ESTIMATION DES ENTHALPIES DE FORMATION DU α Mg₂SiO₄, β Mg₂SiO₄ et γ Mg₂SiO₄ À PARTIR DES STRUCTURES CRISTALLINES

PHILIPPE VIEILLARD

Pédologie, Pétrologie et Métallogénie de la Surface, 40, avenue du Recteur Pineau, 86022 Poitiers Cedex, France

SOMMAIRE

À l'aide des données structurales pour les trois polymorphes αMg_2SiO_4 , βMg_2SiO_4 et γMg_2SiO_4 , on peut prédire leurs enthalpies de formation par rapport aux oxydes par la méthode dite des "états correspondants". La plus courte distance, la distance moyenne et la polarisabilité exercent 'une influence sur l'enthalpie de formation que l'on prédit.

Mots-clés: structure cristalline, Mg₂SiO₄, polymorphe, enthalpie de formation, polarisabilité, rayon ionique effectif.

ABSTRACT

The enthalpy of formation of the three polymorphs αMg_2SiO_4 , βMg_2SiO_4 et γMg_2SiO_4 from the oxides can be predicted from refined structural data. The shortest bondlength, the average bond-length and the effective polarizability have a strong influence on the predicted enthalpy of formation.

Keywords: crystal structure, Mg₂SiO₄, polymorph, heat of formation, polarizability, effective ionic radius.

INTRODUCTION

À l'origine, Tardy et Garrels (1976, 1977), Tardy et Gartner (1977), Tardy et Vieillard (1977), Vieillard (1978, 1982), Gartner (1979) et Tardy (1979) ont proposé une méthode d'estimation des composés faisant intervenir deux paramètres:

 $\Delta H = \Delta H_f^\circ$ minéral

 $-\Sigma \Delta H_f^\circ$ oxydes constituants (1)

$$\Delta_{\rm H} O^{2-} M^{z+} = \Delta H_{\rm f}^{\circ} MO(c) - \Delta H_{\rm f}^{\circ} M^{z+} \text{ (aq)} \qquad (2)$$

où ΔH représente l'enthalpie de formation d'un minéral par rapport à ses oxydes constituants, et $\Delta_{\rm H}O^{2^-}$, l'enthalpie de formation de l'oxyde par rapport à l'ion M^{z+} à l'état aqueux.

Une relation linéaire entre les paramètres ΔH et $\Delta_H O^{2-}M^{z+}$ a été observée dans toutes les familles: phosphates, silicates, sulfates, carbonates, nitrates, hydroxydes, *etc.* Dans la famille des silicates (Vieillard 1982), la relation linéaire s'écrit de la manière suivante:

$$\Delta \mathbf{H} = -\alpha \, N \cdot X_1 \cdot X_2 \left(\Delta_{\mathbf{H}} \mathbf{O}^{2-} M^{z+} - \Delta_{\mathbf{H}} \mathbf{O}^{2-} \mathbf{Si}^{4+} \right) \quad (3)$$

dans laquelle N représente le nombre total d'atomes d'oxygène du minéral, X_1 et X_2 représentent les fractions molaires des atomes d'oxygène liés, respectivement, aux cations M^{z+} et Si⁴⁺; α est un coefficient qui dépend de la famille en question (ici, α vaut 1.305 pour les orthosilicates: Vieillard 1982).

En utilisant les valeurs du paramètre ΔO^{2-} , $\Delta_H O^{2-} Mg^{2+} = -139.95$ kJ/mole (Naumov *et al.* 1971) et $\Delta_H O^{2-} Si^{4+} = -204.5$ kJ/mole (Vieillard 1982) dans l'équation (3), l'enthalpie de formation de la forstérite $\alpha Mg_2 SiO_4$ par rapport à ses oxydes s'obtient par l'expression suivante:

$$\Delta H = -1.305 \cdot 4 \cdot \frac{1}{2} \cdot \frac{1}{2} (-139.95 + 204.5)$$
 (4)

soit $\Delta H = -84.3 \text{ kJ/mole}$, valeur largement supérieure aux autres valeurs observées [-61.71 kJ/mole de Helgeson *et al.* (1978), -56.69 kJ/mole de Robie *et al.* (1982)]. D'autre part, l'expression (3) ne permet pas d'évaluer les enthalpies de formation par rapport aux oxydes des deux autres polymorphes, βMg_2SiO_4 et γMg_2SiO_4 .

Vieillard (1982) et Vieillard et Tardy (1985, 1987) ont proposé une méthode permettant l'évaluation des enthalpies de formation par rapport aux oxydes à partir des structures cristallines et l'ont étendue à un très grand nombre de composés. Cette méthode fait appel à la connaissance des paramètres cristallographiques (distance moyenne et plus petite distance, volume molaire) et des propriétés optiques (indice moyen de réfraction). On se propose d'utiliser cette méthode et de montrer que la connaissance des structures affinées des trois polymorphes de Mg₂SiO₄, soit α Mg₂SiO₄ (forstérite), β Mg₂SiO₄ (wadsleyite) et γ Mg₂SiO₄ (spinelle), permet d'évaluer leurs enthalpies de formation par rapport aux oxydes.

