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ABSTRACT

An efficient method is developed to construct potential
solutions of phase diagrams, using dual networks, which
are graphs composed of divariant fields linked together by
univariant lines. The assemblages observed in thin section
define the chemography of the system. Once the chemo-
graphy is established, the invariant points and divariant
fields can be constructed, and the divariant fields are then
used to construct the dual network. A potential solution
for the phase diagram is obtained by inverting the dual net-
work to obtain a basic form, and then adding the metasta-
ble equilibria to the basic form. The dual network is shown
to be uniquely related to the potential solution when all
of the divariant fields are placed in the dual network. Dual
networks can be used in two ways. Firstly, a topologically
correct potential solution of the phase diagram can be con-
structed from information contained in the invariant points
or divariant fields. Other potential solutions can then be
obtained by transposition. Secondly, given a known poten-
tial solution or phase diagram for an (# + 3)-phase system,
a new potential solution can be constructed for a system
with more than (n+ 3) phases. The method can be used with
any number of components, but is illustrated with exam-
ples from two- and three-component systems. A phase dia-
gram is constructed for serpentinites modeled by the
2-component (MgO-S8iO,, projected through H,0),
7-phase system brucite, forsterite, lizardite, chrysotile,
antigorite, enstatite and talc.

Keywords: chemographic analysis, dual networks, poten-
tial solutions, serpentinites, phase diagrams.

SOMMAIRE

On a développé une fagon efficace de construire des solu-
tions possibles d’un diagramme de phases; il s’agit de la
méthode de réticules doubles oll, dans un graphique, les
champs bivariants sont liés par courbes univariantes. Une
fois la chimiographie établie, on peut construire les points
invariants et les champs bivariants. Ces derniers servent
ensuite & construire le réticule double. On obtient une solu-
tion possible du diagramme de phases en invertissant le réti-
cule double pour obtenir la forme fondamentale, et en y
ajoutant ensuite les équilibres métastables. On montre que
le réticule double est 1ié 3 la solution possible de fagon uni-
que quand tous les champs bivariants font partie du réti-
cule double. On se sert de réticules doubles 1) pour cons-
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truire une solution topologiquement correcte d’un
diagramme de phases & partir de 'information contenue
dans les points invariants ou champs bivariants (les autres
solutions possibles en découlent par transposition); 2) pour
trouver une nouvelle solution possible pour un systéme &
plus de n+ 3 phases, étant donné une solution possible ou
un diagramme de phases pour un systéme 2 trois phases.
La méthode peut servir pour un nombre quelconque de
composants; on présente des exemples choisis de systémes
2 deux ou trois composants. On construit un diagramme
de phases pour les serpentinites dans le systéme binaire
MgO-Si0, (projection a travers H,0) & sept phases (bru-
cite, forstérite, lizardite, chrysotile, antigorite, enstatite et
talc).

(Traduit par la Rédaction)

Mots-clés: analyse chimiographique, réticule double, solu-
tion possible, serpentinites, diagramme de phases.

INTRODUCTION

The investigation of the topologic properties of
phase diagrams. appears to have begun with the work
of Schreinemakers (1925) on the relationships of
invariant, univariant and divariant equilibria about
and between invariant points. The introduction of
the representation polyhedron, in which all invari-
ant, univariant and divariant equilibria of a system
were visualized as apices, edges and faces of a geo-
metric figure, began the methodical study of the

-topologic properties of phase diagrams (Zen 1966,

1967). Several workers investigated the role of the
representation polyhedron in determining the rela-
tionships between various nets, which are internally
consistent grids of invariant points and univariant
lines (Zen 1966, 1967, Zen & Roscboom 1972, Day
1972). These papers concentrated on n-component
(n + 3)-phase systems. At the same time, Kujawa et
al. (1965) presented the relationships between the sta-
ble equilibria of unary systems with many phases.
They showed that the stable equilibria of any unary
system had one of a limited number of topologies.
More recently, Guo (1980), Roseboom & Zen (1982)
and Usdansky (1981) began research on (1 +4)-phase
systems. Roseboom & Zen (1982) used the represen-
tation polyhedron to reproduce the results of Kujawa
et al. and extended the work to binary systems. Guo
(1980), using the representation polyhedron, dis-
covered that the phase diagrams of unary 5-phase
systems belonged to one of two equivalence classes,
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based on the number of metastable invariant points
in the phase diagram. This result was reproduced by
Usdansky (1981), who also determined the number
of equivalence classes for systems with up to four
components. Usdansky worked within the restriction
of the combinatorial assumption that each
equilibrium appears once and only once in a phase
diagram.

