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ABSTRAcT

A method is presented for the construction of ternary
(n + 3)-phase nets of invariant points and univariant lines.
It is based on the exact correspondence between the
sequence ofunivariant lines around an invariant point and
the chemography of the system. A rule is presented for the
unambiguous labeling of bundles so as to correspond to
the chemography. Application ofthe rule to the sixteen non-
degenerate chemographies of a ternary 6-phase multisystem
results in the deduction of 35 distinct nets. Compositional
degeneracies are shown to be special cases of nondegener-
ate solutions and can be derived directly from them. The
procedure is applied to the systems A12O3-SiO2-H2O and
MgO-SiO2-H2O. The initial net thus derived is tested
against slopes calculated for each reaction. Any invarianr
points of the initial net that are not consistent with the cal-
culated sequence of slopes are successively transposed until
a consistent net for the system is obtained. Computed p-I
diagrams have the same topologies as those deduced for
the consistent nets.

Keywords: multisystem, Schreinemakers, invariant poinr,
chemographic analysis, topology.

Sotr,ttr4erne

Nous prdsentons ici une m6thode pour construire des
r€seaux ternaires de points invariants d (z + 3) phases et de
lignes univariantes qui les lient, Elle est fond6e sur la cor-
respondance exacte entre la soquence de telles lignes autour
d'un point invariant et la chimiographie du systCme. Nous
pr€sentons une rdgle pour identifier de fagon non ambi
gue Ies faisceaux de lignes pour correspondre i la chimio-
graphie. L'application de cette rlgle i seize exemples de
chimiographie non d6g6n6rde dans un systbme ternaire i
six phases mdne i 35 r6seaux distincts. Les d6gdn6rescen-
ces compositionnelles seraient des cas sp€ciaux de solutions
non d€g6ndr6es, et nous pouvons les ddriver de celles-ci.
Les systdmes AI2O3-SiO2-H2O et MgO-SiO2-H2O servent
d'illustrations. Le rdseau initial ainsi ddriv6 est vdrifid d la
lumibre des pentes calculdes pour chaque r6action. Tout
point invariant du r6seau initial qui n'est pas compatible
d la sdquence calcul6e est transpoS successivement jusqu'i
l'obtention d'un r6seau coh6rent pour le systbme. Les dia-
grammes P-7 calcul6s possbdent la m6me topologie que
celle des diagrammes que nous d6duisons ir partir de ces
r6seaux coh6rents.

(Traduit par la R6daction)
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INTRoDUCTIoN

Univariant reaction curves in systems of petrolog-
ical interest in P-Z space may be approximated by
straight lines in the neighborhood of invariant points.
In consequence, straight-line nets are topological
analogs of real petrological phase diagrams. The pos-
sibility that some invariant points may occur twice
does not invalidate methods using the straightJine
assumption, but it introduces the possibility that the
P-Tnet may contain "mirror planes" across which
whole topologies of invariant points are "reflected".

Straight-line nets have lssa ufilizsd previously in
studies by Kujawa et al. (1965), Day (1972, 1976),
Usdansky et al. (1978), Mohr (1978), Mohr & Stout
(1980), Usdansky & Stout (1981), Cheng (1983,
198Q, and recently by Cheng & Guo (1989), O'Han-
ley (1987) and Usdansky (198 I, 1987). Chemographic
analysis of closed nets has been well treated by Zen
(1966, 1967), Zen & Roseboom (1972), Roseboom
&Zen(1982), Guo (1980a,b,c, 1981, 1984), and Guo
& Cai (1982).

Day (1972) presented a method of chemographic
analysis through which can be established the com-
plete set of possible nets with maximum closure for
alenary n+3 multisystem. Mohr&Stout (1980) and
Stout (1985) extended this method, generating all
topologically possible potential nets in a system of
,? + 3 phases given only the phase chemography.

Cheng (1983) presented the results of an alternate
chemographic approach to the same problem. In that
paper, it is shown that every "invariant map" (Mohr
& Stout 1980) consistent with Schreinemakers bun-
dles can be labeled uniquely to illustrate the cor-
respondence between chemographic diagrams and
the bundles. The method of labeling leads to the
same information deduced by Mohr & Stout (1980)
and Stout (1985) in a rapid and direct way.

The purpose of this paper is to extend and apply
the labeling method developed by Cheng (1983) to
ternary n + 3 phase systems in order to construct the
nets with maximum closure as initial potential solu-
tions. These can then be used to generate all poten-
tial solutions.
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Frc. 1. Correspondence relationships between the positions
of the phases on the chemographic diagram and the
sequence ofunivariant lines ofthe Schreinemakers bun-
dle. The anticlockwise sequence of arrows corresponds
to the clockwise sequence of univariant lines.

Frc. 2. The sixteen nondegenerate chemographies of six
phases in a ternary system. The alphabetic characters
represent the possible positions of the sixth phase.