PRÉSENTATION DE LA MÉTHODE

La méthode d'estimation utilisée dans ce travail reprend le paramètre ΔO mais sous un autre angle. En effet, le paramètre $\Delta_{\rm H}O^{2-}M^{z+}$, jusqu'ici constant, devra varier suivant l'environnement du cation dans l'oxyde ou dans un composé quelconque. C'est ainsi qu'un nouveau paramètre $\Delta_{\rm H}O^{2-}$ cation (corrigé) caractérisera l'ion placé dans un environnement cristallin d'un composé, de telle sorte que l'enthalpie de formation de Mg₂SiO₄ par rapport aux oxy(6)

des correspondants est calculée à partir de l'équation suivante:

$$\Delta H = -4 \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot [\Delta_{\rm H} O^{2-} Mg^{2+} \text{ (corrigé)} \\ -\Delta_{\rm H} O^{2-} Si^{4+} \text{ (corrigé)}] \qquad (5)$$

Ainsi les paramètres $\Delta_{\rm H}O^{2-}Mg^{2+}$ (corrigé) et $\Delta_{\rm H}O^{2-}Si^{4+}$ (corrigé) représentent, respectivement, les paramètres caractéristiques de l'ion Mg^{2+} et Si^{4+} dans le composé Mg_2SiO_4 .

Le paramètre $\Delta_H O^{2^-}$ cation (corrigé) est défini à partir du paramètre $\Delta_H O^{2^-}$ cation (oxyde), qui représente le paramètre caractéristique du cation dans l'oxyde de référence:

$$\Delta_{\rm H} {\rm O}^{2^-}$$
 cation (corrigé) =
 $\Delta_{\rm H} {\rm O}^{2^-}$ cation (oxyde) + $\delta \Delta_{\rm H} {\rm O}^{2^-}$ cation

Les valeurs de $\Delta_{\rm H}O^{2-}$ cation (oxyde) pour le magnésium et le silicium ont été évaluées par Vieillard (1982) et Vieillard et Tardy (1985, 1987) à partir d'un grand nombre de composés (silicates, hydroxydes et aluminates). Comme l'environnement du cation dans l'oxyde et dans le composé est différent, le terme $\delta \Delta_{\rm H}O^{2-}$ (cation) apparaît comme un terme de correction qui doit s'ajouter au paramètre $\Delta_{\rm H}O^{2-}$ cation (oxyde) pour tenir compte de la modification de l'environnement cristallin lors du transfert du cation M^{z+} de l'oxyde vers le composé. La correction $\delta \Delta_{\rm H}O^{2-}$ (cation) pour un des deux cations, Mg²⁺ ou Si⁴⁺, apparaît comme une fonction de plusieurs paramètres répartis dans quatre termes principaux:

$$\delta \Delta_{\rm H} {\rm O}^{2^-} M^{z^+} = {\rm E}_{\rm att.rep.comp.} + {\rm E}_{\rm pol.comp.} - {\rm E}_{\rm att.rep.ox.} - {\rm E}_{\rm pol.ox.}$$
 (7)

Les quatre termes s'expriment de la manière suivante: énergie d'attraction-répulsion dans le composé,

$$\mathbf{E}_{\text{att.rep.comp.}} = \mathbf{A}_{v} \mathbf{e}^{2} \mathbf{z}^{2} \mathbf{A}_{\text{ox.}} \left(\frac{1}{d} - \boldsymbol{\rho}_{\text{comp}} \frac{\mathbf{e}^{\left(\frac{d_{0} - d}{\boldsymbol{\rho}_{\text{comp}}} \right)}}{d_{0}^{2}} \right) (8)$$

énergie de polarisation dans le composé,

$$E_{\text{pol.comp.}} = k_{\text{comp.}} A_{v} e^{2} \left(\frac{\alpha_{M^{2+}+} \alpha_{O^{2-}}}{d^4} \right)$$
(9)

énergie d'attraction-répulsion dans l'oxyde,

$$\mathbf{E}_{\text{att.rep.ox.}} = \mathbf{A}_{v} \mathbf{e}^{2} \mathbf{z}^{2} \mathbf{A}_{\text{ox.}} \left(\frac{1}{\mathbf{d}_{o}} - \frac{\boldsymbol{\rho}_{\text{comp.}}}{\mathbf{d}_{o}^{2}} \right)$$
(10)

énergie de polarisation dans l'oxyde,

$$E_{\text{pol.ox.}} = k_{\text{comp.}} A_v e^{2 \left(\frac{\alpha_{M^{2+}}}{M_0^{2+}} + \frac{\alpha_0}{M_0^2} \right)}$$
(11)

Dans ces expressions, A_v représente le nombre d'Avogadro, e, la charge de l'électron, z, la charge du cation, A_{ox} , la constante de Madelung de l'oxyde du cation M_{2O} (c), $\rho_{comp.}$ représente la constante de répulsion, $k_{comp.}$ représente la constante de polarisation, d_o représente la plus courte distance M^{z+} -O dans l'oxyde du cation, M_{2O} (c) et d représente la plus courte distance M^{z+} -O dans le composé comprenant le cation M^{z+} . Toutes ces valeurs sont données dans le Tableau 1.

