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ABSTRACT

Quantitative and semiquantitalive modal analyses have
longbeen cornerstones of petrographic study. Paragenetic
investigations based on textural relationships, and on the
spatiaidistributions of mineral assemblages, have led
many investigators to reconstruct the modal evolution of
a given rock or mineral deposit through time. The results
ari typically presented as a parallel array oi two-dimen-
sional sketches resembling a school of fish swimming
along the time axis. The pinches and swells of the various
"fish" are not independent, however, in systems that are
constrained in chemical content. These modal interdepen-
dencies may be clarified by introducing the concept of

"modal space", in which changes in modal abundance
through time may be represented by a sequence of points

defining a path in that space. In a system with no chemical
constraints (a completely open system), the dimensionality
of such a space is equal to the number of phases involved.
In constrained systems, however, the dimensionality is
commonly a lesser number, especially in systems that are
completely closed, or open to but one or two components.
Algebraic'methods are presented for dealing with modal
abundances in polyphase, multicomponent systems, and
for the geometric representation of these in their
appropriate modal spaces. This approach proves to have
gieat utitity in obtaining the reaction history from the
textural interpretation of a thin section. Thig, in turn' can
be a useful aid in determining a pressure - temperalure
- time (P-T-t) path.

Keywords: modal, mafic, ultramafic, lherzolite, basalt,
pyroxene granulite, eclogite, amphibolite.

Sovluetns

Les analyses modales quantitatives et semi-quantita-
dves ont longtemps servi de piliers aux 6tudes pdtrogra-
phiques. Les dtudes de paragenbse fond6es sur.les relations
iexturales, et sur la distribution dans I'espace des
assemblages de min6raux, ont inspir6 plusieurs chercheurs
i reconstruire l'6volution modale d'une roche ou d'un
gite min6ral i travers le temps. Les r6sultats sont
ilpiquement pr6sentds en formes €dr6es paralliles en deux
dimensions, qui font penser d un groupe de poissons
nageant le long de I'axe qui reprd-sente -le temps..Ies
gonflements et retr6cissements des divers "polssons" ne
iont toutefois pas ind6pendants dans tout systeme defini
dans son contenu chimique. Ces interd6pendances

modales peuvent 0tre rendues plus clairement au moyen

du concept de I'espace modal, dans lequel tout-change-
ment en ibondance d'une phase min6rale avec le temps
peut Ctre repr6sent6 par une sdquence de points qui

befinirr.nt une trajectoire dans cet espace' Pour un

systbme sans contraintes chimiques' et donc compldtement
ouvert. la dimensionalitd d'un tel espace est 6gal au

nombre de phases qui y participent' Dans tout systdme
oir il y a contrainte, par contre' la dimensionalit6 est
g6n6ralement plus restreinte, sp6cialement dans un

iystbme qui est complbtement ferm6' ou ouvert a tout

cbmposant sauf un ou deux. Des m6thodes alg6briques
permettent de manipuler les abondances modales dans des

iystdmes polyphas6s et ?r plusieurs composantes' et de

riprdsenter ceux-ci g6omdtriquement dans- leur. espace
rnodul upptopti6. Cette approche a une grande utilite pour

aennir taiOquence de r6actions i partir de f interpr6tation
texturale d'une lame mince. Cette information peut

ensuite fournir une aide pr6cieuse dans l'6laboration de

Ia trajectoire en termes de pression, temp6rature' et temps'

Oraduit par la R6daction)

Mots-cl4s; composition modale, roches mafiques, roches
ultramafiques, lherzolite, basalte, granulite ?r
pyroxbne, 6clogite, amphibolite.

INTRODUCTION

With the aid of such devices as camera lucida

drawings, point counters and, in rare cases, even a

net of chicken wire spread over an outcrop' those

of us who study rocks and mineral deposits have

long ago put modal abundance on a quantitative

Uasis. Most of us have then gone further and used

textural and geological relationships (and perhaps

quite a bit of wishful thinking) in order to

determine how such modal abundances have

evolved and varied through time. The classically

honored way of displaying one's conclusions on

such matters has been by means of an array of

simple graphs (Fig. l), in each of which the modal

aUunAance of a single phase is plotted (vertically)

against time (horizontally), in such a way that the

modal abundance is shown more or less symmetri-

cally about an arbitrary time axis. An array of such
graphs bears, in many instances, a striking

6ts



616 THE CANADIAN MINERALOCIST

.d-- -

>

Ftc. l.,The,classical representation of modal changes with time. The pinches and
swells of the figures record the waxings and wanings ol the mineral phases with
time.
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resemblance to a school of fish that mav be
imagined as swimming, one way or the other, ilong
their time axes (Fig. 2). We shall therefore refer ro
these herein as fah diograms.