CHEMocRApHTES AND ScHnetNsMAKERs ANALYSIS

Ternary (n + 2)-phase sYstems

There are three nondegenerate chemographies of
five phases in the ternary system A-B-C @igs. la,
lb, lc), and there are three univariant configurations,
one corresponding to each chemography @igs. la,
lb, lc). These configurations may be constructed by
hand following the procedures summarizedby Zen
(1966), It should be noted that the symbols of all
univariant lines on each configuration correspond
uniquely to the symbols on its chemographic dia-
gram. Conventions relating to the geometry of
chemographic and P-T dragrams are given in the fol-
lowing paragraph.

The following symbol conventions have been used:
l) (a) refers to a univariant line with phase 'a' absent
from the reaction. 2) [a] refers to an invariant point
with phase 'a' absent; "a" (without quotes) refers
to phase "an' itself. 3) The statement "a is colinear
with b and c" refers to colinearity in the chemo-
graphic diagram. 4) The statement "[a] is colinear
with [b] and [c] " refers to colinearity of three invar-
iant points in aP-Inet. 5) The bracket [1,3,1] refers
to the Schreinemakers pencil corresponding to the
arrangement of lines at an invariant point. 6) The
symbol (( )) identifies an entire net. For example,
((6)) is a P-T net in which phase 6 is stable every-
where and invariant point [6] is metastable.

The rule for labeling chemographic diagrams and
their corresponding invariant map$ can be under-
stood with reference to Figure l. The first step is to
insert a line of mirror symmetry into the chemo-
graphic diagram. In Figure la, there are five such
lines of symmetry, whereas Figures lb and lc each
have only one, passing through phase 5 in Figure lb,
and through phase I in Figure lc. Second, begin
labeling the chemographic diagram with the phase
on the mirror plane and list the phases sequentially
while proceeding in an anticlockwise sense through
the chemographic diagram. The sequence of listed
phases will correspond to the sequence of univari-
ant curyes around the invariant point in a clockwise
sense. The first phase in the list will be the index of
the univariant line that forms a plane of symmetry
in the P-Z diagram, or univariant-invariant map.
In the chemography of Figure la, where no phase
is internal to the array, the Schreinemakers pencil
notation is [1,1,1,1,1], signifying that every sector
of the invariant point diagram has exactly one
metastable extension. In the chemography of Figure
lb, where one phase (5) is internal to the others, there
must be sectors that have two metastable extensions,
and symmetry requires that the notation must be
t|,2,2). Similarly, in Figure lc, with two phases inter-
nal to the chemography, there must be a sector with
three metastable extensions, leading to the notation
l l , 3 ,11 .

a.

b.

c.
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Ftc. 3. The sixteen nondegenerate chemographies of six phases in a ternary system,
expanded from Figure 2. Also shown are the Schreinemakers pencils of each invar-
iant point on the corresponding nets of Figure 4.
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Ftc. 4. The thirty-two possible 5-point nets and three 4-point nets corresponding to all nondegenerate chemographies
in a ternary n + 3 multisystem. The Schreinemakers symbols are used for all invariant points, their pencils, and nets.
The diagram of the corresponding chemography is shown as a reference to Figure 3; e.g., net ((6)) is shown in Figure
4, C-12, and referred to the chemography in Figure 3, III-4.
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For the chemography in which five phases form
a pentagon (Fig. 1a), one may compare the sequence
of univariant lines of the Schreinemakers bundle with
the positions of the phases in the chemography.
Thus, if the sequence of symbols of the univariant
lines is (1)-(3)-(5F(2F(4) clockwise (Fig. 1a), the cor-
responding sequence of symbols on the chemogra-
phy must be as shown by clockwise arrows l-3-5-2-4
(Fig. la), and the Schreinemakers pencil notation
(Zen 1966) is  [ , l , l , l , l ] .

For the chemography in which four phases form
a bounding quadrilateral (Fig. 1b), the construction
is most clearly seen by starting with the univariant
line that lies in a Schreinemakers pencil having only
one metastable univariant line. The clockwise
sequence of symbols of the univariant lines is
(5)-(2)-(4)-(l)-(3) Gre. lb), the corresponding
sequence of phases on the chemography follows the
arrows in sequence 5-2-4-l-3, and the
Schreinemakers pencil notation is 11,2,21.

Likewise, for the chemography in which three
phases form a bounding triangle (Fig. lc), the clock-
wise sequence of symbols of univariant lines is (l)-
(2)-(5)-(4)-(3), the conesponding sequence of phases
on the chemographic diagram is as shown by the
arrows in Figure lc, l-2-5-4-3, and the
Schreinemakers pencil notation is [,3,1].

Application of the rule permits easy construction
of the Schreinemakers bundles characteristic of each
chemography. For example, the chemography of
Figure lb requires that the Schreinemakers bundle
and its symbols be as shown in Figure lb or its mir-
ror image.