On peut calculer les polarisabilités effectives $\alpha_{M^{Z^+}}^{\text{comp}}$, $\alpha_{O^{2^-}}^{\text{comp}}$ dans le composé et $\alpha_{M^{Z^+}}^{\text{ox}}$, $\alpha_{O^{2^-}}^{\text{ox}}$ dans l'oxyde,

TABLEAU 1.	DIFFERENTES	VALEURS DE	CONSTANTES	DU TERME	DE
CORREC	TION δΔ _Η 02-,	CATION COR	RIGE DE MgO	ET \$102	

] MgO	\$10 ₂
Distance moyenne d _{moyen} , (Å)	2.100	1:607
Plus petite distance, d (Å)	2.100	1.597
Volume moléculaire, V _m (Å ³)	18,522	37.448
Indice moyen de réfraction, n	1.736	1.547
Polarisabilité électronique du minéral, $\alpha_{m} (\mathring{A}^{3})$	1.776	2,836
Polarisabilité du cation libre a _m z+ (Å ³) 0.069	0.0255
Folarisabilité à l'oxygène à l'état li- bre, c ₀ 2- (Å ³)	2.75	2.75
Rayon ionique du cation à l'état libre, r $_{2}^{+}$ (Å)	0.725	0.42
Rayon ionique de l'oxygène à l'état li- bre, r ₀ 2 ⁻ (À)	1.49	1.49
Rayon ionique effectif du cation, $r_{z^+}^{ox} (A)$	0.838	0.416
Rayon ionique effectif de l'oxygène, $r_{O^{2^{-1}}}^{Ox}$ (Å)	1.262	1.191
Polarisabilité effective du cation, $\alpha_{MZ^+}^{OX}$ (Å ³⁾	0.107	0.025
Polarisabilité effective de l'oxygène, $\alpha_{0^{2-}}^{ox}$ (Å ³)	1.669	1.405
Constante de Madelung, A	1.74755	8 1.10075
Energie d'attraction-répulsion (kJ/mole)]-3816.5	-13297.7
Constante de répulsion, ρ_{comp} (Å)	0.367	0.211
Energie de polarisation (kJ/mole)	-126.9	-305.4
Constante de polarisation, k _{comp}	1.15572	0.22332
Energie de liaison cation-oxygène dans l'oxyde (kJ/mole)	-3963.2	-13365.9
$\Delta_{\rm H} o^{2^{-1}}$ cation (oxyde) (kJ/mole)	-204.00	-256.00

de telle sorte qu'elles vérifient les deux équations suivantes:

 équation fondée sur l'hypothèse de l'additivité des polarisabilités effectives:

$$\Sigma n_{i} \alpha_{M^{Z^{+}}}^{cr.} + \Sigma n_{o} \alpha_{O^{Z^{-}}}^{cr} = \alpha = \frac{3V}{4\pi} \frac{n^{2} - 1}{n^{2} + 2} \qquad (12)$$

où n_i et n_o représentent, respectivement, le nombre de cations M^{z^+} et d'oxygène dans le composé, $\alpha_{Xz^+}^{cr}$ et $\alpha_{C2^-}^{cr}$ désignent, respectivement, les polarisabilités effectives du cation M^{z^+} et de l'oxygène, aussi bien dans un composé cristallisé (α^{comp}) que dans un oxyde (α^{ox}), α représente la polarisabilité totale du composé ou de l'oxyde, V et *n* représentent, respectivement, le volume molaire et l'indice moyen de réfraction.