Chemographic analysis, formalized by Stout
(1985), uses a method, developed by Mohr & Stout
(1980), by which all topologically possible potential
solutions for a phase diagram of an (n + 3)-phase sys-
tem can be constructed given only the phase chemog-
raphy, which is the relative position of the phases
in composition space. This methodology is impor-
tant because available data are used to eliminate
impossible solutions until the correct form of the
phase diagram is found. If more than one solution
is left after comparison with available data, inspec-
tion of the remaining solutions will indicate the data
that must be obtained to determine the correct
diagram.

To use the methodology of chemographic analy-
sis, as given by Stout (1985), one must construct the
first potential solution by connecting invariant points
together. For example, there are 6 invariant points
among 6 phases in a ternary system. Each invariant
point can exist stably or metastably and with either
aright- or left-handed parity, for a total of 24 invar-
iant points. (Note that the stability level of an
equilibrium refers to the relative Gibbs free energy
of that equilibrium with respect to other equilibria
of the same type. A stable equilibrium has the lowest
free energy, a metastable equilibrium has the next
lowest free energy, efc.). The 24 invariant points can
be subdivided into six sets of four invariant points
each. Then, one invariant point from each set must
be chosen such that the six invariant points can be
assembled in a consistent manner. Choosing a sub-
set of the total number of invariant points to con-
struct the first potential solution does not hinder the
investigation of n+3 systems if n<3, because the
total number of invariant points that must be exa-
mined is small. For systems with more than n+3
phases, the initial potential solution is difficult to
construct owing to the large number of invariant
points to be assembled.

The purpose of this paper is to present a method
by which potential solutions of phase diagrams can
be more readily constructed. The method is based
on dual networks, which are graphs composed of
points representing divariant fields linked together
by lines that represent univariant reactions. Dual net-
works have two uses in this context. First, dual net-
works can be used to construct a topologically cor-
rect potential solution of the phase diagram for an
n+3 system from information contained in the
divariant fields. Two systems will be used to illus-
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trate this application of dual networks. The
2-component 5-phase system described by the com-
ponents MgO-Si0,-H,0, projected through H,O,
with the phases brucite, antigorite, lizardite, chryso-
tile and talc (5-phase serpentine system) and the
3-component, 6-phase system described by the com-
ponents ALO,, SiO, and H,0 with the phases
andalusite, diaspore, kaolinite, pyrophyllite, quartz
and H,O (alumina system). The second use for dual
networks is to construct a potential solution for sys-
tems with more than # + 3 phases where a potential
solution or the phase diagram for an (n+ 3)-phase
system is already known. The serpentine system will
be used to illustrate this application. The potential
solutions generated for the serpentine system will be
discussed in a companion paper (O’Hanley 1987).

CHEMOGRAPHIC ANALYSIS

Chemographic analysis concentrates on invariant
and univariant equilibria to construct potential solu-
tions for the phase diagram of the system. Once a
chemography is established, the invariant points are
constructed by taking # + 2 phases at a time until all
n+2 combinations are used. For a nondegenerate
n+3 system, with n=3, 6 combinations of n+2
phases are possible. As each invariant point has four
forms, 24 invariant points are possible. One invari-
ant point from each of the six subjects must be
assembled in a consistent manner to construct the
first potential solution. For nondegenerate systems,
in which each equilibrium appears once and only
once, there are exactly [(r + 2) (n+ 3) +2] construc-
tions of this kind (Mohr & Stout 1980). Once the first
potential solution is constructed, all others may be
obtained from it by transposition, an operation by
which the parity of external invariant points is suc-
cessively changed until all permissible solutions are
generated (Mohr & Stout 1980).

The combinatorial equation gives the number of
each type of equilibrium (invariant points, univari-
ant curves and divariant surfaces) in a nondegener-
ate system in which each equilibrium appears once
and only once (Zen 1966).

E = PI/P,! (P-P)!

where E represents the number of equilibria in the
system, P is the number of phases in the system, P,
is the number of phases involved in the equilibrium,
and (}) represents the factorial operation. Chemo-
graphic analysis, as developed by Mohr & Stout
(1980) and Stout (1985), is based on the assumption
that each equilibrium occurs exactly once.