Ternary (n + 3)-phase multisystems

Figures 2 arrd 3 summarize all of the sixteen non-
degenerate chemographies of six phases in a ternary
systemn as derived by Day (1972) and by Zen & Rose-
boom(l 972). The sixteen nondegenerate chemogra-
phies may be divided into four sets: six phases form-
ing a hexagon, which constitutes only one case (Fig.
2-I); five phases forming a pentagon with one phase
inside, the possible positions of which are given by
the letters o, b, c, forming three possible cases (Fig.
2-II); four phases forming a quadrilateral with two
phases inside, which has six possible cases @ig. 2-III,
where letters a through / show the possible place-
ments of the sixth phase); and three phases forming
a triangle with three other phases inside, which has
six possible cases (Fig. 2-IV).

If the six phases are numbered as shown, one may
obtain the Schreinemakers pencil of each invariant
point for the various configurations of the phase dia-
gram. For example, for the chemography I (Fig. 2),
the Schreinemakers pencil of the invariant point Il]
must be [,l,l,l,l], because the remaining phases
without considering the absent phase I form a pen-

tagon (Fig. la). Likewise, the respective
Schreinemakers pencils of [2], [3], [4], [5] and [6]
are also [1,1,1,1,1]. As another example, consider
the chemography illustrirted in Figure 2-III (position
c, Fig. 2-lll, and case III-3 in Fig. 3). The
Schreinemakers pencil of the invariant point [] must
bell,2,2l, because the chemography of phases 2,3,4
and 5 in the absence of phase I forms a quadrilateral
with phase 6 inside, which corresponds to the
chemography of Figure lb, Similarly, the
Schreinemakers pencil of invariant point [2] is
F,3,ll, corresponding to Figure lc, with phases
5 and 6 inside. Thus, four of the five possible posi-
tions of phase 6 (a, b, c, d, e, of Fig. 2-II! lead to
a pencil notation of U,2,21, whereas position 'f (Fig.
2-III) leads to a notation of [ l,1,1,1,1]. Refer to
Figure 3, case III-6.

In like manner, every chemography in Figure 3 can
be used with Figure 2, to derive the Schreinemakers
pencils that apply. These are given in Figure 3 beside
each of the sixteen chemographies. For example, case
III-4 of Figure 3 yields the following sec Fl,F,2,2l;
[2],i l ,3, l l ; [3],F,3, l l ; I4l, l l ,2,2l; l5l, l l ,2,2l;
16l,ll,2,2l. That is, two of F,3,ll and four of 11,2,21.

In the next section, we show that there are thi.rty-
two possible 5-point nets, each of which may be
associated with its underlying chemography. Thus
if one derives the set of Schreinemakers pencils for
a given chemography (or finds it in Fig. 3), one
knows that there is a unique net that corresponds.
Figure 4 shows all possible nets, so that it is only
necessary to find the one net a:nong the possible nets
that has the same set of Schreinemakers pencils.

CoNsrnucrloN oF NETS wlrrr MEXTUUM CLOSURE

If all univariant curves are required to be straight
lines, P-Znets with six stable invariant points are
not geometrically possible. Thus at least one point
must be metastable. The "maximum closure net"
(Day 1972) may thus be defined as a five-point net
in which one invariant point is metastable. If some
univariant lines are curved so as to intersect another
curve twice, it may be possible to have a P-T net
with six stable invariant points, a special case of
which can be taken as a net with a repeated invari-
ant point. There follows a derivation of all possible
nondegenerate configurations of five-point nets for
ternary systems of six phases in which one invariant
point is metastable.

There are three possible geometric configurations
of five stable invariant points: five stable points form
a pentagon; four stable points form a quadrilateral
with one inside; three stable points form a triangle
with two inside. By connecting all invariant points,
one can easily show that the single metastable invar-
iant point cannot lie outside of the polygons
described above because at least one of the invari-



ant points wil l then violate the Rule of
Schreinemakers. Thus we consider only the cases
where the single metastable point is inside the poly-
gon of invariant points described above.

For the case where five stable invariant points
form a pentagon with one metastable point inside,
there are three possible nets (Fig. 4, A-1, A-2, A-3),
corresponding to the tlree topologically distincf ways
of placing the metastable invariant point in a general
position inside the polygon. Consider the configu-
ration A-l as an example. In this configuration only
one invariant point has the Schreinemakers pencil
[,1,1,1,1], and five points have the Schreinemakers
pencil 0,2,21. This may be compared with the
chemography II-l (Fig. 3), which corresponds to a
topological net where the point (6) is [1,1,1,1,1] and

NETS IN TERNARY MULTISYSTEMS

the five points (l), Q), Q), (a) and (5) are u,2,21.
Thus the configuration A-1 must correspond to the
chemography II-1. Because the Schreinemakers pen-
cil of the metastable point is [l,1,1,1,1], the symbol
of the metastable point must be [6]. Thus it is possi-
ble to label directly all six points on the configura-
tion and ensure that the Schreinemakers symbols
around the invariant point are correct. It should be
noted that the phase abbreviation [6] (phase 6
absent), serving as the symbol of the metastable
invariant point, must be inside the pentagon on the
chemography II-1.