2) relations empiriques de Shanker et al. (1973):

$$\frac{\alpha_{M^{Z^{+}}}^{c}}{\alpha_{M^{Z^{+}}}} = \left(\frac{r_{M^{Z^{+}}}}{r_{M^{Z^{+}}}}\right)^{3}$$
(13)

$$\frac{\alpha_{O^{2^{-}}}^{c}}{\alpha_{O^{2^{-}}}} = \left(\frac{r_{O^{2^{-}}}^{c}}{r_{O^{2^{-}}}}\right)^{3}$$
(14)

Dans ces expressions, $\alpha_M^{z^+}$ et $\alpha_0^{2^-}$ représentent, respectivement, les polarisabilités de M^{z^+} et O^{2^-} à l'état libre, $r_M^{z^+}$ et $r_0^{2^-}$ représentent les rayons ioniques de M^{z^+} et O^{2^-} à l'état libre. Ces quatre paramètres ont été déterminés par de nombreux auteurs. Elles ont été légèrement modifiées de manière à minimiser l'écart entre l'enthalpie de formation observée et estimée par l'équation (5) pour tous les silicates de magnésium, tous les aluminosilicates de magnésium, tous les aluminates de magnésium, pour tous les composés de magnésium et pour tous les silicates d'un cation ou plus (Vieillard 1982, 1987, Vieillard et Tardy 1985, 1987). Ces quatre valeurs sont reportées dans le Tableau 1.

Enfin, les rayons ioniques effectifs du cation, $r_{O}^{cr}z^+$ et de l'oxygène, $r_{O}^{cr}z^-$ vérifient la relation suivante:

$$r_{M^{z^{+}}}^{cr} + r_{O^{z^{-}}}^{cr} = d_{M^{z^{+}}-O}^{(moyen)}$$
 (15)

dans laquelle $d_{M^{2+}-O}$ représente la distance moyenne séparant le cation M^{2+} de l'oxygène.

En résumé, les polarisabilités effectives du cation et de l'oxygène peuvent être calculées à partir des relations (15), (14), (13) et (12).

Application aux Trois Polymorphes de Mg_2SiO_4

Les nombreux affinements de la structure cristalline de la forstérite (Birle et al. 1968, Smyth et Hazen 1973, Wenk et Raymond 1973, Fujino et al. 1981, Baur 1972) n'ont pas été tous retenus. Les critères de sélection sont la grande qualité de l'affinement et la pureté du minéral. Les données cristallographiques de Wenk et Raymond (1973) et celles de Fujino et al. (1981) répondent aux critères et offrent un avantage: la première porte sur une forstérite naturelle de composition très voisine du pôle magnésien $(Mg_{1.97}Fe_{0.03}SiO_4)$, et la seconde est une forstérite synthétique dépourvue de fer. Dans cette étude nous utiliserons la structure cristalline de Fujino et al. (1981) parce que l'enthalpie de formation ΔH_f° de Mg_{1.97}Fe_{0.03}SiO₄ par rapport aux oxydes a déjà été évaluée par Vieillard et Tardy (1985) et vaut -55.61 kJ/mole. Cette valeur a été estimée en tenant compte de la présence du fer ferreux dans les deux sites M1 et M2. Dans ce travail, on évaluera l'enthalpie de formation de la forstérite sans tenir compte de la forme de l'octaèdre dans les deux sites M1 et M2, c'est-à-dire que l'on considérera la demi-somme des

TABLEAU 2. VOLUME MOLECULAIRE, INDICE MOYEN DE REFRACTION, POLARISABILITE ELECTRONIQUE DU MINERAL, DISTANCE MOYENNE ET PLUS PETITE DISTANCE Mg-O ET S1-0, RAYON IONIQUE ET POLARISABILITE ELECTRONIQUE EFFECTIVES DE Mg2²⁺, S1⁴⁺ ET O²⁻, ET FACTEUR R DANS LES TROIS POLYMORPHES DE Mg2₂S10₄

	aMg2S104	βMg₂SiO₄	YMg₂SiO₄	
	(1)	(2)	(3)	
Volume moléculaire, Vn (\mathring{A}^3)	72.394	67.268	65.463	
Indice de réfraction, n	1.6519 (a)	1.702 (Ъ)	1.72 (c)	
Polarisabilité électronique				
du minéral, a _n (Å ³)	6.319	6.221	6.173	
Distance moyenne Mg-0 (Å)	2.112	2.081	2.07	
Plus petite distance Mg-O (Å)	2.045	2.017	2.07	
Distance moyenne Si-O (Å)	1.636	1.651	1.655	
Plus petite distance Si-O (Å)	1.614	1.631	1.655	
Rayon ionique effectif :				
Mg ²⁺ (Å)	0.892	0.867	0.859	
Si ⁴⁺ (Å)	0.416	0.437	0.444	
0 ²⁻ (Å)	1.220	1.214	1.211	
Polarisabilité électronique				
effective :				
Mg^{2+} (Å ³)	0.129	0.118	0.115	
51 ⁴⁺ (Å ³)	0.025	0.029	0.030	
0 ²⁻ (Å ³)	1.509	1.489	1.478	
Facteur R	0.0287	0.028	[]	

Références: l Fujino et al. (1981), 2 Horiuchi et Sawamoto (1981) 3 Sasaki et al. (1982) in Horiuchi (1983), a Minchell et Winchell (1964), b Estimée à partir de la densité de aMg_SiO₄ et aMg_SiO₄ et de l'indice de réfraction de aMg_SiO₄, c Estimée à partir de la densité de aMg_SiO₄ et $_{Mg_2SiO_4}$ et de l'indice de réfraction de $_{Mg_2SiO_4}$.

