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ABSTRAcT

Snowflakes, iodargyrite flakes, virus aggregates and
AlMn alloys (caled shechtmanite) are pattem invariant with
transformations that are similarities, rather than con-
gruences (self-similar scaling, SSC). Snowflakes, like frac-
tals, are generated by recursive subdivision. SSC symmetry
commutes with the point-group symmetry of ice to gener-
ate the hypersymmetric point group 6mm:SSC. The struc-
ture of iodargyrite flakes observed at the micrometer scale
is an eighth-order recursive hexagonal tiling of the atomic
structure observed at the scale of the angstrom. The dense
packing of spheres in a hierarchic succession of icosahedral
shells (/SP) is related to a self-similar scaling oficosahedra
(B) with qymmetry 5m3:SSC and the Fibonacci proportions,
proposed for ttre structure of shechtmanite. Systematic
development of permutations of the two hierarchic struc-
tures identifies one viral infection as a ninth-order icosa-
hedral shell packing of Herpes simplex virions, each of
which is itself a fourth-order icosahedral shell, ISPe (/Sf.
The surface structure at the micrometer scale of Adenovi-
ras is 1S5, Tipula iridescens ISs;' for Papovavirion, 82; for
Parvovirion, an incomplete 82. Shechtmanite 'snowflakes'
are 5m3: SSC pentagonal tilings analogous to the SSCi6mm
tiling of iodargyrite. Sections through the B model for
shechtmanite illustrate the tiling symmetry. To the extenr
that these structures are fractal, fundamental physical and
chemical parameters such as the length of the perimeter of
the snowflake or its surface area, are indeterminate and
ideal physical-chemical analysis is inapplicable.

Keywords: snowflake, iodargyrite, shechtmanite, self-
similar scaling, Herpes simplex virion, crystal structure,
tiling symmetry.

SoMraarns

Les flocons de neige et d'iodargyrite, les agrdgats de virus
et les alliages AlMn ("shechtmanite") possbdent une inva-
riance dans leur morphologie, et leurs transformations
d€pendent de ressemblances, plutdt que de congruences
(modification de l'6chelle par similitude, encore not€e en
anglais: SSC). Les flocons de neige, tout comme les frac-
tals, se propagent par subdivision successive. La sym6trie
SSC, ajout6e i l'6l6ment de sym€trie ponctuelle de la glace,
donne Ie groupe ponctuel hypersymdtrique 6nm:SSC. La
structure de cristaux d'iodargyrite, examinde i l'6chelle
micromdtrique, comporte un agencement successif de hui-
tibme ordre de modules hexagonaux de la structure cris-
talline d l'dchelle atomique. L'agencernent dense de sphb-
res dans une succession hidrarchique d'anneaux
icosa€driques (ISP) est li€ i une modification de l'6chelle
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d'icosaddres (A) ayant une sym6trie 5m3:SSC et les pro-
portions de Fibonacci, telles que celles propos6es pour la
structure de la shechtmanite. Le d6veloppement systema-
tique des permutations des dzux structures hi6rarchiques
d6montre qu'une des infections virales comporterait un
agencement de neuvibme ordre d'aaneaux icosaddriques des
vinons Herpes simplex, chacun de ceux-ci 6tant un anneau
icosaddrique de quatri&me ordre, .lSPe[S/. A fdchelle
microm&rique, la structure de la s$face de Adenovirus est
/S5, celle de Tipula iridescens, ISe, celle de Papovavirion,
82, et enfin celle de Pamovirion, 82 incomplet. Les cris-
taux de "neige" de shechtmanite sont faits de modules pen-
tagonaux 5m3lSSC analogues aux modules 6nn:SSC de
I'iodargyrite. Ds sections d travers le mod&le B de la shecht-
manite d6rnontrent la sym6trie des modules. Dans la mesure
or) il s'agit de structures fractales, l* parambtres physiques
et chimiques fondamentaux, tels que le p6rimbtre d'un flo-
con ou l'aire de sa surface, sont indetermines; c'est pour-
quoi une analyse physico<himique id6ale ne peut etre
appliqu6e.

(fraduit par la R6daction)

Mots-clds: flocon de neige, iodargyrite, shechtmanite, modi-
fication de l'€chelle par similitude, uirion Herpa sim-
p/ex, structure cristalline, symdtrie des modules.

INTRoDUgfloN

The morphology of the variety of dendritic ice
crystal commonly called snowflake catbe described
as the recursive subdivision of a generating pattern
in such a way that each of its parts is a scaled repli-
cation of the original. This process, called self-similar
scaling, is borrowed from fractal geometry.
Although much of the detail of a snowflake and
other dendrites is visible to the unaided eye or with
an optical microscope, further detail, or even the
existence of an ordered succession of distinguisha-
ble structures (ahierarchy) in other minerals and con-
densed materials, may require observation at the
scale of the micrometer. Hierarchic structures may
be overlooked because, like the snowflake, such
materials appear to be classically crystalline by X-
ray- or electron-diffraction analysis. For example,
\rye have found a self-similar scaling of the basic hex-
agonal tiling of iodargyrite (AgI) in the "snowflake"
habit possibly repeating over eight orders of hierar-
chic recursion (Fig. 1). Hierarchic structure seems
to account for the pentagonal symmetry that,
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Ftc. 1. Self-similar scaling of hexagonal nets of iodargyrite
on a micrometer scale. Focused within the upper frond-
like flake of Figure lOb southeast about halfway from
the center to the edge. At 5000x, the structure con-
sists of a successive sheeting of hexagonal nets, over-
lapping from northeast to southwest.

although incompatible with translation periodicity,
has been observed in microclusters of gold (Komoda
1968) and minerals reported as fiveling twins
(Palache 1932). We have traced the well-documented
pentagonal symmetry of virus infections through
several levels of structural organization where it
appears to be combined with self-similar scaling. We
find as well that the same operation of self-similar
scaling commutes with pentagonal symmetry in the
geometry of Al-or2Mn alloys, recently reported by
Shechtman el al. (1984). The description of materials
in this state of organization may require Mandel-
brot's (1983) fractal dimension rather than the com-
mon concept of topological dimension. The proper-
ties and behavior of materials with such stmcture
should reflect the discrepancy with classical views of
crystallography and macrostructure. The density of
the ordinary dendritic snowflake, for example, is not
a thermodynamically intensive property constant
within a defined boundary but decrea.ses rapidly with
distance from the center. Familiar geometric
parameters, such as the length of the perimeter of
the snowflake, are determined by the scale of the
observation. Volume, area, stoichiometric propior-

tions and, with them, physical quantities such as sur-
face energy and mass, may require reassessment to
fit these structures to the fractal geometry inherent
in their symmetric expansion about a central point
(dilational symmetry). At a micrometer scale the
snowflake and the structurally related flakes of
iodargyrite combine the symmetry of self-similar
scaling (hereafter desigrrated SSC) with the dihex-
agonal point-group symmetry of the macroscopic
flake (designated 6mm in the standard textbooks).
The full symmetry, 6mm:SSC, is expressed in Figure
2. A1 the atomic scale the same dihexagonal point
symmetry combines with translation periodicity to
form the space group of diffraction theory.

