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ABSTRACT

The two water molecules in the gaidonnayite formula
donate their four hydrogen atoms to two shared and two
unshared acceptor-oxygen atoms. The bond-valence sums
of the three shared oxygen atoms are in excess of 2.00 v.u.,
indicating d-orbital involvement, = bonding and, as a con-
sequence, a more ionic type of bond than is formed by the
same Si with the unshared oxygen atoms.

Keywords: bond-valence sums, hydrogen bonding, shared
oxygen atoms, d orbital, = bonding.

SOMMAIRE

Chacune des deux molécules d’eau d’hydratation de la
gaidonnayite donne un atome d’hydrogéne & un atome
récepteur d’oxygeéne partagé et 'autre 3 un atome d’oxy-
géne non-partagé. La somme des valences de liaison excéde
2 unités de valence (v.u.) pour chacun des trois atomes
d’oxygene partagés, ce qui indique I’implication des orbi-
tales d, avec liaison =, et par conséquent une liaison plus
ionique que celle qui unit le Si & un atome d’oxygeéne non-
partagé.

Mots-clés: somme des valences de liaison, pont hydrogéne,
orbitale d, liaison .

INTRODUCTION

The crystal-structure description of gaidonnayite
(Chao 1985) did not dwell on the role played by the
hydrogen atoms of the two water molecules in
Na,ZrSi;042H,0. The first author therefore ran a
bond-valence sum, beginning with the given atomic
co-ordinates in order to check the published inter-
atomic distances. This initial calculation showed up
a misprint in the y co-ordinate of oxygen O(5); the
given value in Table 1 of Chao (1985) is 0.1940 but
should read 0.0149.

The bond-valence summation (Table 1) shows that
all four hydrogen atoms are involved in hydrogen
bonding. (Since all atoms in this structure are in the
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general 4-fold Wyckoff position of space group
P2,nb and since Z = 4, there is one Wyckoff posi-
tion associated with each atom in the formula unit.)
Table 1 uses the labels of the preceding paper, except
that H,0(1) and H,0(2) are now replaced by O(10)
and O(11), respectively. We find that their bond-
valence sums are approximately 0.4 v.u.; there is thus
no doubt that the water molecules act as double
donors which, as we shall see, brings their corrected
bond-valence sums close to zero.