FIG. 1 $\Delta_{\rm H}O^{2^-}$ cation (corr.) en fonction de la plus petite distance cation – oxygène pour Mg²⁺ et Si⁴⁺.

distances moyennes Mg–O dans les deux sites. La structure cristalline de βMg_2SiO_4 ou wadsleyite, nom proposé par Price *et al.* (1983), a été affinée et étudiée par Horiuchi et Sawamoto (1981). La forme spinelle γMg_2SiO_4 a été étudiée par Sasaki *et al.* (1982) et citée par Horiuchi (1983). Ce dernier ajoute que la forme spinelle γMg_2SiO_4 ne présente pas de désordre entre l'atome de silicium et celui du magnésium.

Les propriétés cristallographiques, optiques, les rayons ioniques effectifs et les polarisabilités effectives de Mg²⁺, Si⁴⁺ et O²⁻ dans les trois polymorphes de Mg₂SiO₄ sont données dans le Tableau 2. On remarque que le rayon ionique effectif du magnésium et de l'oxygène diminue et celui du silicium augmente lorsque l'on part de la forme α vers la forme γ .

Pour chacun des trois polymorphes et les oxydes

MgO et SiO_2 , on a représenté sur la Figure 1 pour chaque cation Mg²⁺ et Si⁴⁺ la variation du paramètre $\Delta_{\rm H} O^{2^-}$ cation (corrigé) en fonction de la plus petite distance (équations 7, 8 à 11) pour différentes valeurs calculées de la polarisabilité électronique effective du cation et de l'oxygène, $\alpha_{M^{z+}}^{cr} + \alpha_{\Omega^{z-}}^{cr}$ Les deux séries de paraboles, ayant la même échelle seulement en $\Delta_{\rm H} O^{2-}$ cation (corrigé) ou $\delta \Delta_{\rm H} O^{2-}$ cation, présentent des allures différentes. Il est évident, d'après la Figure 1, que si l'environnement du cation est identique à celui dans l'oxyde de référence (c'est-à-dire la même plus courte distance, la même contribution du volume molaire et de l'indice de réfraction de l'oxyde dans le composé, la même distance moyenne), alors la correction énergétique pour amener un cation de l'oxyde vers le composé sera nulle.

En utilisant les valeurs des polarisabilités effectives de Mg²⁺, Si⁴⁺ et O²⁻ (Tableau 2), on remarque, dans le cas du magnésium, que les trois courbes, relatives à α Mg₂SiO₄ ($\alpha_{Mg}^{2+} + \alpha_{O}^{2-} = 1.638 \text{ Å}^3$), β Mg₂SiO₄ ($\alpha_{Mg}^{2+} + \alpha_{O}^{2-} = 1.607 \text{ Å}^3$) et γ Mg₂SiO₄ ($\alpha_{Mg}^{2+} + \alpha_{Si}^{4+} = 1.593 \text{ Å}^3$), sont situées audessous de celle du périclase ($\alpha_{Mg}^{2+} + \alpha_{O}^{2-} = 1.776$ Å³). Ceci signifie que la liaison Mg–O est moins polarisée dans les trois polymorphes de Mg₂SiO₄ que dans l'oxyde. À l'opposé, dans le cas du silicium, les trois courbes de calibration, relatives à α Mg₂SiO₄ ($\alpha_{Si}^{4+} + \alpha_{O}^{2-} = 1.534 \text{ Å}^3$), β Mg₂SiO₄ ($\alpha_{Si}^{4+} + \alpha_{O}^{2-} = 1.518 \text{ Å}^3$) et γ Mg₂SiO₄ ($\alpha_{Si}^{4+} + \alpha_{O}^{2-} = 1.435 \text{ Å}^3$). Autrement dit, ceci signifie que la liaison Si–O est plus polarisée dans les trois polymorphes de Mg₂SiO₄ que dans l'oxyde de référence (quartz).

On retrouve la même conclusion que Ramberg (1954) sur la différence de stabilité de la liaison cation-oxygène entre le composé et l'oxyde. En effet, Ramberg (1954), dans une démonstration faisant appel à la polarisation de l'oxygène, a montré l'étroite relation entre la stabilité des silicates et le degré de polarisation de l'ion oxygène. Cependant, il n'a pas fait intervenir la plus petite distance.