Two kinds of structural models have been pro-
posed to account for the high-resolution diffraction
patterns of melt-quenched AlMn 'microclusters' or
'quasicrystals' (Levine & Steinhardt 1984' Ogawa
l985,Hiragaet al. L985), Both models combine self-
similar scaling with the point-group symmetry of the
regular icosahedron and dodecahedron: 5n3 in the
notation of Mackay et al. (1977). Pentagonal sym-
metry is incompatible with translation periodicity at
any scale so that the icosahedral point group 5n3
is not one oflhe 32 point groups of classical crystal-
lography.

These examples have in common rates of forma-
tion that are extremely rapid as compared to ordi-
nary rate of crystal growth. Although described as
disequilibrium phases, it would seem that, to the
extent that their dimensionality is fractal rather than
topological, thermodynamic concepts such as phase,
state or equilibrium (or combination tfiereof) are not
directly applicable. Beyond the field of crystallog-
raphy as presently defined (hence terms such as
'quasicrystals' and'microcrystals'), these structures
nevertheless may exhibit as high a degree of order
as any known to material science.

DsrrNrtroN oF SYMMETRY ELEMENTS

Crystallography has restricted its attention to con-
gruent automorphisms, that is, to the special case
of invariance with respect to scale. Of the congtruent
automorphisms which are rotations about a point,
only rotations of 360/n with r : 1,2,3, 4 or 6 are
considered crystallographic because these are the
point-rotation symmetries compatible with congruent
translation. Nevertheless, as Weyl (1952) has pointed
out, for the general group of geometric automor-
phisms, "...the operation under which the pattern
is invariant is not of necessity a congruence but could
be a similarity." An indefinite iteration of a dila-
tion from a fixed point at a definite scale is an oper-
ation of symmetry. Examples are spirals, such as in
Turritella and the chambered nautilus. It is the pur-
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Frc. 2. Fractal models of snowflakes. (a) First order: a simple crowfoot of four equal segments (generator) is imposed
upon each of the six arms of a hexagonal initiator. (b) First order: a compound crowfoot with generator pattern
of l0 segments is imposed upon the same initiator. (c) Second order: the simple crowfoot generator is imposed upon
each of the 6 x 4 segments of the first-order snowflake. The proportions of the arms (frst order) were reduced.
(d) Second order: the compound crowfoot generator pattern is imposed upon each of the 6 x l0 segments of the
first order. (e) Third order: the simple generator pattern, with arm proportions randomized, is imposed upon each
of the 96 segments of the second-order model (c). The randomization was undertaken to simulate the irregularities
of natural habits. With randomization the scaling is statistical. (f) Third order: the compound generator with arm
proportions randomized, is imposed upon each of the 600 segments of (d) above.

pose of this paper to propose dilational scaling self-
similarixy and the related phenomenon of hierarchic
invariance as an additional class of symmetry oper-
ations useful for a more precise definition of mor-
phology and structure in nature, and for the exten-
sion of our understanding of the order in natural
materials.
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Scer-rNc SsI-r-Sn4tlentry
AS A RECURSIVE AUTOMORPHISM

Scaling self-similarity is defined by Mandelbrot
(1983) as the recursive subdivision of a generating
pattern so that each of its parts replicates the gener-
ator pattern to scale. A simple example is the cereal

Fto. 3. Generation of a third order fractal snowflakewith exact,scaling self-similarity. Compare these patterns with
those of Bentley & Humphreys (1931, F.165 et passim). The proportions of the branch lengths in the largest order
recursions determine the mdjor features of the final snowflake.
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box with the picture on it of the cereal box with the
picture on it... etc. The first stage of the generator
is imposed on an initial configuration (the initiator),
as for example, a line segment or a triangle or a
rhombohedron etc,, nLot necessarily similar to the
generator. A model snowflake discussed below is
constructed by successive recursions of a simple
crowfoot generator on the six arms of the trigonal
Miller-Bravais o;lrese e1pyay as initiator (Schneer
1985, 1988).

We distinguish two kinds of scaling self-similarity;
the first, that of the snowflake, the central point of
which is unique and remains fixed throughout the
symmetry operation, and a second, lacking a unique
point as in a Penrose tiling or, in the trivial case of
a scale of l, an ordinary lattice. The first, or point
symmetry, is dilational in that parameters such as
density that are intensive in classically crystalline
materials, in materials such as the snowflake,
decrease with increasing distance from the point.

Consider the point-symmetry operation, dilational
scaling self-similarity, SSCto be characterized by a
generator G, defined as a spatial configuration of
elements /p_1 such that the configuration Gn, for
every element is the same (to a scale r) as Goi p,Ihe
ordinal number of the recursion, is any integer. Such
configurations are examples of Mandelbrot,s frac-
tols to the extent that ordinary dimensional meas-
ures of the configuration, such as the total number
of cereal boxes, or the total length ofthe segments
of one of the snowflakes illustrated in Figures 2 and
3, are indefinable. Scaling self-similarity is not neces-
sarily fractal. The 2- and 3-dimensional Penrose til-
ings proposed as models for the shechtmanite struc-
ture are self-similar scaling (Levine & Steinhardt
1984, Ogawa 1985) but they are space-filling and
dimensionally normal.