Likewise, the Schreinemakers pencils of each
invariant point on nets A-2 and A-3 correspond to
the chemographies III-4 and IV-4, respectively. In
rLet A-2, points [6] and [5] both have penciIsll,2,2l,

3 1 1

Ftc, 5. Illustration of the transposition of an external invariant point [5].
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FIc. 6. (a) Chemography of six phases in the system Al2O3 - SiO2 - H2O. (b) Defor-

mation of the degenerate chemography to a nondegenerate form @ moves to the
left). (c) Deformation of the degenerate chemography to a nondegenerate form
@ moves to the right).
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but the metastable point is required to be inside the
polygon, identifying [5] as the metastable invariant
point. If the chemography is labeled as in Figure 3,
III-4, then the invariant-point map must be labeled
as in Figure 4, A-2. Similarly, chemography IV-4 cor-
responds to the net A-3 if both the net and the
chemography are labeled as shown. In Figure 3, the
sets of Schreinemakers pencils are unique for each
chemography except chemographies III4 and III-5.
These both give [2] and [3]: [,3,1] and [1], [4], [5]
and [6] : 11,2,2). These two chemographies have
different nets in spite of having the same
Schreinemakers pencils.

For the case where four stable invariant points
form a quadrilateral, with one stable point and one
metastable point inside, there are nine possible con-
figurations (Fig. 4, B-1 through B-9). Following the
same steps as above, each net is matched with the
proper chemography (Fig. 3) according to the set of
Schreinemakers pencils. In chemography III-5, there
is parity between phases 5 and 6 in the sense that
[6] may be made metastable by permutation of the
labels. Thus for the corresponding net B-7, through

the permutation of slmbols in symmetrical positions,
that is I :4,2=3,5:6, we can obtain another net
{B-7' (6)}, where the metastable point is [6]. For
the same reasons, through the permutation of
chemographic points in chemographies III-I and
III-3, we may obtain two other nets C-10' andC-4'
where the metastable point is [5]. Thus there are a
total of twelve nets derived from this case.

For the case in which three stable invariant points
form a triangle, with two stable points and one
metastable point inside, there are twelve possible con-
figurations (Fig. 4, C-l through C-12, and Fig. 3).
Because of the parity of chemographies IV-I, IV-4,
and IV-6, the symbols on the net B-9, C-9 and C-l
may be symmetrically permuted. In total this leads
to seventeen nets.

Therefore, there are altogether thirty-two possi-
ble five-point nets in ternary (z + 3)-phase mul-
tisystems. These correspond to all nondegenerate
chemographies in ternary (r + 3)-phase multisystems
except the chemography I-1, in which the six phases
outline a hexagon. In chemography I-1, there is no
five-point net, but rather one four-point net D-l to

Ftc. 7. (a) 8-6 type of net corresponding to rhe deformation chemography in Figure
6b. (b) B-7 type of net corresponding to the deformation chemography in Figure
6c. (c) First potential solution to the degenerate chemography of Figure 6a after
moving [W] into colinearity with [K] and [A]. (d) Initial possible net correspond-
ing to the degenerate chemography of Figure 2a after moving [K] into colinearity
with [A] and [W].
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correspond to its chemography. On the net D-1, there
are two metastable points. Considering the parity of
the phases in chemography I-1, we can perform sym-
metrical permutations on net D-I, that is [] = [3],
[4] = [6], to form net D-l' or [] = 121, [4]= [5] to
form net D-1". So there are three nets; (lX4),
(3XO), and ((2X5)). These are the Schreinemakers
symbols for the nets. For example, D-l is a net
(1X4) where phases I and 4 are stable everywhere
and invariant points [1] and [4] are metastable.

TRANSPOSITTON OF POINTS

AND PERMUTATION OF NETS

Mohr & Stout (1980), in studying (n+3)-phase
multisystems, introduced an operation they called
transposition and demonstrated how it could be used
to derive all nets for a multisystem from one com-
plete net. Transposition, which can be performed
only on an external invariant point, is simply illus-
trated in Figure 5. The external invariant point [5]

313
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P e ,

Mso

Frc. 8. Chemography of six phases in the system MgO-SiOrH2O. "Deformation"
ofthe degenerate chemography (a) to a supposed nondegenerate form (c) via (b).
B and At are moved to B* and At*, respectively.

Frc. 9. (a) The initial possible net corresponding to the "deformed" chemography
in Figure 4c. (b) The initial possible net corresponding to the degenerate chemog-
raphy of Figure 4a after moving [W] into colinearity with points [P] and [F]' and
moving [At] into colinearity with points [F] and [T].

tB)
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is first "stretched" away from the net until all reac-
tions leading to it are parallel, then replaced on the
opposite side of the net with its mirror image, with
reversed stabilities. In a nondegenerate chemogra-
phy, the general formulation of Mohr & Stout (1980)
predicts (n + 2)(n + 3) + 2= 32 potential solutions.
Some chemographies are consistent with more than
one 5-point net. These can be deduced by permuta-
tions using the operation of transposition. Thus any
net may be chosen as an initial potential solution.
Cases of compositional degeneracy may be treated
readily by means of deformation of the nets for non-
degenerate cases.