Dans notre étude, la connaissance de la plus courte distance cation-oxygène dans les trois polymorphes de Mg₂SiO₄ permet le calcul de $\delta\Delta_{\rm H}O^{2^-}$ cation (équations 7, 8 à 11) et par conséquent les valeurs $\Delta_{\rm H}O^{2^-}Mg^{2+}$ (corrigé) et $\Delta_{\rm H}O^{2^-Si^{4+}}$ (corrigé) peuvent être déterminées (équation 6). Les valeurs ainsi calculées (Fig. 1) contribuent à l'évaluation de l'enthalpie de formation des trois polymorphes de Mg₂SiO₄ par rapport aux oxydes constituants (Équation 5 et Tableau 3).

Pour la forstérite, αMg_2SiO_4 , en ne tenant pas compte des deux sites M1 et M2, l'enthalpie de formation ΔH par rapport aux oxydes vaut -53.17 kJ/mole, valeur légèrement différente de celle de Vieillard et Tardy ($\Delta H = -55.31$ kJ/mole) calculée en tenant compte de la différence de polarisabilité entre les deux sites M1 et M2.

Les enthalpies de formation de la wadsleyite, β Mg₂SiO₄ et du spinelle γ Mg₂SiO₄ par rapport aux oxydes ont été évaluées par Barsukov et Urusov (1982) par extrapolation à la température standard à partir des hautes températures et hautes pressions. Une étude récente sur les propriétés thermodynamiques des polymorphes de Mg₂SiO₄ faite par Akaogi *et al.* (1984) donne les enthalpies de transition mesurées à 1000 K mais ne fournit pas les enthalpies de formation des formes β et γ à la température standard à cause de l'incertitude des coefficients de la chaleur massive de ces deux composés. Ces valeurs évaluées dans ce travail semblent très proche des valeurs calculées par d'autres auteurs.

En supposant que l'erreur de l'indice de réfrac-

TABLEAU 3. PARAMETRES AH02"	· CATION (OX), δΔΗΟ2- CATION ET ΔΗΟ2-
CATION (CORRIGE) DE Mg2 [#] ET	St4+. ENTHALPIES DE FORMATION PAR
RAPPORT AUX OXYDES CONSTIT	TUANTS EVALUEES DANS CE TRAVAIL ET
OBSERVEES DES TRO	DIS POLYMORPHES DE Mg2SiO4

	αMg₂SiO ₄	βMg ₂ SiO ₄	γMg₂SiO₄	
$\Delta_{\rm H} 0^{2^-} {\rm Mg}^{2^+}({\rm ox.}) ({\rm kJ/mole})$	-204.00	-204.00	-204.00	
$\delta \Delta_{\rm H} O^{2-} {\rm Mg}^{2+}$ (kJ/mole)	+ 2.56	+ 5.56	+ 9.17	
Δ _H 0 ²⁻ Mg ²⁺ (corr.)(kJ/mole)	-201.44	-198.44	-194.83	
$\Delta_{\rm H} 0^{2^-} \rm Si^{4+}(ox.)(kJ/mole)$	-256.00	-256.00	-256.00	ł
δΔ _H 0 ²⁻ Si ⁴⁺ (kJ/mole)	+ 1.39	+ 9.90	+ 28.13	i
Δ _H 0 ²⁻ Si ⁴⁺ (corr.)(kJ/mole)	-254.61	-246.10	-227.87	İ
∆H calculé (kJ/mole)	-53.17	-47.67	-33.04	
AH observé	-59.66 (1)	-46.48 (4)	-41.80 (4)	
	-57.99 (2)			l
	-56.70 (3)	l	1	l

Références: l Wagman et αI . (1982), 2 Naumov et αI . (1971), 3 Robie et αI . (1982), 4 Barsukov et Urusov (1982).

tion soit de \pm 0.005, celle des distances interatomiques est de \pm 0.005 Å, l'erreur de l'enthalpie de formation est de \pm 3 kJ/mole.

DISCUSSION

En examinant les différentes courbes de la Figure 1, on constate qu'une variation de la plus petite distance Si-O entre 1.615 Å (pour αMg_2SiO_4) et 1.655 Å (pour γMg_2SiO_4) entraîne une variation énergétique de 27 kJ/mole. L'influence de la polarisabilité de la liaison Si-O y joue un rôle très secondaire. Plus l'écart avec la plus petite distance Si-O de l'oxyde est grand, plus importante sera la correction énergétique de la liaison par rapport au paramètre $\Delta_{\rm H} O^{2-} Si^{4+}$ de l'oxyde. De plus, on constate qu'une variation de la plus petite distance Mg-O entre 2.017 Å (pour βMg_2SiO_4) et 2.07 Å (pour γMg_2SiO_4) n'entraîne qu'une faible variation d'énergie par rapport à l'oxyde (7 kJ/mole). Cependant ce n'est pas la plus petite distance Mg-O qui est le facteur de stabilité de la liaison Mg-O mais la polarisation. En effet la diminution de la polarisabilité $\alpha_{Mg} + \alpha_{O}$ contribue à augmenter l'écart énergétique de la liaison Mg-O par rapport au paramètre $\Delta_{\rm H} O^{2-} {\rm Mg}^{2+}$ relatif à l'oxyde de référence MgO.