The hiehly symmetrical patterns of dendritic snow
crystals (snowflakes) are reproducible by as few as
3 recursions of a simple linear motif (the generator
G). The simplest of these motifs is the crowfoot peace
symbol of the 60's, a line 2 units long, with two
branches of unit length each at the midpoint deviat-
ing from the direction of the line by 60o on either
side. In constructing algorithms for the representa-
tion of the snowflake models of the figures, the
recursions were undertaken in either of two equiva-
lent ways. We define the first algorithrn as synthetic
or dilational, in which identical units of the genera-
tor pattern are added at the scale of a lower cut-off
limit, and the second as anqlytic, in which the initi-
ator with the overall size of the final pattern is recur-
sively divided into segments I^, by the motif of the
generator G,, (Fig.2). In ideal synthetic growth,
the crystal develops outward from a central point.
In ideal analytic grofih, material within a fixed
volume condenses to an orderly pattern. The final
form ofreal crystals might be reached by either, or

by any combination of the two. For the computer-
generated fractal models ofthe snowflake, each seg-
ment of the motif in turn bears the pattern at the
scale of the next recursive stage. Complicating the
pattern of the motif, as by adding more than 2
branches or altering the proportional lengths of the
branches, or complicating the initiator, makes pos-
sible the replication of a very wide variety of natural
snowflake patterns (Fig. 3).

The replication of many patterns found in snow-
flakes requires a difference or differences between
the generator pattern for the largest recursion or
recursions and that used for the others. The same
total pattern may be achieved with analytic growth
by appropriately complicating the initiator.

The ordinary topological dimensions, that is,
length, area and volume, are functions of the recur-
sive stage (hierarchic level). For the simple crowfoot
as defined above, each recursion doubles the total
length of all parts. If we were to start with the line
[0,U as initiator and continue by adding branches
to convert it to a simple crowfoot, the length is effec-
tively doubled to 2. Converting each ofthe three for-
ward toes and the single backward toe to a crow-
foot brings the total length to 4. Each recursion,
adding branches scaled r/z the length of the segment
to each of N:4 segments, doubles the total length
again. For such a pattern, the topological concepts
of surface (area) or bulk (volume) are consequences
of the coarseness of the scale of observation. There
is no unique value oflength. There is no surface or
volume in a rigorous sense, and therefore surface
energy and bulk energy are not definable in ordinary
[erms.

Consider the density of the AgI "snowflakes" dis-
cussed below. The published density of iodargyrite
(5.683 g/cm3), like that of most materials, was cal-
culated from the X-ray data (Swanson et al. 1959),
that is, it was determined indirectly from observa-
tions made at the scale of the angstrom unit. Densi-
ties are calculated rather than measured because
direct measurements typicaily yield inconsistent
results. The calculated value of 5.683 is at the upper
limit of the mineralogical range of 5.5-5.7 (Schueller
1954), values presumably determined by Archime-
dean measurements of crystals - 0.1 to 1 cm iu size.
However, at the intermediate scale of the microme-
ter, no invariant density is appropriate.

Ordinarily, one assumc that the surface (topolog-
ical) area of a growing crystal is a function of the
square of the mean radius, whereas the topological
volume is determined by the cube of the mean radius.
Since there is an increase in free energy with surface
area, and a decrease in bulk energy with volume,
there must be a critical radius giving /r!1:f2(f),
that divides the region of thermodynamic stability
with growth from the region of thermodynamic sta-
bility with dissolution, i.e., the nucleation hump.
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However, if there is neither surface nor vohrme, there
can be no surface energy or volume energy. There-
fore, in the chcumstances needed for the formation
of snowflakes, ordinary analysis finds no critical
radius for growth and no requirement of a nucleat-
ing seed for growth. The discrepancy with our
experience of the significant role of nucleation in
meteorological phenomena says more about oidinary
analysis than about nature.

The mass of the fractal snowflake model is directly
proportional to the length and number of the linear
segments that make it up, i.e., to the total length,
which (for the simple crowfoot) doubles with each
recursion. Note also that after only a few recursive
steps at the scale of the illustrations the overall sym-
metric pattern (habit) of the snowflake undergoes
little or no change with further stages of recursion.
Major differences in the mass of the whole unit rela-
tive to another snowflake, or major differences in
the number of recursions of a single branch or even
of a portion of a branch relative to the rest of the
snowflake, are effectively masked. The invariant
dimensionality of the pattern is given exactly by Man-
delbrot's (1983) fractal dimension Dr, the logarithm
of N divided by the logarithm of the scale factor:
ln 4/lt 2 : 2 for the case of the simple crowfoot.

The fractal dimension is less for generators with
shorter arms, as in Figure 2. It reaches the limit
Ddl) for the straight line with branch length 0.
Natural self-similar fractals have been considered to
be random with respect to scale, that is, fractal pat-
terns such as cloud formations are scaling in the
statistical sense. The scaling for tfie snowflakes illus-
trated, as well as the angles ofthe patterns, are fixed
by the parameters of the regular hexagonal cell. The
variations in pattern between snowflakes is a result
of variations in the proportionate lengths of the
generator segments.

IcoSAmDRAL Srmll PacKrNcs, .fSP

Two icosahedral configurations described by
Mackay (1962) lend themselves admirably to a fur-
ther extension of the concept of hierarchic and scal-
ing self-similar structure. The first arrangement,
Mackay calls icosahedral shell packing, designated
.ISP. Twelve spheres (atoms) are placed at the ver-
tices of a regular icosahedron (Fig. 4a) surrounding
a single sphere or atom at the core. Eleven of the
twelve, shown in Figure 4a, illustrate the symmetry
(the twelfth is hidden directly below the center).
Referring to the figure, each pair of opposite spheres
defines one of six five-fold axes of rotation. The
centers of every three tangent spheres are the corners
of one of the twenty equilateral triangles that form
the icosahedron's sides (fifteen of the twenty may
be traced on the Figure). Twenty-five of the thirty
edges are visible. The symmetry includes fifteen axes

FIG. 4. (a) An icosahedron of 12 equal spheres. The radius
ratio oftlte enclosing spheres to thelargest sphere which
may fit at the core is f (f is the Fibonacci ratio l.61 80...).
(b) A single sphere is placed above and in contact with
the three spheres of each of the 20 triangular faces of
the icosahedron of Figure 4a, converting each of the
20 triangles into a regular tetrahedron. The lines join-
ing the centers of spheres in contact form the polyhe-
dron of Figure 6d below.

of two-fold rotation joining the centers of opposite
edges. Each five-fold axis is the common line of inter-
section of five planes of reflection; each three-fold
axis is the common line of intersection of three planes
of reflection. Each plane of reflection is conrmon to
two five-fold axes and two three-fold axes.