Next we consider as an example of application a
real system that was studied by Stout (1985): the ter-
nary multisystem AlrOr-SiOz-HzO, which includes
the six phases kaolinite, pyrophyllite, diaspore,
andalusite, quartz, HrO. Figure 6a illustrates the
chemography of this system of six phases in terms
of mole fractions of the components Al2Or, SiO,
and HrO. Alternative choices of components and
units will change the specific positions of phases as

a.
t. (K) U) M) tv. $) (N (w)

---+--- , - -o. . . . .o. . . . .s-- -
d' 6)

11. (N M) (K)

|t. (A) &J w) vt. (A) (n (w)
.+r--o.. . . .  . . . . .o. . . . .e----

represented in Figure 6, but the topological €urange-
ment will remain the same. This particular chemog-
raphy irwolves a compositional degeneracy, namely
a colinearity of quartz (Q), pyrophyllite (P), and dia-
spore @), which is internal to the quadrilateral
defined by the phases andalusite (A), diaspore (D),
quartz (Q), and H2O (W).

To derive the degenerate net, suppose that the
phase P moves to the left (Fig. 6b) or the right (Fig.
6c), producing either the chemography III-2 or III-5
(Fig. 3), respectively. Referring to Figure 4, we may
see that the corr€sponding nets are 8-6 or C-l I and
B-7 or B-7' . From the chemography of the system
under study, we know that on the corresponding net
the invariant points [A], [K], and [W] should be
colinear, which must therefore be the line represent-
ing reaction Q + D: P. Thus to derive the degener-
ate net from nets 8-6 and B-7 @ig. 4), it is neces-
sary only to move point [W] up to the line [K]-[A],
making [W], [K] and [A] colinear (Fie. 7c). The
Schreinemakers bundles of the three other points [Q],
[P] and [D] remain the same. It is clear the resultant
net is the same. To derive a new net from net C-l 1,
move [W] up to the line [K]-[A]. This configuration
is shown in Figure 7d.

Finally we consider as another example the
chemography for the system involving the compo-
nents MgO, SiO, and H2O and the phases
Antigorite (At), Brucite (B), Forsterite (F), Periclase
@e), Talc (T) and Water (W), as shown in Figure
8a. This system shows two compositional degenera-
cies: an internal colinearity of B, At and T, and an
external colinearity of W,B, and Pe.

As with the previous example, the corresponding
initial potential net is obtained by a virtual "defor-
mation" of the chemography. We make the degener-
ate chemography (Fig. 8a) nondegenerate by mov-
ing points At and B from the straight lines connecting
B, At, T and W,B,P, respectively @igs. 8b, c). The
corresponding initial net is obtained from chemog-
raphy II-2 (Fig. 3), giving a net with the topology
C-5 (Fie. 4), illustrated in Figure 9a. Finally, in
Figure 9b invariant point [V/] is made colinear with
points [P] and [F], and invariant point [At] colinear
with points [F] and [T], without changing the rest
of the invariant map.

SequrNcns oF INVARTANT PoINTs
At oNc DEcENERATE RracrroNs

Stout (1985) gave a graphical proof that there are
exactly six permissible sequences of stable and
metastable invariant points along the degenerate
reaction (A,K,VD in the system AI2O3-SiO2-H2O
(Fig. lOa). The proof is based on projecting
3-dimensional composition - free energy relation-
ships on a two-dimensional composition - free energy
diagram to help with the recognition of the differ-
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. . . -o. . . . .O----

hD' r. ___FJ y @"e)___tv:--8....!y....1!:!--_ e' 
-!g-"'"""'"-- Gt/ \rr".r

ll. (w) (Pd (n V. M) (Pe) (F) / I
+ - - -o . . . . . . . . . . .o . . . . .+ - - -+  i  i

1t. (w) (H Pe) vt. M) G) Pd \. .lCt.+__-+..... .....o......+__-+ (pel,\,..o1r.,

tw)

c f-' 
t. (H Ail (fl tv. G) UO (r) " 6_t)

1. (F) (At) G) ,. u! ry r? ")( \(7'................-- 
r ,

ttt. (At) G) ft) vt. Ad G) 0) ,rr\ y' ro

6t)

FIc. 10. Sequences of invariant points along degenerate
reactions. (a) The reaction (A,K,St) in the system
AI2O3-SiO2-H2O. (b) The reaction @e,W,F) in the
system MgO-SiO2-H2O. (c) The reaaion @,At,T) in
the system MgO-SiO2-H2O. Note that sequences IV,
V and VI in (a), (b) and (c) are trivial conjugates (see
text) of sequences I, II and III, respectively. (d), (e) and
(f) are the closed loops of the degenerate reactions
(A,K,W), (Pe,W,F) and (F,AI,T). Note that each invar-
iant point occurs twice, once stably and once metasta-
bly. Solid lines stable, dashed lines metastable, dotted
lines doubly metastable. See text for further discussion.