Table 1 shows how the number of invariant points,
divariant assemblages and divariant fields varies with
n and P. The total number of possible forms of
invariant points is also shown. Where P is greater
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TABLE 1. UNIQUE EQUILIBRIA IN N-COMPONENT, P-PHASE SYSTEMS

n P Efor 2P(m-1)* EforPg=n Number of unique
Pg=n+2 Divariant divariant fiolds
Invariant points assemblages
1 3 1 2 3 3
4 4 16 4 4
5, 10 50 5, 5
2 4 1 2 8 4
5. 5, 20, 10 8
6 18, 80. 15. 16
7. 35 280, 21 32
3 B 1 2 10 5
6. 8 24 20 14
7. 21 126. " 35
4 B 1 2 15, 5
7. 7 28 35
8. 28 168, 70

*This equation is only appropriate for P>n+2,

than (n+ 2), this number can be calculated by mul-
tiplying P by 2 (representing the number of parities
for each invariant point) and then by (#2-1) [the num-
ber of stability levels in a n-component, (#+ m)-
phase system]. Thus a 3-component, 6-phase system
will have 6 X 2 x (3-1) or 24 invariant points. The 24
invariant points can be generated from the six invar-
iant points constructed by taking »n+2 phases at a
time. In Table 1, note how quickly the number of
invariant points increases as compared to the num-
ber of divariant fields, especially for a given # as P
is increased. Thus the utility of dual networks is
greatest for systems for which P is greater than
(n+3). As the method presented here concentrates
on the divariant fields rather than the invariant points
as a basis for the construction of phase diagrams,
the number of elements used to construct a poten-
tial solution remains manageable.

DuAL NETWORKS

Dual networks are graphs in which the stable
divariant fields are represented by points and the
points are connected by lines representing the reac-
tions that relate the divariant fields to each other.
Dual networks were first used in this context by
Kujawa et al. (1965) to enumerate the stable unary
equilibria; a graph of stable equilibria is called a basic
form (Kujawa ef al. 1965). Their work was extended
to binary systems by Roseboom & Zen (1982), who
determined that the divariant field, not the divari-
ant assemblage, was the appropriate equilibrium to
use in the dual network.

The relationship between dual networks, basic
forms and potential solutions is shown in Figure 1.
Figure la shows a topologically correct potential
solution for the serpentine system modeled by the
2-component, 5-phase system consisting of brucite,
antigorite, lizardite, chrysotile and talc. The solid
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lines represent stable univariant equilibria, the
dashed and dot-dashed lines represent metastable and
doubly metastable equilibria, respectively. Invariant
points are represented by the symbol of the phase
missing from the invariant point. If we remove all
but the stable equilibria, we obtain the basic form
for the potential solution in Figure 1a, represented
by the heavy lines in Figure 1b. To obtain the dual
network, each divariant field is represented by a
point placed in that divariant field. These points are
then linked with lines drawn across the respective
univariant lines, which delineate the divariant fields
in the basic form. Removing the basic form leaves
the dual network shown in Figure 1c.

The importance of dual networks, as pointed out
by Kujawa et al. (1965), is their unique relationship
to a basic form. This uniqueness implies that the dual
network contains the parity and stability informa-
tion of the invariant points in the basic form. For
n+ 3 systems, the dual network has all the informa-
tion necessary to construct the corresponding poten-
tial solution as well as the basic form, because each
invariant point is connected to every other invari-
ant point. Thus a sufficient number of constraints
are placed on invariant points not in the basic form
to insure uniqueness. In general, for n+ 4 and larger
systems, the dual network does not uniquely deter-
mine the potential solution because a given invariant
point is not connected to all other invariant points.
A proof of the nonuniqueness of the relationship
between dual networks and potential solutions for
n+4 systems is presented by Roseboom & Zen
(1982). However, this author has determined that if
a sufficient number of divariant fields are included
in the dual network, then the potential solution is
uniquely determined because the basic form has
enough information in it to constrain the metasta-
ble equilibria.

CONSTRUCTION OF THE DUAL NETWORK

It is clear that the methodology of Mohr & Stout
(1980) and Stout (1985) is applicable to n+4 and
larger systems, although the details of transposition
and trivial conjugates [the trivial conjugate of a
potential solution is obtained by changing the
stability, but not the parity of the invariant points
in the solution] are more complicated (Usdansky
1961, Mohr & Stout 1980). The methodology of
Stout (1985) is implicit in the rest of this paper. -
A valid dual network must satisfy the following
criteria:
1. No linkage lines may cross. Linkage lines join
points in a dual network. Crossed linkage lines inter-
sect at a point, and a point in a dual network
represents a divariant field. As all divariant fields
are alteady accounted for, no new ones are possible.
2. The number of sides in each polygon within the
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Fic. 1. Construction of a dual network from a potential solution or phase diagram. (a) An oriented potential solution
or phase diagram. Solid and dashed lines represent stable and metastable reactions, respectively. Dot-dash lines represent
doubly metastable reactions. (b) A binary basic form, constructed by removing the metastable and doubly metasta-
ble equilibria from the potential solution or phase diagram. The divariant fields are connected with linkage lines
drawn perpendicular to the respective reaction. (c) The dual network.