A core sphere or ahole coordinoted by a surround-
ing icosahedral shell is the starting configuration for
a succession of icosahedral shells made by superpos-
ing successively larger icosahedral shells of spheres.
The atoms of the twenty equilateral triangles of each
shell are in a trigonal net arrangement superposed
over the interstices of the trigonal net of the next
smaller shell within, as in cubic close packing
(ABCA..). Figure 5 is a view, from within, of part

Ftc. 5. Inside view of the pentagonal pyramidal cap of an
1SP3 showing six spheres of the cap of the included.IS2.
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of the second and third shells of an icosahedral shell
packing. The complete packing, for any number of
shells, has the full symmetry of the icosahedron,
namely 5n3. The number n of spherical units in the
nth shell (/S) is l0m2+2 or 12, 42,92, 162,...,
whereas the total number of units in the packing
structure -ISP; is given by the sum | + n^for m=l
to j. Numerical tables for.ISP are given by Mackay
(1962) and Hoare (1979). Icosahedral shell packing
rather than close packing has been shown to be the
stable configuration for microclusters of 13 and 55
atoms, with 12 and 42 atoms, respectively, in the
outer shells (Hoare 1979). The packing of a single
sphere by a shell of 12 spheres of the same size at
the corners of an icosahedron (Mackay's ISP1) is a
minor distortion of the coordination of a single
sphere by a shell of twelve spheres at the corners of
a cubo-octahedron, the arrangement of cubic closest
packing. For ISP,, the spacing of the shell spheres
is-590 greater than their diameters, a spacing

imposed upon subsequent shells. The ratio of the side
ofthe icosahedron to the center-vertex radius is 1.051
because the central angles of the sides of the tetra-
hedra (with the twenty equilateral triangles bound-
ing the regular icosahedron as bases) are -63o
instead of 60' (Mackay 1962).

The extension in intersphere spacing reduces the
thickness per shell and, therefore, the packing ratio
from the ideal c/a (1.63..) of closest-packing.
MacKay (1962) shows the density decreasing asymp-
totically to a value -890 less than that of closesr
packing. Although hierarchic, icosahedral shell pack-
ing does not in itself exhibit the symmetry of self-
similar scaling. Mackay noted that the coordinations
of vertex atoms, edge atoms and face atoms are dis-
tinct, and their proportions vary with the order of
recursion, so that the physical and chemical proper-
ties of these simple but rigorously ordered structures
are not constant within the boundaries of the
specimen.

Keplor's small
stollate dodecahsdron

b Kopl6r's great
slollate dodecahedron

Pacioli's elevation
of the dodgcahedron

Pacioli's elevation
of the lcosahedron

Ftc. 6. The regular starred polyhedra of Johannes Kepler (a and b) and the poly-
hdra constructed by Leonardo da Vinci for Luca Pacioli (c and d). Pacioli raised
(Lat. elevare) each face of the dodecahedron with a pyramid of five equilateral
triangles (c) and raised the icosahedron by capping each face with a pyramid of
three equilateral trianeles (d). Kepler steUated the same forms by extending the
faces and edges until they intersected. Reproduced from Schneer (1983).
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Ftc. 7. A stereo pair of self-similar scaling icosahedra. Twelve icosahedra of any orderp are the vertices of a single
icosahedron of order p + l. Each icosahedron of order p is constructed of 12 edge-sharing icosahedra of order
p - I . The 12 centripetal vertices of every tq/elve icosahedra of order p are the vertices of a regular central icosahe-
dron of edge l/f times the edge of the outer icosahedra. The edges of icosahedra of order p are P times the edges
of icosahedraof orderp - l.
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If a single atom is placed over the center of each
triangular face of the flust icosahedron shell (/S1),
as in passing from Figure 4a to Figure 4b, the pack-
ing sequence normal to each face is the hexagonal
ABA. Each face of the icosahedron has been con-
verted to the base of a regular tetrahedron, the whole
forming the icosahedron elevatum (Fig. 6d) con-
structed by Leonardo da Vinci for Luca Pacioli's De
Divina Proportione. Since the regular dodecaledron
is the dual of the icosahedron, (the vertices of the
one at the centers of the faces of the other), there
is another way to view the stmcture. The 20 super-
posed atoms are the vertices of 12 pentagonal faces
comprising a second, dodecahedral shell, with each
face dimpled inward to a vertex of the original icosa-
hedron (/S). Each vertex of IS1 is the apex of a
concave pentagonal pyramid of equilateral triangles,
i.e., an indent or dimple. There are ?n + 12 or 32
external atoms surrounding the core. Placing 12 more
atoms in the 12 dimples makes a third shell, the icosa-
hedral dual this time, with vertices directly above
(i.e., out from) the vertices IS1. The surface config-
uration is now that of Leonardo's dodecahedron
elevatum (Fig. 6c), again with 32 atoms. Each of the
12 faces ofthe second-shell dodecaledron is capped
by a convex pentagonal pyramid of equilateral tri-
angl$. Alternatively, the 32 atoms of either the con-
vex or the concave dodecahedron may be visualized
as the vertices of a mutually interpenetrant dodeca-
hedron and icosahedron with coincident symmetry-

elements. The surface structure is a tiling of a spher-
ical surface by 12 regular pentagons, as in a regula-
tion volleyball, and a tiling of 20 equilateral trian-
gles with corners central to the pentagons. The atom
at the core of all the shells is icosahedrally coordi-
nated by.ISr, but it is also the common vertex of 12
icosahedra coordinating each of the 12 atoms of
.IS,. These atoms are in mutual icosahedral coordi-
nation, readily seen in simple ball-models.

Other varieties ofpentagonal packings of spheres
include: (1) the successive pyramidal shells revealed
by stcing,ISPtlrough a pentagonal cross-section (as
in Fig.5), and (2) the shells generated by adding
layers to the pentagonal bipyramid formed from one
sphere above and one below a pentagon of five
(which is the stable configuration for a seven-atom
microcluster; Hoare 1979).

A Fnacrer, Icosamnnel Srnucn-nn

The second of the two hierarchic configurations
described by Mackay (1962) is an icosahedron con-
structed of 13 icosahedra, each made of 12 icosa-
hedra enclosing another icosahedron, etc., afways
with common synmetry CItg. 7). Because Mackay
attributed the idea to J.D. Bernal, the configuration
is identified below as the Bernal icosahedron B. As
the icosahedron is a quasispherical form, it should
be possible to arrange 12 icosahedra of any order
of recursionp at the corners of a larger icosahedron



of orderp+ l. With the 13 icosahedra of any order
sharing edges and vertices (Hiraga et ol. 1985), each
icosahedron of side length s, is a shell of 12 icosa-
hedra of side length:
s : 2s,[+sin(:r/10)] (Hiraga et al. 1985)

= s;/P; f is the fibonacci ratio 1.618033989... ,
( l)

the limit of the Fibonacci sequence, also called the
Golden Mean.