NETS IN TERNARY MULTISYSTEMS 3 1 5

ent possible levels of stability that can be represented
by the net.

Similarly, in the ,system MgO-SiOr-H2O, the
only permissible sequences of invariant points along
the degenerate reaction (Pe,W,F) are shown in Figure
l0b. The degenerate reaction (F,At,T) is, however,
somewhat different, having only one level of stabil-
ity (Fig. 10c). This behavior is a consequence of the
fact that the degeneracy of three phases, Pe, B, W,
is chemographically external to the rst of the chemo-
graphic diagram (Fig. 8a); thus there are no chemi-
cally equivalent assemblages that could be more sta-
ble. The phases B, Pe, and W comprise a
chemographic set that is disjoint from the set of other
phases. In this case, there is no way to make any sec-
tor of the reaction (T,AI,F) metastable, regardless
of the sequence of invariant points along the line.

In Figures lOa, b, c, the right three lines, that is
IV, V and VI, are "trivial conjugates" of the left
three. In a closed net, e'irch univariant reaction forms
a closed loop, and each invariant point occurs twice,
once stably and once metastably @igs. l0d, e, f).
Thus a partly closed net consisting of one set of
invariant points has a trivial conjugate, which may
be called its "residual net". Similarly, the two parts
of a reaction loop are trivial conjugates of each
other. The six permissible sequences for each case
may easily be found in the three possible closed loops
@igs. l0d, e, f).

There is an exacl correspondence between the
sequence of three invariant points along a degener-
ate reaction and the relative positions of the three
"absent" phases on a chemographic diagram (Day
1972). This fact is useful for construction of univar-
iant reaction lines of degenerate systems. For exam-
ple, in Figure 8a, the three phases B, At and T are
chemographically colinear, and are internal to the
diagram, whereas one phase, W, and two phases Pe,
F, lie on opposite sides of the colinearity, respec-
tively. Thus in Figure lOb, the point [W] on the line
I (phase W absent) must be in the middle between
lFl and [Pe]. Choosing successive stability levels of
point [F] and [PeJ yields successively lines II and III
(Fig. 10b). As for the chemographically external
colinearity Pe, B, W in Figure 8a, the reaction line
is stable along its entire length, but the stability level
of invariant points changes by one level throueh each
segment of the reaction line.

CoNSTSTSNT NETS FoR THE SYSTEM

Alzo: - sio2 - H2o ADKPQW

In order to obtain the consistent nets for this sys-
tem following the method of Stout (1985), a com-
plete set of 28 potential solutions must fust be gener-
ated from an initial solution by successive
transpositions of invariant points. Some of the solu-
tions may then'be eliminated using orientation

criteria. The method described below shows that it
is possible to proceed directly from an initial solu-
tion to the consistent nets using slope criteria.

As an example, we choose an initial solution
different from that of Stout (1985), e.g., the net in
Figure 7d. We can test at once whether it is a con-
sistent solution by comparing the relative slopes of
the univariant lines. This test is valid independently
of whether we have chosen a left-handed, right-
handed or mirror image because of the linear depen-
dencies €unong the reaction slopes at any invariant
point, stable or metastable. The reaction slopes are
calculated from available thermodynamic data.

For all 13 reactions in the ADKPQW system'
Table I shows values of dP/dT calculated from the
internally consistent data-base of Berman (1988)
under three different sets of physical conditions.
These are not the values of dP/dT at points where
the curves are stable, but merely the relative values
of AS/AZunder the chosen conditions, but they serve
to rank the slopes relative to one another. Table 2
shows the resulting sequences of slope magnitudes.
It is noteworthy that the same sequence of slopes at
each invariant point is found regardless of the con-
ditions chosen for the calculation, and regardless of
the fact that none of the slopes calculated apply to

TABLE 1. CALCULATED P-T SLOPES tN AlzOs€iOe-HzO

St/Ebol B-l .. B-2

Ki2O-P+W (A,D) 296.79 914.3 1t1.79
D + 4Cl ! P (A,K.Ipl 2.2.27 9O.8 -24.L
K-D+2O+V 6,P) -s68.4 -808.8 1610.7
2tr=D+Przw (AO) rs66.8 lO@. rr7,4
P-A+3€l +W @J0 &.32 62.38 66.09
K-Ai O + 2W DP) 64.10 g|.Lb @.66
3K o 2A + P + 6w P.O) 7\@ 98.0O 86.34
2P !A+ K + 60 tD,Wl 26.67 32.49 41,86
D + O -A+ W ELP) 43.62 68.79 47,il
P+3D-tlA+4W oK,O) 44.16 69.69 49.4
D + KE 2A r gw tr O) 63.66 72,73 65.70
2D+s€lEA+tr F.Wl 2A86 32.13 27.20
6D + 3P..lA+ 4tr (O.W 26.G S2,21r gr.88

slol)s @lculded udDg dsta A@ B6@ (fS8)
B-r: Bqs/d€. calculatedat298K, lbar
B2: Bas/deg. Calculated at 87S K, 1O,O@ b8
&0: Bas/deg. C€bufat€d at 1173 Ii 16,000 bm.