INTERPRETATION OF BOND-VALENCE SUMS
AND O-O APPROACHES

The oxygen atoms of the water molecules are
found to be closer than 3.15 A to the silicate oxygen
atoms O(2), O(5), O(6) and O(7). The assumed cut-
off distance of 3.15 A for hydrogen bonding is
arbitrary, of course, but it is based on data collected
over hundreds of well-refined structures and is the
one suggested by Hamilton & Ibers (1968). The O(11)
- O(2) distances of 3.140 A, however, is so close to
the cut-off value that its effect on hydrogen bond-
ing is negligible. The H,O(1) molecule donates its
hydrogen atoms to O(2) and O(5). The valence units
associated with each hydrogen bond (Table 2) are
based on the Lippincott-Schroeder equation (Don-
nay & Allmann 1970). The corresponding acceptor
atoms for H,O(2), with O(11) the donor, are O(6)
and O(7). Thus both water molecules donate one of
their hydrogen bonds to a ‘shared’ oxygen atom,
namely O(2) and O(6) (Table 1), an atom that is a
link in the chain of silicate tetrahedra. These two
acceptor atoms end up with bond-valence sums
above 2.0 v.u., indicating d-orbital involvement and
« bonding; the same is true for the third shared atom
O(3), which does not receive a hydrogen bond. The
inferred difference in bond types between Si-O-Si
and Si-O bonds would help to explain the observed
differences in bond lengths, which Chao (1985) dis-
cussed. The longer bonds with « character are more
ionic, and they are the ones for which Pauling (1980)
deduced a 50% ionic character; the shorter bonds
involving an unshared oxygen atom would appear
to be the more covalent (Stewart ef al. 1980).
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TABLE 1. BOND LENGTHS AND VALENCE SUMS IN GAIDONNAYITE
: H-bond corrected
Si(1) Si(2) $i(3) Na(1) Na(2) Ir Ev (vou) Nature of oxygen atom Ev veu.
0(1) 1.606(6) 3.006(6; 2.545§73 2.07755)
1.0847 0.040(0) 0.165(1) 0.667(5) 1.920(13) 1.920(13) (1)
0(2) 1.647(6) 1.63](5; .
0.964 0.985(9 1.949(14) +(...H)" from H,0(1) 2.1247(13) (2)
0(3) 1.65155; 1.628%53 2.6}7563
0.956(9 0.989(9)  0.160(1 2.105(12) 2.108%(12)  (3)
0(4) 1.613(5) 2.527?6) 2.048§5g
1.033 0.200(2) 0.702(6)  1.934(11) 1.934(11)  (4)
0(5) 1.631(6) 2.622&6; 2.07156; *
0.985 0.144(1)  0.674(7) 1.802(13) +(...H) from H,0(1) 1.927(13) (5)
0(6) 1.623(6)  1.655(6) .
1.000 0.936 1.936(15) +(...H)" from H,0(2) 2.101¥(15) ()
0(7) 1.608(5) 2.575§6‘g 2.11555; "
1.031 0.157(1)  0.623(5) 1.810(11) +(...H) from H,0(2) 1.935(11) (7)
0(8) 1.611(5)  2.583(6) 2.071&5)
1.023 0.178(2) 0.674(5) 1.875(11) 1.875(11)  (8)
0(9) 1.597(5) 2.563$7) 2.083(4;
1.052 0.160(1)  0.660(4) 1.872(10) 1.872(10)  (9)
0(10) 2.465%8) 2.462§83 .
0.227(3) 0.191(2 0.418(3)  -(-H)"to 0(2) and 0(5) 0.118(3)  H,0(10)
o(11) 2.537 2.485583 +
0.195(4) 0.183(2 0.379(4) -(-H)"to 0(6) and 0(7) 0.019(4)  H,0(11)
L(Mean)1.629 1.623 1.623 2.626 2.582 2.077
L{Max) 2.130 2.130 2.130 3.130 3.130 2.650 {...H) sH-bond ¥ this high sum
P(Exp) 3.254 3.203 3.199 5.208 4,323 3.629 acceptor (}ngiczfsib?ta?onding
V(I) 4.00/4  4,00/4 4.00/4 1.00/6 1.00/6 4.00/6 (-H)T=H-bond donor involvement) in the
Norm.F.0.999  1.000 0.999 0.980 0.997 1. gg;g'ggg and
v 4,000 4,000 4,000 1.000 1.000 4
Alv.u.)
TABLE 2. the case of pyroxenes (Martin & Donnay 1972),

BOND-VALENCE TRANSFER BASED ON
0-0 APPROACH

onor
0(10) 0(11)  Bond-valence
from from sum corrected
AcceptoNU,0{1) H;0{2) for H bonds {v.u.)
o(2) 2.775h 1.949
0.175v.u. +0.175
2.124 = 2.1
0(5) 2.919 1.802
0.125 +0.,128
1.927 = 1.9
o0(6) 2.797 1.936
0.165 0.165
2.1001 = 2.1
0(7) 2.91 1.810
0.125 +0.125
1.935 =~ 1.9
zv for  0.300 0.290
acceptor
v for 0.418 0.379
donor  -0.300 -0.360
0.118 0.019
CONCLUSION

Hydrogen bonding to shared oxygen atoms should
be looked for in other silicates. See, for example,

where the formula need not give such clear-cut indi-
cation of possible H-bonding as in gaidonnayite. Par-
tial substitution of OH for O may lead to some
degree of hydrogen bonding. To put it another way:
we should not accept the observed elongation of Si-
0-Si bonds as evidence that shared oxygen atoms
are satisfied with lower bond-valence sums than are
unshared oxygen atoms. If shared oxygen atoms are
not found to be bonded to other cations, such as
O(3)-Na(1) (Table 1) in the present case, then one
should look for hydrogen bonding.

The hydrogen bonding in georgechaoite (Ghose &
Thakur 1985) is so similar to that in gaidonnayite
that it does not deserve separate treatment.
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