A problem with fish diagrams, however, is that
they imply an independence among the various
modal abundances that can be true only in systems
open to any and all components. Let us consider
the opposite extreme, a completely closed system
that matter can neither enter nor leave. One phase
(or fish) can here grow only at the expense of one
or more of its fellows, creating a dreadful situation
like that portrayed in Figure 3.

Modal space in a completely open system, where
the abundance of each phase may vary inde-
pendently of its neighbors, must have as many
dimensions as there are phases in the assemblage.

To obtain such a space for a completely closed
system, on the other hand. we need to know the
number of independent ways in which matter may
be transferred from phase to phase within the
system. Not all tralnsfers, however, affect modal
abundance, at least if measured in, say, the number
of standard formula units of each phase present in
the system. We must further distinguish, therefore,
between net-tronsfers, which vary the quantities, as
above measured, of two or more phases, and
exchonges, which do not. These net-transfers and
exchanges are, of course, the heterogeneous
reactions that can take place within the closed
system. Because only the net-transfer reactions can
alter our measures of modal abundance, we will
know the dimensionality of our modal space if we
know the minimum number of net-transfer reac-
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Frc. 2. Modificarion of Figure I as a fish diagram.
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Frc, 3. Fish diagram for a closed system.

tions needed to define all possible changes in modal
abundance within our closed system. Yes, you've
guessed it, net-transfer reaction space and modal
space are the same thing! We here give it a kinder'
gentler name, a name that also emphasizes some
of its more useful applications to petrological
problems, especially in dealing with closed or but
partially open systems.

Modal abundances expressed as numbers of
formula units are of course not the sarme as
volumetric abundances, as obtained by a point
count or by a camera lucida drawing. If, however,
we multiply each formula abundance by the
number of oxygen (plus fluorine) atoms per
formula unit, we will obtain new numbers that are
roughly proportional to their volumetric abundan-
ces for most rock-forming minerals.

The theoretical basis has been presented at some
length elsewhere (Thompson et ol, 1982, Thompson
19E2a,b), and need not be repeated here. We shall
instead follow some of the procedures involved, as
a refresher, and then explore some of the
applications, emphasizing ones that earlier presen-
tations have overlooked or dealt with too briefly.

SEI-ECTTON OF COMPONENTS

The results of chemical analyses of a mineral or
rock (mineral assemblage) are typically presented
in terms of a series of practical components (oxide
components or, less commonly, elements) that may
or may notbe independentlyvariable in the mineral
or mineral assemblage in question. The actual
variations of which a homogeneous phase is
capable occupy a composition space whose dimen-
sionality exceeds by one the number of inde-
pendently variable (I.V.) components of that phase.

A c-component space may thus be defined in terms
of any c distinct components' each of which
corresponds to a specific point in that space. By
distinct, we mean that none lies in any subspace
defined by the other ones. These points (see

Thompson 1982a) may represent either composi-
tions (additive components) that can be added to
or removed from the phase in question, thus
varying its modal abundance, or may represent
operations (exchange components or operators)
that vary the composition of that phase without
varying its modal abundance.

To define such a space, we must select at least
one additive component for each phase. The others
may all be additive (the conventional choice),
mixed, or all exchange (the unconventional choice
we shall adopt here). Ifthere is but a single additive
component for each phase, it will then be the one
that monitors the modal abundance of that phase'
whereas the exchange components simply vary its
composition.

It is generally convenient to select a simple,
idealized, end-member composition as that of the
additive component. Composition variables may
then be defined as formula-unit ratios' exchange to
additive, rather than as a conventional set of
formula-unit fractions (or mass- or mole-fractions).
Convention would thus describe feldspar in terms
of mole fractions (XJ of the additive components
KAlSi3Os-NaAlSi3Os-CaAl2Si2Os (or-ab-an)' any
two oi which, say (X",) and (X) may be taken as
independent. We could equally well take NaAlst.:ps
as a single additive component, and the ratios (yii)

to it ofihe exchange components KNa-, (ak), and
CaAlNa-1Si-1 (pg). In this specific example,.the
results happen, in fact, to be numerically identical:
Xo, : Yuv, and X- = Ypr' Olivine, on the other