suMMAFr: hl', tOL lwl, tDt, tPl', tKl'

Tbe ttrtde 
' tndlcatc a s€que@ dlrptryt4 the oppodte h9ldcdrK to

the @p@dl!g potd ln ldlg. 3d- 'Itus tf lal ts I{9. 3d t8 @6Ll@d to
be trgbt-handed, th@ [Al' !8 left-heded, ald t3 a arru hage of [Al.

Atl tbG @!dnro!s of @lGld@ Fsbte ll 29a1.1: AZA'1O'0OO:
r r73, lsom: ybld the sm c@clualoE.

TABLE 2. SLOPE SEOUENCES lN Al2OrSlOrH2O

C@Pe
Poltt SloP€S€qtr@ Fig.sd

tDI (D,w) > (Dro
tol (oA > (9,D)
tPl F,D) > trO)
Iwl (AJ{'wl > (Ic'D)
tK! 0GD) > 6.0)
lAl (A"9) > (AD)

> Df) > (D,O) > P,Al oppodte
> (OP) > (O,n > (O.s,l oPposte
> tp,ri > F,$r1 > tP'c) Oppodte
> (w'g) > (W,D) sa@
> 6'Pl > (AlLg4 oppo€dle
> (llJgnt > (A,P) oppcitc
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conditions of equilibrium. The results of Table 2 may
be used to test the internal consigtency of the initial
solution (Fig. 7d). The right-hand column of Table 2
indicates whether the sequence obtained is the same
as, or opposite to, the sequences shown in the
assumed initial solution of Figure 7d.

For the sake of convenience, invariant points in
an initial solution are defined as being "right-
handed" when the clockvrise sequence of reaction
lines is consistent with calculated sequences of slopes,
such as the point [W]. "Left-handed" invariant
points have slope sequences that are the reverse of
the calculated sequence, such as points [K'1, [P'],
[A'], [Q'] and [D']. Note that if the curves do not
appear in the same order, one must infer that the

THE CANADIAN MINERALOGIST

b.

FIc. 11. (a) The initial possible net for rhe ADKPQW system derived from Figure
3d. Testing against the calculated sequences of slopes (fables l, 2) shows that
points [K' ], [P' ], [A' ], [Q, I and [D, ] are not consistent with the data, because
the curves occur in reverse order. (b) The mirror image of the net in Figure 7a,
Only [W'] is not consistent with t]re data. (c) The consistent net for the ADKpeW
system after transposition of [W' ] from Figure 7b. (d) The mirror image of the
trivial conjugate of the net in Figure 7c. Note that it has the same slope sequences
as Figure 7c.

a.

thermodynamic data used to calculate the slopes are
not internally consistent. We denote left-handed
points with a prime. Thus, Figure 7d becomes Figure
lla. In order to obtain a consistent net, it is neces-
sary that all left-handed points in Fieure I la be trans-
posed to their right-handed forms.

ln Fieure lla there are five left-handed points [/('1,
[P'], [A'], [Q'] and [D'], andonlyoneright-handed
point [W' ]. The mirror image of Figure I la is shown
in Figure 1lb, which has five right-handed and one
left-handed points. Transposing the point [W'] of
Figure I lb yields a new configuration in Figure 1 lc
in which all the sequences of reaction lines around
all invariant points are consistent with the calculated
sequences of slopes based on the internally consis-

\\
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FIc. 12. Stable curves involving kaolinite, water, quartz,
diaspore, pyrophyllite, and andalusite. Computed with
program GE0CALC (Perkins et al.1986).
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FIc. 13. Metastable and stable curves involving kaolinite,
water, quartz, diaspore, pyrophyllite, and andalusite.
Computed with program GE0CALC (Perkins e, a/.
1986). Invariant points [A] and [K] are stable, whereas
[W] is metastable. Compare with the topology of Figure
I lc.

tent data ofBerman (1988). Therefore, the configu-
ration in Figure llc is a consistent net for the
ADKPQW system. The mirror image of its trivial
conjugate is also a consistent net (Fig. lld). Thus,
using the data of Berman (1988), two consistent nets
are obtained by only one transposition step from the
initial solution.

It is of some interest to compare the topology of
the net deduced in Figure llc with that calculated
from the same fundamental data using the computer
program GE0CALC @erkins et ol.1986). Figure 13
shows the stable curves, from which it may be seen
that the cbrrespondence with Figure llc is exact.
Figure 12 shows the arrangement of both stable and
metastable reactions and the location of the metasta-
ble invariant point [W].