dual network is equal to the number of phases at the
invariant point., Each area within a polygon
represents an invariant point, and the number of
reactions emanating from the invariant point is
related to the number of phases at the invariant
point. As each linkage line is perpendicular to a sta-
ble univariant reaction, and the number of reactions
is related to the number of phases at the invariant
point, each polygon must have as many linkage lines
as phases.

3. The dual network is composed of closed polygons
only. The open side of a polygon represents a miss-
ing reaction. As each point in a dual network
represents a divariant field, upon inverting the dual
network the missing linkage line will juxtapose two
divariant fields in the phase diagram with no reac-
tion between them, which is impossible.

4. A dual network can only be altered by removing
or adding a divariant field such that none of the
criteria outlined above is violated.

Construction of the first dual network need not
include all of the unique divariant fields of the sys-
tem, although the more divariant fields in the dual
network, the greater the constraints on the poten-
tial solution. At present, the number of divariant
fields necessary to describe a phase diagram uniquely
is-not known for most systems. For n4 3 systems,
only two levels of stability (stable and metastable)
are possible for each invariant point. As each invar-
iant point is connected to every other invariant point,
the dual network uniquely describes the potential
solution because any invariant point not in the basic
form is metastable and can be added to the basic
form in only one way. The addition of a phase to
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an (n+3)-phase system requires a third level of arises because every potential solution has a trivial
stability for the invariant points and the ther- conjugate, in which the relative order of the free

modynamic constraint that every reaction pass energies for each type of equilibrium is reversed.
through at least three invariant points. The constraint ~ Therefore, each reaction that passes through a sta-
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FiG. 2, Invariant points of the n+3 system Al,03-8i0,-H,0. The chemography of the six phases is shown in divariant
field 4 in invariant point [A].
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ble invariant point must also pass through a doubly
metastable invariant point. Two such invariant
points must be connected by a metastable invariant
point (Usdansky 1981). A necessary consequence is
that some invariant points are not directly connected
to others (Usdansky & Stout 1981). For unary n+4
systems, Guo (1980) has found that all potential solu-
tions can be grouped into one of two equivalence
classes (Usdansky 1981), based on the number of
metastable invariant points in the potential solution.
Of a total of ten invariant points (Table 1), unary
(n +4)-phase potential solutions have either 4 or 6
metastable invariant points (Guo 1980) and must
contain at least one stable and one doubly metasta-
ble invariant point. Therefore, a basic form contain-
ing 4 or § stable invariant points leads to an unique
potential solution because the metastable and dou-
bly metastable invariant points can be added to the
basic form in only one way. The dual network of
a basic form containing 4 or 5 stable invariant points
will contain all 5 unique divariant fields. Thus con-
structing a dual network containing all 5 unique
divariant fields in a one-component, S-phase system
will yield a unique phase-diagram.

CONSTRUCTING THE FIRST POTENTIAL SOLUTION

In principle, the method of dual networks can be
used to construct the first potential solution for sys-
tems with any number of components. For the sake
of clarity, examples will be from two- and three-
component systems. First, the three-component alu-
mina system will be used to illustrate the construc-
tion of potential solutions for systems for which no
information is known regarding which divariant
assemblages are stable. The two-component serpen-
tine system will be used to illustrate the construction
of potential solutions for systems for which infor-
mation regarding stable assemblages is known. The
two-component system will also be used to illustrate
how new potential solutions are constructed when
additional phases are added to the system’s chemog-
raphy.

