheets of trans \([M(TiO_2)_2] \) clusters that are found in the structures of leonite, anapaite and schertelite; compare also with Figure 2.

References

Catti, M., Ferraris, G. & Ivaldi, G. (1979): Refinement of the crystal structure of anapaite, Ca₂Fe(PO₄)₂·4H₂O: hydrogen bonding and relationships with the bihydrated phase. *Bull. Minéral.* 102, 314-318.

Fig. 4. The \([M(TiO_2)_2F_4]\) finite-cluster structures, showing the layered nature of the structures produced by stacking of the open sheets shown in Figures 2 and 3.

SRIKanta, S., SEQUEIRA, A. & CHIDAMBARAM, R. (1968): Neutron diffraction study of the space group and structure of manganese-leonite, \(K_2\text{Mn}[(SO_4)_2\cdot4\text{H}_2\text{O}].

Acta Cryst. B24, 1176-1182.

Received December 3, 1984, revised manuscript accepted April 12, 1985.