If internally consistenl data are used to calculate
the sequences of slopes, the resulting topology will
be correct in every respect. Disagreement between
a deduced net and observational or experimental data
can be taken as proof of inconsistency in the data.

Cor.lsrsrsNrt Nsrs
rN MgO-SiO2-HrO wrrn At, B, F, Pe, T eNo W

Values of A,S" and AZ" under different conditions
for all the 1l reactions of interest in the system
MgO-SiOr-H2O among the phases At, B, F, Pe, T
and W, taken from the data of Berman (1988), have
been used to calculate the reaction slopes shown in
Table 3. The magnitude sequences of the slopes are
shown Table 4.
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TABLE 3. CALCULATED P-T SLOPES lN MgO-SiOr-H?O

31T+136Pe cAt +gOF (%B) -66.4 -66.4 -63.8
zAt - 468 +1?T (qPe,E -L2.4 -12.3 -12.3
T +@e -B + ,tF (W.Atl -46.3 -46.3 -46.3
AtrSlPe-318r34F (W.T) -2a.6 -28.6 -28.6
At-27w+l8n+4T (B,Pe) 134.6 r8O.4 794.4
T rEPe BW +4F FAt) L2Az ,6 4L3.7 -224.3
At+2OPeE$lw+34F (B.O L67,6 190.6 38aA.a
2At -46W+48Pe +l7T F'rl 106.1 159.0 U7.6
B E W + Pe (At T,l] 66.9 123.9 120.2
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2OB +At . 6rW '3!tr fr.Fd I I l.O 161. I 929.8
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TABLE 4. SLOPE SEOUENCES lN MgO-SiOrHzO

Po,!t Slop€g€qu@ R€f.Tab'S

lwl (W'Pe,O > firiD > (w,ar:) > tW's) Br 4 us
tBl (BAo > (BJt > F,re1 v lsIl > {B,w) Br &

(B,D > (B,Pe) > (B,F) > (B,w) > B3! B3
lAtl FAt) >6t31 >(A(r'n >(wAJ Br 4

6trd >( LT,q >$tat) >(Bst) 83
m F,It >frpd >t.tT,Fl >(v.l) Br Bz 4
tPel 1e,re) >frtd >6tPe) >[vJe,F) Br Be Bs
tFl F.Il > tALT'Ft > tw'P€,Fl Br Bz 4
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An initial solution for the system (Fre. 9b) is tested
against the sequences of relative slopes in Table 4,
demonstrating that there is only one left-handed
point [F'] (Fig. l4a). Point [F'] can then be trans-
posed to give the consistent net of Figure l4b. The
mirror image of its trivial conjugate is also a consis-
tent net. Figure l5 shows the sequence ofstable and
metastable curves computed with GEOCALC (Per-
kins el al.1986) using the data of Berman (1988).

Frc. 14. (a) The initial net for the AIBFPeTW system after
testing against the calculated sequences of slopes (fables
3,4). Only [F'] in Figure 9a is inconsistent. (b) [F']
from Figure 9a has been transposed to its right-handed
form [F] making the entire net consistent with the data
(Tables 3, 4).

Comparison of Figures 14 and 15 shows that the
agreement is exact.

Suuuanv AND DIScussIoN

An initial potential net for a phase diagram of any
kind of ternary (r + 3)-phase multisystem can be der-
ived efficiently from a systematic labeling of chemo-
graphic diagrams and the corresponding univariant
reaction lines. Degenerate chemographies are special
cases of nondegenerate chemographies and can be
derived from them by "deformation" or transpo-
sition.

The initial net is tested against the sequences of
dP/dT reaction slopes calculated from ther-
modynamic data. All configurations of invariant
points in the initial net that have slope sequences
opposite to those calculated are defined as being left-
handed forms, and are successively transposed to
right-handed forms following the procedures of
Mohr & Stout (1980). The right-handed forms are
consistent with the calculated sequences of slopes.
Thus nets that correspond to various sets of valid
thermodynamic data may be derived directly from
the initial potential net.

Commonly, a single solution set and the mirror
image of its trivial conjugate correspond to a given
set of thermodynamic data. These two nets can fur-
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Frc. 15. Metastable and stable curves involving antigorite
(At), forsterite (F), periclase (Pe), ralc (T), brucite (B),
and water (W). Computed with program GEOCALC
(Perkins et al. 1986). The topology is consistent with
Figure l4b.
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ther be tested against experimental and observational
data. Further, such a consistent net is generated from
an initial net by at most three transposition steps and
does not require the generation of all potential nets
followed by their individual elimination.

The method outlined here makes initial use of any
available thermodynamic data and proceeds directly
to a consistent solution. The fact that no net can be
derived using the dataat hand is an indication that
the data are mutually inconsistent. If the calculated
slopes are too close in relative magnitudes to permit
unambiguous assignment of positions of reaction
curves, one may have to accept that more than one
solution is possible until improved data are available.
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