Stout (1985) investigated the system involving the
components Al,0,, SiO, and H,O and the phases
andalusite (A), diaspore (D), kaolinite (K), pyrophyl-
lite (P), quartz (Q) and water (W) (Fig. 2). To con-
struct the initial dual network, it is neccessary first
to construct each invariant point. Thus, all the
equilibria characterizing the system must be identi-
fied. In this sense, the method of dual networks is
equivalent to the method of Stout (1985) because
both require that all the equilibria of the system be
known. For the alumina system, the invariant points,
univariant lines and divariant fields are shown in
Figure 2. The chemography of this system is shown
as divariant field 4 within invariant point [A]. Inspec-
tion of the six invariant points in Figure 2 shows that
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of the 28 divariant fields present, 13 are unique. They
are labeled 1-13. This number is less than that listed
in Table 1 for 3-component, 6-phase systems because
of the colinearity of quartz, pyrophyllite and dia-
spore. The unique divariant fields are used to assem-
ble the dual network.

Assuming that nothing is known about the stabil-
ity of the divariant assemblages, no advantage is
gained by choosing particular divariant fields to be
placed in the dual network. The divariant fields from
the invariant points [A], [D], [Q] and [K] were chosen
arbitrarily. A polygon is formed using the divariant
fields from invariant point [A] (Fig. 3a). Another
polygon can be formed by the divariant fields in [K].
Because divariant fields labeled 1 and 2 are part of
[K] as well as [A] (Fig. 2), the two polygons share
the points represented by the common divariant
fields. Divariant fields 2 and 7 are common to [K]
and [Q], so that divariant fields 2 and 7 can be used
to form another polygon with the remaining di-
variant fields in [Q]. Note that divariant fields 2 and
9 are common to [A] and [Q], so the polygons
formed by the divariant fields of [A], [K] and [Q]
must have divariant field 2 in common (Fig. 3a). At
this point, the dual network consists of three linked
polygons. Invariant point [D] shares divariant fields
6 and 7 with [K], and fields 7 and 8 are shared with
[Q]l. Thus four of the five divariant fields that
represent [D] are already in the dual network. Com-
pleting a new polygon with the remaining divariant
field (10) from [D] makes a dual network with four
polygons. These four polygons satisfy the criteria
given earlier for valid dual networks.

The basic form is found by reversing the process
illustrated in Figure 1. Place a point (Fig. 3b) into
each polygon of the dual network and connect the
points with lines drawn across the lines of the dual
network (Fig. 3b). These lines represent univariant
reactions, and the points are invariant points. Label
the reactions using the information in Figure 2. For
example, the linkage line connecting divariant field
3 to divariant ficld 4 represents the reaction
P + W =K + Q. As expected, inspection shows that
invariant points [A], [D], [K] and [Q] are stable.
Once all reactions and invariant points are identi-
fied, the reactions must be oriented properly about
each invariant point (Fig. 3c). Note that the reac-
tion P + W = Q + K passes through invariant points
[A] and [D] (Fig. 3b). As each equilibrium can occur
once and only once, these two segments must be
joined together. This will enclose [Q] in a triangle
formed by invariant points [A], [K] and [D]. To con-
struct the potential solution, metastable extensions
are added to the reactions at each invariant point and
made to converge at the appropriate metastable
invariant point, in this case [P] and [W]. Adding
doubly metastable reactions that extend away from
the metastable reactions completes the potential solu-
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tion. This is potential solution 29 of this system
(Stout 1985). The basic form (Fig. 3b) for potential
solution 29 contains 13 divariant fields, whereas the
dual network (Fig. 3a) contains 11. The other divar-
iant fields were generated by indifferent crossings
(Zen 1967). An indifferent crossing occurs when two
reactions cross in P-T space but do not represent an
equilibrium between all the phases in both reactions.
The indifferent crossing of reactionsP=A + K+ Q
and D+ K= A + W produced divariant field 11,
and the indifferent crossing of reactions
D+P=A+K and K+Q=P+ W generated
divariant field 12.

In the previous example, it was assumed that no
information was available regarding the stability of
various mineral assemblages of the system. If such
information is available, it suggests which divariant
fields to use in the dual network. For example, the
following ten assemblages have been reported for Mg
serpentinites: antigorite (A) + talc (T), A + brucite

IBFI
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(B), B+ chrysotile (C), A + forsterite (F), F+ T,
C +T, lizardite (L)+B, L+C+B, L+C and
F + E (Evans et al. 1976, Wicks & Whittaker 1977,
Dungan 1979).