The hierarchic self-similarity is shown in Figure
7. Each icosahedral dozen of stagep encloses a core
icosahedron with the configuration of stage p- l.
The radii of the concentric icosahedra (i.e., of the
spheres circumscribing the icosahedral shells of each
successive stage) are in the ratio

ro/r*1 : F A)
If equations (l) and (2) hold forp of any integer,

the structure is a fractal. The numbers of atoms for
p>0 in the trivial case without edge or corner shar-
ing increases ercponentially withp. Assuming a lowest
cutoff at p(1) with an atom of Mn icosahedrally coor-
dinated by 12 Al as the first icosahedron, the propor-
tion AlMn .or5 is constant with growth. There are
l2p atoms of Al and l3p-l Mn for each order of
recursionp. Proportions for edge and corner shar-
ing are calculated below (Table l).

If the SSC icosahedron without vertex sharing
is,considered as an ordered fractal dust of points
of topological dimension 0, then from Mandel-
brot's definition (1983), the fractal dimension is
l n l 3 , / l n F : 1 . 7 1 6 7 . . -

Using the notation ,B, for the SSC icosahedron of
orderp, .B2 would reprbsent the structure that, with
edge and corner sharing, has been proposed by
Htagaet al. (1985) as a possible structure for melt-
quenched AlMn alloys exhibiting pentagonal sym-
metry (shechtmanite). Electron micrographs and
diffraction patterns exhibit icosahedral symmetry
and the Fibonacci proportions. In the model of the
proposed structure presented by M. Hirabayashi at
the Oji International Conference in 1985, there is a
core icosahedral shell of 12 aluminum atoms cor-
responding to the Bl configuration without a cen-
tral core. Twelve Bl icosahedra with core atoms of
Mn surround the central .B,, keeping the same
orientation of symmetry for all icosahedra, to form
the next order of icosahedron, Bz, by edge- and
vefiex-sharing. If the icosahedron of the stereo pair
of our Figure 7 is ordeip : 5, then the 12 nexflar-

TABLE 1. ATOMIC PROPORTIONS FOR,55d ICOSAHEDRAL SERIES
p M n A l

B L  I  I  1 2
82 Z t3 104
83 3 169 1240
84 4 2197 15888
85 5 28561 206072

at. ratio l.tn+Al
.085 13
.L25 ),17
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gest icosahedra are fourth-order, one ofwhich is sub-
divided to show its construction of 12 third-order
icosahedra, one of which is subdivided to show 12
second-order icosahedra, the inner vertices of each
of which constitute initial first-order icosahedra. As
above, the numbers of Mn core atoms are given by
l3r-r fless one for the Mn omitted from the central
Bl). The numbers of Al atoms are less than l2p
because ofthe edge- and corner-sharing. For every
12 icosahedra of orderp surrounding a core icosa-
hedron of orderp - l, there are 12 vertices common
to the 12 vertices of the core icosahedron; 5 x 12,
or 60, ofthe 12 x 30 edges are shared by two icosa-
hedra, and the 60 vertex corners of the shared edges
are shared by 3 icosahedra. There are 2?-1 edge
atoms per shared edge for ordersp>2. The stoichio-
metric values are

At : l3Alp_r * 8 - 30?p-t), cl, Table l.
The stoichiometry AlMn .1a3.. reported by Hiraga

et al. (1985') for "...144 fundamental icosahedrons
of Al12Mn.." is reached if the structure of 82 is
incomplete. The growth of B2may be visualized as
proceeding by the addition of five concentric spher-
ical shells of atoms (counting the core atom or
vaamcy as zero and the 12 coordinating atoms about
the core as the first). It is the Leonardo-Pacioli
development of ,IS, described above. The addition
of Al above the center of each of the 20 triangles
of B, makes a second atomic shell with pentagonal
pyramidal dimples, i.e., the icosahedron elevatum.
The addition of a third shell of 12 Mn in the pyram-
idal dimples changes the configuration to the dodeca-
hedron elevatum with Mn for the apices of the pen-
tagonal py'amids, and the Al pentagons of the
second shell as their bases. The Mn/Al atomic ratio
is 0.375. Another shell of 12 pentagonal rings of Al
is placed q/ith pentagon centers above the Mn, mak-
ing a fourth shell with 60 Al (these rings do not share
elements). Each pentagon of the fourth shell is
rotated 36" about its center with respect to the Al-
pentagon of the second shell, below. The addition
of a single Al centered above each of the 12 penta-
gons completes 82. The Mn/AI ratio shifts with
each atomic shell and reaches 0.115.. for 5 complete
shells.

The structure should be extremely strong. Each
of the Mn is icosahedrally coordinated by the 12 Al
of ,IS,. Each of these 12 Al is itself at the center of
a distorted icosahedron. The l2-coordination is by
the core atom (or vacancy if no atom is present) and
the pentagonal ring of its neighboring Al of 1S1
below, and a pentagonal ring of Al of the second
atomic shell capped with a Mn of the third shell,
above. The size of the outer capped ring is f times
that of the inner capped ring, hence the distortion
which, however, does not alter the icosahedral sym-
metry of the whole.

The total numbers of aluminum atoms in the sur-
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.13860 234633
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face atomic shells of the SSCicosahedra are not the
same as those cited by Mackay (1962) for icosahedral
shell packing, c/. above. We find the SsCnumbers:
12,72, 312, 1032,... for p = l, 2, 3,4,.. @ig. 7).
Therefore the two structures may be distinguished
by their surface properties.

STRUCTURES CousrNnrc lSP alo SSC

We find an infinite number of potential self-similar
scaling icosahedral structures starting with lower
cutoff icosahedra made of Mackay's icosahedral
shell packings of any order m; m : 1,2,3,... Using
B without subscript to represent the Bernal recur-
sion, these structures are as follows:

B(ISPr) = SSC icosahedral series, the points of
which are icosahedra of 13 points (/SPJ.

BQSP) = SSC icosahedral series, the points of
which are .ISP,.