Il y a un autre sujet qui mérite réflexion et qui nécessite d'être signalé: l'existence ou non du désordre entre les cations Mg^{2+} et Si⁴⁺ dans les deux sites de coordinence 6 et 4 de γMg_2SiO_4 . En fait le calcul de l'enthalpie de formation par rapport aux oxydes de la forme spinelle repose sur l'hypothèse qu'il n'y a aucun désordre entre Mg et Si. Si on partait de la structure de Sasaki *et al.* (1982), qui supposait un désordre entre Mg et Si, l'enthalpie de formation par rapport aux oxydes de γMg_2SiO_4 passerait de -33.00 kJ/mole dans le cas où il n'y a aucun désordre à -46.0 kJ/mole dans le composé ^{VI}(Mg_{1,975}Si_{0,025})^{IV}(Mg_{0,025}Si_{0,975})O₄. Ceci nous montre que le désordre peut exister dans le composé, mais dans une proportion très faible.

CONCLUSION

Il est bien connu que la stabilité d'un minéral, en particulier d'un silicate, est liée à la puissance de polarisation des cations ou à leurs tendances à former des liaisons covalentes avec l'oxygène (Goldschmidt 1927, Ramberg 1954, Arkel et Boer 1936). La méthode de calcul exposée dans ce travail allie une méthode empirique du paramètre $\Delta_{\rm H}O^2$ cation à une méthode théorique qui quantifie la variation énergétique provoquée par l'attraction-répulsion d'une part, et la polarisation d'autre part, des ions dans un composé. Cette approche, semi-empirique, permet de résoudre l'impossibilité de calculer l'énergie de liaison covalente dans les silicates.

L'application de la méthode d'estimation aux polymorphes de Mg_2SiO_4 , reposant sur le principe des états correspondants, a permis de calculer d'abord les rayons ioniques et les polarisabilités effectives des ions Mg^{2+} , Si^{4+} et O^{2-} dans les trois composés, ensuite d'évaluer les variations des énergies des liaisons Mg-O et Si-O par rapport à celles des oxydes, et enfin d'estimer l'enthalpie de formation par rapport aux oxydes.

Ce choix d'application à des polymorphes ne se limite pas à cela; il permet d'ouvrir la voie aux estimations des enthalpies de formation d'autres composés, en particulier des polymorphes de Co₂SiO₄ (3 polymorphes α , β et γ) de Ni₂SiO₄ (3 polymorphes α , β et γ) et Fe₂SiO₄ (3 polymorphes α , β et γ) et permet surtout d'aborder les spinelles γ Co₂SiO₄, γ Ni₂SiO₄ et γ Fe₂SiO₄, dans lesquels existe un léger désordre des sites octaédriques et tétraédriques. Ce facteur de désordre (probablement absent dans γ Mg₂SiO₄) sera pris en considération lors des calculs ultérieurs des enthalpies de formation par rapport aux oxydes.

REMERCIEMENTS

Je remercie vivement messieurs Pascal Richet et Robert F. Martin d'avoir bien voulu apporter leurs critiques et suggestions à ce travail. Les calculs ont été faits au Centre d'Informatique et de Calcul de l'Université de Poitiers, sur l'ordinateur Mini 6 Bull.

RÉFÉRENCES

AKAOGI, M., ROSS, N.L., MCMILLAN, P. & NAVROTSKY,
A. (1984): The Mg₂SiO₄ polymorphs (olivine, modified spinel and spinel) – thermodynamic properties from oxide melt solution calorimetry, phase relations and models of lattice vibrations. *Amer. Mineral.* 69, 499-512.