These two-phase assemblages are likely to be di-
variant, and thus the phases of interest can be
represented by two components. Choosing the phases
brucite, antigorite, lizardite, chrysotile and talc yields
a 2-component system because the phases are
colinear. The chemography (Fig. 4, under the top
row of invariant points) consists of the two-
component system MgO-SiO,, representing the
3-component system MgO-SiO,-H,0, projected
through water. The projection is used because for-
sterite and enstatite will be added to the chemogra-
phy later on. The invariant points and the unique
divariant fields for the n + 3 system are shown in the
top row of Figure 4. The unique divariant fields are
labeled 1-6. Lizardite and chrysotile are polymorphs
in this system; they form an internal degeneracy. As

[AF] [TFi

FIG. 4. Invariant points of the (z+ 3)-phase serpentine system MgO-SiO,~H,0 (first row) and the (n + 4)-phase system
(first, second and third row). The solid and dashed lines represent stable and metastable reactions, respectively. [L]
in the #+ 3 system is [L,F] in the n + 4 system. The chemographies of the systems are shown underneath their invari-
ant points. The phases are plotted using atom fractions.
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a result the total number of divariant fields in this
system will be less than that given in Table 1. The
implications of assuming that lizardite and chryso-
tile are polymorphs will be discussed in a compan-
ion paper (O’Hanley 1987).

The six unique divariant fields for the » + 3 sys-
tem are represented by their assemblages (i.e., the
divariant field containing the assemblages B + C and
C + T will be represented by the symbol B-C-T).
Using a divariant field of the n + 3 system in the dual
network assumes that some assemblage in the divar-
iant field is stable. Evans ef al. (1976) stated that the
assemblages C + T, A + B, A + Fand F + T should
be stabilized as temperature increases. Two of these
assemblages, C + T and A + B, are in the system of
interest and, therefore, the divariant fields that con-
tain these assLembIages (fields B-A-T and B-C-T)
will be used [to construct the dual network. The
assemblage B|+ T has not been reported in the liter-
ature that reviewed the observed occurrences of bru-
cite (Faust & Fahey 1962, Hostetler et al. 1966), and
it has not been reported since then. Therefore, the
divariant field B-T will not be placed in the dual
network.

At this point, two divariant fields have been
chosen, but no polygons have been formed. Divari-
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ant field B-C-T cannot be linked directly to B-A-T
because they are not related by a single reaction.
These two divariant fields can be linked if field B-
C-A-T is placed between them (Fig. 5a). As no
closed polygons have been formed and divariant field
B-T has been excluded, fields B-L-A-T and B-L-
T will be used to form closed polygons: B-L-T is
linked to B-C-T, and B-L-A-T is linked to B-C-
A-T. Field B-L-A-T can also be linked to B-A-T.
This process yields two closed polygons (Fig. 5a).
Cogitation will show that excluding B-T from the
dual network, along with the need to use fields B~
A-T and B-C-T, could only result in the dual net-
work in Figure §.

Where no information is available, constructing
a dual network for a binary 5-phase system is equiva-
lent to constructing a hierarchical diagram (Rose-
boom & Zen 1982). The divariant field with the
greatest number of stable phases is drawn first.
Interior phases are removed one at a time, generat-
ing divariant fields related to the first field until all
divariant fields are accounted for.

To obtain the basic form, place an invariant point
in each polygon of the dual network and connect the
invariant points with reactions (Fig. 5a). Then label
the reactions and the divariant fields about all sta-

J

(c)

FiG. 5. Construction of a potential solution or phase diagram from a dual network. (a) The dual network is shown
with the reactions drawn perpendicular to the linkage lines. [B] = [B,F] and [T} = [T,F] are stable. (b) The reactions
are arranged about the invariant points, and the metastable extensions are added to the reactions. (c) Extension
of the metastable reactions yields the metastable invariant points [L,F], [A,F] and [C,F], represented by an open dot.
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ble invariant points. The basic form is obtained by
orienting the reactions about the invariant points.
The first potential solution is obtained by adding
metastable extensions to the stable reactions emanat-
ing from the invariant points in the basic form (Fig.
5b) and then adding metastable invariant points at
the intersection of the metastable extensions (Fig. 5c¢).
The sequence of divariant fields (particularly B-T)
that represent the invariant points [A], [C] and [L]
are not in the dual network.

Eleven divariant fields were used to construct the
dual network for the alumina system, whereas five
divariant fields were used for the serpentine system.
After the dual network has been constructed, obtain-
ing the potential solution is straightforward. To con-
struct a potential solution for either the serpentine
or the alumina system using invariant points, six
invariant points must be assembled in a consistent
manner. The parity of the invariant points is deter-
mined by how they are assembled and, as a result,
the assembled potential solution must be examined
to insure that the stable divariant fields are gener-
ated in the proper sequence about each invariant

N

BLAT BLAT

BCY mee BCAT w— BAT
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point. Dual networks generate the proper sequence
of divariant fields automatically because the parity
of the stable invariant points is predetermined.