B(rs&)....
These compound structures have the sSC sym-

metry of the Bernal recursion. We may also conceive
of an infinite series of .ISP structures, the packing
units of which are SSC icosahedra of order 1,2,3,,..
etc. If. the lower cutoff icosahedron with I center and
12 corners is orderp(l), then the single center is order
p(0). Using ,ISP unsubscripted to represent the
Mackay hierarchy, these structures are designated:

/SP(Bo) : ^tSPri points of the icosahedral shells
are single points. There is one center.

lSP(81): points of the icosahedral shells are the
.ISP(,B') or .Bt above. To the extent that a self-

similar scaling recursive structure Bomay be consi-
dered a fractal even for small values ofp, it is a pack-
ing of-fractals, even if the packing itself is dimen-
sionally classical.

rsP(B) ...
The icosahedral shell packing oficosahedral shell

packings of any order is also possible.
lSP(/SPn), m : 0,1,2,....
As in the phenomenon of poly-typism with peri

odic alternation between sequences of two elements
c artd h, the B series and the .ISP series are conceiva-
bly subject to alternation in a single structure. Fur-
ther complexity could be introduced because the
quasispherical icosahedral microclusters of any order
may be the structural elements for cubic and hex-
agonal close packing and their polytypic alternalions.

ICOSAHSORAL SYIT,TUTTNY OF YIRAL INFECTIONS

According to summary texts (cl, Becker 1982), the
external shells called capsids of themajority of virus
particles (virions) exhibit icosahedral form and sym-
metry. The equilateral triangular sides of the icosa-
hedral capsids are made of structural units called c4,tr-
someresinthe trigonal net arrangement of .ISP. The
numbers of capsomeres of the capsids are diagnos-

tic for the virus species. They fall in the same series
as /S-with n or the number of capsomeres = 12,
42,92,... for m(1,2,3...). The structures of the cap-
someres themselves are poorly understood, but in
electron micrographs, they may appeax as uniform
quasispherical particles with a hexagonal(?) outline
conforming to the symmetry of the icosahedron
projection on a face. At the next hierarchic level of
the virus structure, the icosahedral virions may be
aggregated as crystals within the host organism, most
commonly observed as one or several layers of
virions in a) trigonal- or b) square-net arrays. The
structure has been interpreted as ordinary close-
packing in a) cubic [111] or hexagonal [@01], or b)
[@l] sections. However, no one has yet considered
that the icosahedral symmetry of the individual
virions, that is of the next lower hierarchic order of
structure, imposes the higher 5n3 symnetry of the
compound icosahedral structures discussed above,
just as the full m3m symmetry is expressed in a cubic
close-packed array, however fragmental its expres-
sion.

One unusual electron micrograph (Melnick er a/.
1968) shows five(?) concentric pentagonal rings of
icosahedral virions of Herpes simplex (Fig. 8). There
are 8 or l0 particles along the edge ofthe outer pen-
tagon edge, and two along the innermost. @ecause
the infection merges into the host, the precise bound-
ary is not that obvious to a mineralogist.) The micro-
graph was originally described as showing a section
normal to the pentagonal axis of a pentagonal dipy-
ramidal packing. However, this arrangement of the
virions is the same as that for a section in the plane
of the pentagonal ring of an icosahedral shell pack-
ing macro-unit (or a fragment of a macro-unit). Pen-
tagonal rows for alternate shells are in the plane of
the section, with the intervening shells above or
below. Taking an outer row of l0 virions to the pen-
tagon edge for the boundary, the row would be an
edge of an,lSe with 812 virions, about 8 succe$sive
concentric shells the innermost of which would be
.fS, with 12 virions. Although the two arrangements
for the virions of the micrograph are the same, the
3-fold axes of the icosahedron preclude the reflec-
tion perpendicular to the 5-fold axis of the
dipyramid. Srnce each Herpes virion is itself known
to be an icosahedron with a 162-capsomere shell,
.IS, (Becker 1982), the structure proposed here is
.fSPe(/Sr. Other micrographs showing the trigonal
and square nets of packing arrays could be inter-
preted as sections, or fragments of sections, through
packing arrays on one of the 20 faces of an,ISP
macro-unil. The distinction does not depend upon
the overall morphology of the specimen, which is in
any case incomFlete, but on the symmetry. The sym-
metry is icosahedral (5m3) if the degenerate sym-
metry is icosahedral, that is, if the virions are icosa-
hedral and their orientation is compatible (as in/SP).
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Frc.8. Hierarchic structure in the cancerous liver of a
mouse. The electron micrograph, reproduced with kind
permission from Melnick el a/. (1968), is of an aggreeate
of virions of Herpes simpkx. Each virion is an icosa-
hedron with an outer shell of 162 capsids (/Sf . Com-
paring with Figure 5, tbe infection is apparently an
/SPe(/S, structure.

Similarly, crystallogxaphers have commonly classi-
fied inorganic pentagonal structures as fiveling twins.
The distinction Iies in whether or not the S-fold sym-
metry is an intensive properfy, i.e., whether it crosses
the twin boundaries or is limited to the single axis
at the center of the specimen. The virus infection of
Figure 8 is properly considered icosahedral shell
packing rather than pentagonal pyramidal packing
because the units of structure, in this case the virions,
are icosahedral. The degenerate symmetry of the pen-
tagonal dipyramid (S/mm) is incompdtible wilh the
icosahedral symmetry of the virions.

Extending this reasoning to other species ofvirions
with hierarchic surface-structur e, the 2l2-apsomere
surface (/S) is the pattern ol the Adenovirus cap-
sid. The Tipula iridescens capsid is an icosahedron
with 812 capsomeres (/Se). The 72 capsomeres of
the icosahedral surface of Ihe Papovavirion cor-
responds to the number of spheres in the outermost
surface of a second-order SSCicosahedral structure,
82. There are 32 capsomeres to the Porvovirion

with the same symmetry as the icosahedron (Becker
1982). This symmetrical arrangement of 32 spheroids
is only possible with the two interpenetrant
dodecahedron-icosahedron arrangements described
above (or the two Keplerian regular solids of Fig. 6,
which are steeper versions of the Leonardo solids).
If the icosahedral vertices are the apices of convex
pentagonal pyramids, the form is Leonardo's
dodecohedron elevatum, but if the pyramids are con-
cave, it is the icosahedron elevqtum with a propor-
tionately smaller mass.