- ARKEL, A.E. & BOER, J.H. (1936): La Valence et l'Électrostatique. Alcan, Paris.
- BARSUKOV, V.L. & URUSOV, V.S. (1982): Phase transitions in the transition zone of the mantle and possible changes in the earth's radius. *Geochem. Int.* 19(6), 99-113.
- BAUR, W.H. (1972): Computer simulated crystal structure of observed and hypothetical Mg₂SiO₄ polymorphs of low and high density. *Amer. Mineral.* 57, 709-731.
- BIRLE, J.D., GIBBS, G.V., MOORE, P.B. & SMITH, J.V. (1968): Crystal structures of natural olivines. Amer. Mineral. 53, 807-824.
- FUJINO, K., SASAKI, S., TAKEUCHI, Y. & SADANAGA, R. (1981): X-ray determination of electron distributions in forsterite, fayalite and tephroite. *Acta Cryst.* B37, 513-518.
- GARTNER, L. (1979): Relations entre Enthalpies ou Enthalpies Libres de Formation des Ions, des Oxydes et des Composés de Formule $M_m N_n O_{z^-}$. Utilisation des Fréquences de Vibration dans l'Infra-rouge. Thèse Ingénieur, Univ. de Strasbourg, Strasbourg, France.
- GOLDSCHMIDT, V.M. (1927): Geochemische Verteilungsgesetze der Elemente VIII. Skrifter Norsk Vid. Akad. Oslo, Mat. Kl 1926, 8.
- HELGESON, H.C., DELANY, J.M., NESBITT, H.W. & BIRD, D.K. (1978): Summary and critique of the thermodynamic properties of rock forming minerals. *Amer. J. Sci.* 278-A.
- HORIUCHI, H. (1983): High pressure phases of magnesium silicates: single crystal X-ray diffraction studies. J. Mineral. (Japan) 16, 199-206.
- _____ & SAWAMOTO, H. (1981): βMg₂SiO₄: single crystal X-ray diffraction study. Amer. Mineral. 66, 568-575.
- NAUMOV, G.B., RYZHENKO, B. & KHODAKOVSKY, I.L. (1971): Handbook of Thermodynamic Data. Atomizdat, Moscow (in Russ.).
- PRICE, G.D., PUTNIS, A., AGRELL, S.O. & SMITH, D.G.W. (1983): Wadsleyite, natural β -(Mg,Fe)₂SiO₄ from the Peace River meteorite. *Can. Mineral.* 21, 29-35.
- RAMBERG, H. (1954): Relative stabilities of some simple silicates as related to the polarization of the oxygen ions. *Amer. Mineral.* **39**, 256-271.
- ROBIE, R.A., HEMINGWAY, B.S. & TAKEI, H. (1982): Heat capacities and entropies of Mg₂SiO₄, Mn₂SiO₄ and Co₂SiO₄ between 5 and 380 K. *Amer. Mineral.* 67, 470-482.

- SASAKI, S., PREWITT, C.T., SATO, Y. & ITO, E. (1982): Single crystal, X-ray study of γMg_2SiO_4 . J. Geophys. Res. 87, 7829-7832.
- SHANKER, J., KUMAR, N. & VERMA, M.P. (1973): An empirical relation between polarizability and ionic radius in an alkali halide crystal. *Ind. J. Pure Appl. Phys.* 11, 644-647.
- SMYTH, J.R. & HAZEN, R.M. (1973): The crystal structures of forsterite and hortonolite at several temperatures up to 900°C. Amer. Mineral. 58, 588-593.
- TARDY, Y. (1979): Relationships among Gibbs energies of formation of compounds. Amer. J. Sci. 279, 217-224.
- & GARRELS, R.M. (1976): Prediction of Gibbs energies of formation. I. Relationships among Gibbs energies of formation of hydroxides, oxides and aqueous ions. *Geochim. Cosmochim. Acta* 40, 1051-1056.
- & _____ & (1977): Prediction of Gibbs energies of formation of compounds from the elements. II. Monovalent and divalent metal silicates. *Geochim*. *Cosmochim. Acta* **41**, 87-92.
- <u>& GARTNER, L. (1977): Relationships among</u> Gibbs energies of formation of sulfates, nitrates, carbonates, oxides and aqueous ions. *Contr. Mineral. Petrology* **63**, 89-102.
- <u>& VIEILLARD</u>, P. (1977): Relationships among Gibbs free energies and enthalpies of formation of phosphates, oxides and aqueous ions. *Contr. Mineral. Petrology* 63, 75-88.

- VIEILLARD, P. (1978): Géochimie des phosphates. Étude thermodynamique, application à la génèse et à l'altération des apatites. Sci. Géol., Mém. 51.
 - (1982): Modèle de calcul des énergies de formation des minéraux bâti sur la connaissance affinée des structures cristallines. *Sci. Géol., Mém.* 69.
 - (1987): Une nouvelle échelle de rayons ioniques de Pauling. *Acta Cryst.* (in press).
 - <u>& TARDY, Y. (1985): Enthalpies de mélange et</u> données affinées des structures cristallines des solutions solides. *Bull. Minéral.* **108**, 767-778.
- WAGMAN, D.D., EVANS, W.H., PARKER, V.B., SCHUMM, R.H., HALOW, I., BAILEY, S.M., CHURNEY, K.L. & NUTTALL, R.L. (1982): The NBS Tables of chemical thermodynamic properties. Selected values for inorganic and C₁ and C₂ organic substances in SI units. J. Phys. Chem. Reference Data 11, suppl. 2.
- WENK, H.R. & RAYMOND, K.N. (1973): Four new structure refinements of olivine. Z. Krist. 137, 86-105.
- WINCHELL, A.N. & WINCHELL, H. (1964): The Microscopical Characters of Artificial Inorganic Substances. Optical Properties of Artificial Minerals. Academic Press, New York.
- Reçu le 2 septembre, 1986 manuscrit révisé accepté le 5 janvier, 1987.