ENLARGING A SYSTEM BY ADDING A PHASE

Most, if not all, rock systems contain more than
n + 3 phases. For example, if all of the phases given
above for the serpentine system were used at once,
the chemography would define an n+ 5 system.
However; chemographic analysis is understood best
for n + 3 systems; to use the method of Stout (1985)
effectively, one should use a n + 3 system. Dual net-
works can be used to construct potential solutions
for n + 3 systems, but their advantage is brought out
when they are used for larger systems. Adding a
phase to the chemography increases the complexity
of the analysis. For each additional phase, another
level of stability is added to both the invariant points
and the reactions. The number of potential solutions
also increases, although the total number of poten-
tial solutions is not known for most systems; for

By ———BFT

BCT === BCAT —= HAT~—— BFAT

BFCT~——BFCAT

42 BLT m—ie————— T

P
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1

BCT s BC AT~ BAT BCT —BcAT— BAT ._.ar-'xr
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am' / BFLY = BFLET
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/ l / \ BELAT BFLAT BFET
BCT =B CAT — BAT BeT: BCAT e BAT v BFAT BCT == BCAT == BAT ==« BFAT~BFAET
BFLY BFLET
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4b BLY ———————BLAT BLY BLAT BLY BLAT
\ BFLAT
34 BY BELAT | / BFT
— — ~=BFAY BFET
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BFCT BFCT BAFEY

FIG. 6. Dual networks for the (# + 3)-, (# + 4)- and (n + S5)-phase serpentine systems. The number in the upper
left-band corner of each dual network is the number used when referring to the dual networks in the text.
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unary n + 4 systems, the total number of potential
solutions is 1320 (Usdansky & Stout 1981).

Given the increase in the total number of poten-
tial solutions, construction of all of them with a sub-
sequent search is not feasible. An alternative is to
use dual networks to augment the potential solutions
or the phase diagrams of smaller # + 3 systems. Dual
networks also provide a means of joining two n + 3
systems that describe different P-T regions of the
same bulk chemistry. For example, the serpentine
system, which describes the low-temperature region
of hydrated ultramafic rocks, could be joined to the
system containing the phases anthophyllite, ensta-
tite, forsterite, talc, quartz and H,O used by Cher-
nosky et al. (1985) to study the behavior of Mg-
anthophyllite. In either process, the dual network of
an existing potential solution or phase diagram is
used as a base for the larger system.

The potential solution constructed for the 5-phase
serpentine system (Fig. 5¢) was used to construct 19
other potential solutions. The results of examining
this set to eliminate thermodynamically impossible
solutions are reported in a companion paper (O’Han-
ley 1987). The potential solutions in Figures 1 and
Sc are two of four that remain after eliminating ther-
modynamically impossible solutions for the n + 3
system. The dual networks for the four remaining
potential solutions of the n + 3'system are shown in
the first column of Figure 6.

The phases chosen to comprise the # + 3 system
describe the low-temperature region of the phase dia-
gram for the serpentine system. Thus the 7 + 3 sys-
tem describes a small region of P-T space. To extend
the area of P-T space described by the system, the
chemography must be expanded by adding phases.
The logical approach is to add a phase to the chemog-
raphy that is stable in the region of P-T space next
to the region already described by the n + 3 system.
This way, larger regions are described by adding
divariant fields containing observed assemblages to
the exterior of the existing dual networks.

The extension of the S-phase serpentine system is
made by inspection of the remaining observed assem-
blages not included in the 5-phase system. Forsterite
is stabilized during the prograde metamorphism of
serpentinites and is observed in the assemblages
A+ F and F+ T (Evans ef al. 1976, Frost 1975).
Therefore, forsterite was added to the n + 3 system,
yielding -the (n + 4)-phase system B-F-L-C-A-T.
The additional divariant fields for this system are
illustrated in rows 2 and 3 of Figure 4. The n + 4
system has 12 unique divariant fields (Fig. 4); six are
inherited from the » + 3 system, and six from
divariant fields containing forsterite. As forsterite
is stable at higher temperatures than any of the
phases in the #n + 3 system, and the orientation of
the dual networks in P-T space is known, the
divariant fields containing the observed assemblages
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A+F and F+ T have been added to the high-
temperature side of the dual networks, the side on
which divariant field B-A-T is located. The dual net-
works for the 7 + 4 system are shown in the second
column of Figure 6, in the same row as the 7+ 3 dual
networks from which they were made. Note that all
four dual networks for the n + 4 system contain
divariant fields with the assemblages A +F and
F + T. Focus on the third row of Figure 6. A poten-
tial solution for the n + 4 system, that has dual net-
work 3 as its base, is shown in Figure 7. Note that
Figure 5c is contained within Figure 7. This is a result
of choosing the additional phase (forsterite) such that
the new potential solution of the n + 4 system
extends the region of P-T space described by the
potential solution of the #» + 3 system.