Ssr-F'-SrMtt,an Scar-rNc rN HExAcoNAL
AgI (IonencYRrrE) FLAKES

Symmetrically and dimensionally almost con-
gruent with ordinary ice, iodargyrite has the wurt-
zite structure: hexagonally close-packed iodine with
interstitial silver in mutual tetrahedral coordination.
The space group is CQmc. The point group is
6mm. The projection of the structure on the basal
plane (0001) is a hexagonal tiling, with nodes alter-
nately Ag and I. The tiling is dense, i.e., the hexa-
gons cover the plane w^ithout holes. The cell dimen-
sion a equals 4.5922 A (Swanson et al. ̂ 1959) with
the effective radius of the io dne 2.2961 A. The side
of the u4it hexagon is 2.6513 A, and its drameter,
53026 A. The interplanar spacings are so close to
those of ice that the X-ray powder-diffraction lines
for the two species are almost coincident, verified
when some of our low-temperature X-ray studies of
the AgI crystallites showed contamination by frost.
Originally, we had prepared dendritic snowflake-like
crystals of iodargyrite in a saturated aqueous KI solu-
tion by letting it warm from OoC to room tempera-
ture, a procedure found to yield material with 99.690
hexagonal QII) X-ray diffraction pattern (AgI is
ordinarily polytypic, Schneer & Whiting 1963). On
recent examination with SEM, two habits were
observed, the 'rusty nail' (Fig. 9) and the'snowflake'
(Fig. l0), both resembling habits of snow crystals.

Figure I is our electron micrograph (SEM) at
5000 x of the dentellated flake shown in Figure 10b
at a magnification of 60 x . The enlargement is
focused southeast of the center of the flake, about
halfway to the edge. At 5000 x , the frondlike flake
of Figure lOb becomes a sheeting of nets successively
superposed to yield negative hexagonal prisms
(holes). The hexagonal network tiling of Figure ll
was inspired by a cubic fractal distribution of points
discussed by Mandelbrot (1983, pp. 95, 96) as an
idealized model for the distribution of matter in
space (Fournier dust). In Figure 12 the hexagonal
cells of the SSC net outlines of Figure I I were drawn
with 3.5 x 10-4 x 50m cm diameters and super-
posed over Figure l. The structural hexagonal cell
of AgI, repeated recursively as in the self-similar scal-
ing hexagonal tiling of Fieure 11, and multiplied by
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3 with each ascending order of recursion, reaches the
size of the superposed outline nets with the eighth
order of recursion. The scale factor of 3 is set by the
geometry of the hexagon.

dia., : 5.3026 x lO8 cm x 38' 
: 3.4790 x lOa cm

The point symmetry of the structure is expressed
bythe union of the crystallographic point-group sym-
metry with the dilational SSC symmetry operation:
l6mm:SSCl.

The wurtzite structure is polar in the direction per-
pendicular to the plane of tiling. Interpreting the
doubled flakes ofFigures lOa and 10b as composite
crystals, probably twins, I have designated the sur-
face of adhesion of the dendrite as negative because
of the concavity of the details at high maenification.
The negative surface revealed in Figure I is con-
structed of superposed hexagonal nets with enough
long-range order to impose the macrosymmetry of
the flakes. Note that the long- and short-range order
of X-ray and electron diffraction is unaffected by
the SSC symmetry.

The dentellated flake ofFieure lOa is (apparently)
in the opposite or positive orientation, with its back
to the viewer. Figures l3a and b are electron micro-
graphs (TEIvD of a positive surface (not the same
flake) at 2ffi x and 20000 x ; they reveal self-similar
scaling of the convexities which are the reverse side
of the concavities of Figure I 1. To verify this polar
interpretation, another composite flake was prepared

Ftc. 9. AgI flake with rusty nail habit. One of the two
habits of AgI precipitated with the warming to room
temperature of solutions of AgI in KI and water satu-
rated at OoC. Polaroid original at 70x,

m,s *w te t  um

Frc. 10. Composite AgI 'snowflakes'. A hexagon flake is joined with a dendrite. The composite pairing and the cen-
tral hollow in the hexagon flake of (l0a) are typical. In (a) the dendrite covers the hexagon; the positive side(?)
(convexiries) of the dendrite faces up. In (b) the hexagon overlies the dendrite. The negative(?) side (concavities)
of the dendrite faces up.
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Frc. ll. A self-similar scaling (SSC) hexagonal net. The
nodes of each hexagon of orderp and side length s are
hexagons of orderp - I and side lengths/3. Each hex-
agon of order p is the node of a hexagon of order p
+ I and side length 3s. The Hesel point-group sym-
metry is 6mm which commutes with the dilational sym-
metry operation, SSC. The hypersymmery is 6mm:SSC.

to view the negative side (Fig. 14, SEM 5@0x). The
concavities of the specimen suggest crystallization by
a condensation or'curdling' process (approximat-
ing the self-similar scaling process that Mandelbrot
(1983) used to construct a fractal 'gasket'). A poly-
gonal initiator is divided into a central polygon with
similar bounding polygons. The material of the cen-
tral polygon is removed (leaving a 'trema') and is
divided among the bounding polygons. The process
then repeats for each of the bounding polygons.
Applying Mandelbrot's process to an initiating hex-
agon of six triangles leads to Figure 15. Stfiing with
a uniform (Monte Carlo) distribution of matter
throughout the 2-dimensional space of each trian-
gle, divide each side by 3 and join adjacent points
of subdivision to form an inlerior hexagon and three
equilateral triangles. The material of the hexagon is
distributed uniformly among the three triangles.
Continue the process for each of the triangles by tak-
ing the matter of the central hexagon and assigning
it to the three bounding triangles. This is the recur-

sive process involving condensation and ordering
which was designated anolytic above. The same pat-
tern is achieved synthetically by the radial addition
of cells according to a preset rule, a process defined
as 'cellular automaton evolution' (Wolfram 1984).

SELF-SrMrr-A,R Scar-rNc or
PENTAGoNAL AlMn Alloys

At least some of the class of melt-quenched AlMn
alloys with pentagonal symmetry (shechtmanite) dis-
play structure, at the micrometer scale, remarkably
similar to the self-similil'ssaling hexagonal frame-
works of AgI and snow. Although the icosahedral
model proposed by Hiraga et ql. (1985) might sug-
gest an oolitic or reniform habit for their AlMns.r.,
alloy, their observations at lower magnification rev-
ealed a frond-like conformation not unlike that of
the AgI flake of Figure lOa. Figure 16 is an optical
micrograph of AlrMn alloy at 40@x showing
"shechtmanite'snowflakes'... " (Nelson I 986). The
anomaly is resolved if the structure is considered as
3 dllafiel{ tiling at the micrometer scale, i.e., a pen-
tagonal version ofthe tiling in Figure 11. The 2- and
3-dimensional Penrose [ilings might still be the basis
for the atomic structure of shechtmanite (Levine &
Steinhardt 1984, Ogawa 1985), yet this would not

FIc. 12. The AgI nets of Figure I referred to SSC hex-
agonal tiling. SSChexagonal nets ofthe 8th order start-
ing with the unit hexagonal AgI cell as first order, are
superposed on the electron micrograph of Figure l.
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Ftc. 13. The positive side of an AgI flake. The concavities of Figure I are the self-similar scaling convexities of Figures
l3a and l3b. r

preclude an extensive point group for the configu-
ration shown in Figure 16. FiguresJT and 18 are
examples of pentagonal tilings with the requisite dila-
tional symmetry.

As in the cases of the hexagonal structure discussed
above, the pentagonal SSC symmetry does not
abrogate short- and long-range order so that clear
diffraction records are possible. Figure 17 illustrates
a dilational, hierarchic, pentagonal tiling of B1
icosahedra linked by edge-sharing (with concomitant
variance in the shell-to-core atomic ratio). The pat-
tern of Figure l7.is equivalent to a thin section, one
I, icosahedron thick, taken through a Br icosahe-
dron at the level of the upper rim of the upper pen-
tagonal ring of five Ba icosahedra. Doubling the
width to include the next slice above would show an
additional It to fill each of the smallest of the pen-
tagon holes. The two-dimensional symmetry of the
slice is SSC:5m, whereas the threedimensional icosa-
hedral symmetry of SSC:5r23 extends as far as the
thickness of the slice.

A hierarchy of SSC:Srz tilings is possible, as for
example that of Figure 18, with pentagons of order
p with sides of three rather than two pentagons of
order p- 1, or four, e/c. Such an increase empha-
sizes the large polygonal holes (negative crystals)
observed under given conditions, masking if not
eliminating the smaller holes of the girdling space.
Stringing out ths lengths of the sides of hexagons
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Ftc. 14. The negative side of an AgI flake.
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FIc. 15. An ordered fractal produced by condensa-
tion/ordering. The material of the largest hexagonal
space to fit each of the six triangles of the hexagonal
initiator is divided among the interstitial triangles. The
process is repeated within each triangle and each ofthe
resulting triangles etc. The process is called 'curdling'
by Mandelbrot. The figure is illustrative of a class of
curves also produced (as in the algorithm to plot this
figure) by adding uniform cells outward from a cen-
tral core according to preset rules of succession as in
cellulax automaton evolution (Wolfram 1984).

of intermediate order would account for the distri-
bution of negative hexagonal prisms observed at the
micrometer scale in iodargyrite, as in Figure 14.

The fundamental icosahedra of the tilings of
Figures 17 and I 8 could b themselves B or lSP icosa-
hedra of higher order than one. The linkage of icosa-
hedra with edge sharing is also possible inplanes per-
pendicular to any of the ten three-fold axes of the
icosahedron. Other linkages are possible and even
probable, as for example, chains parallel to a five-
fold axis by corner sharing, or the sharing of corner
or edge icosahedra of orderp by icosahedra of order
p * L, etc.Thevertex/core atomic ratio (stoichiom-
etry) would vary with the linkage. The two-
dimensional tilings may also be considered as pen-
tagonal rings enclosing pentagonal holes of the same
orientation. The ratio of the thickness of the rings
to their diameters is a function of the compounding
of the hierarchic structure of the tiling, as in string-
ing out the lengths of the sides of the pentagons of
the highest order. The pentagonal rings are also the
sides of pentagonal dodecahedra, the three-fold ver-
tices of which are clearly visible in Figure 16.

CONCLUSION

The ordinary snowflake, iodargyrite flakes, a
number of virions, "shechtmanite" flakes and

"quasicrystals" of melt-quenched AlMne.1a3..
exhibit evidence of hierarchic structures ranging from
simple icosahedral shell packings to the multirecur-
sive self-similar scalings of Mandelbrot's fractals.
The combination of self-similar scaling with point
symmetry results in a new class of dilational sym-
metry groups with long- and short-range order.
Examples include the 6mm:SSC of dendritic snow
crystals and iodargyrite flakes, or the SSC:5I23 of
the Al-Mn alloys. Except for the dendritic snow crys-
tal, observation of the symmetry of self-similar scal-
ing seems to require exploration of structures at a
scale greater than permitted by ordinary optical
microscopy and less than the scale of X-ray diffrac-
tion. At the scale of the micrometer, the organtza-
tion and properties of mineral materials may depart
sharply from predictions made by extrapolation from
the orgauization both at the scale of the molecule
or unit cell, as revealed by X-ray diffraction, and
at the macroscopic scale of direct visual inspection,
both of which stand as limits or cut-offs to the recur-
sion. But if these large-scale structures are rigorously
ordered, how is it that they evade detection by
diffraction? First, the spacings of interest are in the
micrometer range, rather than that of the X-ray
wavelength. Second, these structures are absent in
the ideal specimens of research grade used for single-

* ' . .

Frc. 16. AlTMn 'snowflake' exhibiting SSC5n3 sym-
metry. Photo with permission from laboratory of
Leonid A. Bendersky and Robert J. Schaefer at the
National Bureau of Standards.
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Fro. l7oeft). A self-similar scaling titing of 81 icosahedra (with edge-sharing) showing
short- and long-range pentagonal symmefry. It is the equivalent of a slice through
a 85 icosahedron, of thickness equal to a 81. The 81 icosahedra of the next slice
above are centered on the smallest pentagon rings. Successive slices above are cen-
tered on the smallest pentagon rings. successive slices above and below, projected

on the same plane would fill all larger rings retaining the SSC:5n symmetry. The
full icosahedral symmetry SSC:5m3 of the B', icosahedra is extended wful the total
tlickness of the section.

Frc. l8(right). A second hierarchic level of the tiling of Figure 17. Each pentagon
of order p is constructed of 3 pentagons of order p - I, doubling the diameter
of the pentagons at every order with respect to the pentagons of the same order
of Figure 17.
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crystal analysis. Third, it is possible that diffraction
does indeed record the lesser spacings of dilational
structures as the superlattice lines commonly
observed (and ignored) in routine analyses of
industrial-grade material. Finally, it was through
diffraction that the recrusive pentagonal symmetry
of shechtmanite was first noticed.

Recursive dilation makes'crystallographic' sym-
metries such as S-fold rotation possible, and trans-
forms invariant properties such as densi8, which are
topologically dependent, into variables. The estima-
tion of extensive properties such as length, area and
mass requires reconsideration. In these structures,
space as well as matter is configured during the
process of growth, a fact of life for which field the-
ory should have prepared us.
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