Usdansky (1981) has determined that binary
(n + 4)-phase potential solutions belong to one of
three equivalence classes, containing 6, 7 or 10
metastable invariant points, respectively. By inspec-
tion of the dual networks for the n + 4 potential solu-
tions in Figure 6, between 5 and 7 of the 15 invariant
points are stable, so that the basic forms could belong
to one of two equivalence classes. In these cases the
dual network does not uniquely determine the poten-
tial solution because the metastable invariant points
could be added to the basic form in two different
ways. Dual network 8 actually contains 8 polygons,
and one would expect that it would have at least 8
stable invariant points. However, the polygon
represented by divariant fields B-L-T, B-F-L-T and
B-F-L-A-T represents an indifferent crossing
because these divariant fields do not define an in-
variant point.

Based on thermodynamic reasoning given by
O’Hanley (1987), the potential solution shown in
Figure 7 is the best one to account for the observa-
tions that apply to phases in the n + 4 system. Con-
structing an » + § system by adding enstatite to the
chemography of the z + 4 system yields a system that
includes all of the observed assemblages of mag-
nesium serpentinites. The n + 5 system is B-F-L-
C-A-E-T. The remaining observed assemblage is
F + E. Thus a potential solution for the n + 5 sys-
tem is constructed by adding the divariant fields con-
taining the assemblage F + E to the dual network of
the # + 4 system shown in the third row of Figure
6. The divariant fields generated by constructing the
invariant points containing enstatite are not shown.
Owing to the absence of anthophyllite in this sys-
tem, the reéaction F+ T = E + W would generate
the F + E assemblage (Evans 1977), so that the dual
networks in Figure 6 have béen augmented by adding
the divariant field B-F-E-T to the field B-F-T. The
dual networks were completed by adding divariant
fields that contain the assemblage F + E. The poten-
tial solution shown in Figure 8, obtained by augment-
ing the dual network of the potential solution in
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Fi1a. 8. Potential solution of the #+ 5 system constructed from the potential solution in Figure 7. Only stable and metasta-
ble equilibria are shown. See Figure 7 for labels of invariant points and restrictions.

Fia. 7. Potential solution of the n+4 system, constructed from the dual network of Figure 5c. Symbolism the same
as in previous figures. Open circles with dots inside represent doubly metastable invariant points. [L,C], [B,L] and
[L,T] are located below the temperature axis. The part of the phase diagram below 300°C is approximate because
no experimental data are available, although the topological relationships are correct.
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Figure 7, contains the summary diagram of Evans
(1977) for temperatures less than 700°C.

CONCLUSION

The potential solution in Figure 8 has 35 invari-
ant points and 31 reactions. To construct this dia-
gram using invariant points requires finding 35 in-
variant points out of a possible 280 that can be
connected in a consistent marrer. It is much easier
to use 12 divariant fields to construct such a diagram.
Note that the dual network related to the potential
solution in Figure 8 contains 13 divariant fields,
whereas the potential solution contains 14. The 14th
divariant field was generated by an indifferent
crossing.

Dual networks present an opportunity to expand
pre-existing systems. Starting with an # + 3 system
allows chemographic analysis as developed by Stout
(1985) to be used on a manageable number of poten-
tial solutions. Once a small number of solutions are
found, the system can be expanded, and the result-
ing set of new potential solutions investigated. This
approach also suggests that the n + 3 system be
chosen to describe as small a region of P-T space
as possible. The region described can then be
increased by adding phases to the existing chemo-
graphy.

The problem of uniqueness remains. However, the
work of Guo (1980) and Usdansky (1981) indicates
that we can have uniqueness in certain cases. At this
point in our understanding, using all or a large num-
ber of the unique divariant fields in the dual network
will yield a unique potential solution. The potential
solution in Figure 8 is not the only possible diagram
that could be generated from its basic form. It
includes correctly the observations on serpentinites
because the method used to construct it builds in the
observations. It contains the summary diagram of
Evans (1977) for serpentinites for temperatures less
than 700°C.
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