618 THE CANADIAN MINERALOCIST

TABLE2" EXCUANGE COMFONENTS'

Formulas Mlneral Phases

AluMg-rSi-r 0 &
CaAlNulSLl or pg
NaAlSi-1 or ed
KNa-1 or a&
CaMg-1 or cm
FeMg-1 or tu
FeAl - l
TiFe-r
MnFe-t
CrFe-1
HtS i - r

P)no:ene, amphibole
Plagloclaee, pyroxene,amphibole
Amphibole
Amphibole, Feldepar
ryroxene, amphibole, ganet
Moet feromagneeian mineralc
Mosl fenomagneslan mineralg
Most ferromagneoian minerals
Moot ferromagtresian minerals
Most ferromegnesian minerds
Calcic gamet

*See Ttompsm (1981, p. 161) for explanation of TiFat
and MnFal.

just as MgrSisOrr(OH)2 may be used as a monitor
of total amphibole.

Notation is a problem here and requires some
minor revision of existing conventions in order to
avoid conceptual difficulties. We will use three-ler-
ter symbols for the mineral phases, the initial letter
capitalized (Table 1). These are eirher the symbols
proposed by Kretz (1983), or include his symbols
as their first two letters. Kretz gave no symbols for
totol amphibole or pyroxene (where more than one
of either is present). For these we will use Amp and
Pyx, respectively. We will use the same three letters,
all lower case (Table l), for the additive com-
ponents of these minerals, in order to emphasize
that these are the components that monitor the
modal abundances. All other components will be
assigned two-letter, lower-case symbols (Tables 2
and 5), in order to distinguish them from those that
monitor modal abundances.

RsnucrloN oF THE SrorcurovgrRrc EeuATroNS

Once a set of additive components has been
selected for the assemblage in question, we may
select a set ofpractical components (not necessarily
independently variable) sufficient to define the
compositions of the selected additive components,
and of the exchange components that are also in
their space. These may be selected as the chemical
elements themselves, although judicious use of
oxide components may yield a speedier solution.
This may be illustrated by considering some of the
major phases characteristic of silica-undersaturated
mafic and ultramafic igneous rocks and their
metamorphic derivatives. The likely assemblages
include pyroxene, plagioclase, olivine, garnet, and
spinel in various combinations. The additive
components may be selected as indicated in Table
1. All of these lie in the subsystem defined by
Si-Al-Mg-Ca-O, or, more compactly, by SiO2-
AIrOr-MgO-CaO. The space for this subsystem

hand, may be described in terms of the additive
components Mg2SiOo-FerSiOo (fo-fa) and Xra, or
in terms of the single additive component UgrSiOo
and the exchange component FeMg_' (fm). In this
instance: 2X1u : Yr., and the two variables, though
not identical, are very simply related.

A useful srrategy, in the selection of the additive
components for an assemblage of phases, is to
select ones that lie in as simple a subsystem as
possible. The rask of identifying all possible
net-transfer reactions, the only ones that vary the
mode, is then one that can be carried out entirelv
within the confines of the simpler system. Th;
simpler composition-space may also contain points
corresponding to exchange components of one or
more of the phases present. This is commonly so,
and such exchange components should be included
in the working set. It should be borne in mind,
however, that these guidelines allow for a consid-
erable freedom of choice. The most convenienr
additive component for a given phase may
therefore depend on the nature of the assemblage
in which it occurs and on the problem at hand.
Table I lists some of the major mineral phases
encountered in dealing with the metamorphism of
mafic and ultramafic rocks, and the additive
components selected for each. These phases, even
to a first approximation, lie in a system involving
at least eight practical oxide components. Their
additive components, however, may be selected so
that these all lie in the subsystem SiO2-Al2O3-
MgO-CaO, as indicated. Table 2 lists some of the
principal exchange components in these minerals.
Two of these exchange components, CaMg_1
(pyroxene, amphibole, garnet) and AlrMg_,Si-,
(pyroxene, amphibole), also lie in this subsvstem.
Although the point MgrSirOu is not noimally
accessible to the composition of a natural
clinopyroxene, it is nevertheless a point in the
composition space in which clinopyroxenes vary
and is indeed an I.V. component of such a
pyroxene, as well as of an orthopyroxene. It may
therefore be used as a monitor of total pyroxene,

TAXI.E I. AI'IIITIVE COMFONEIN'S Or MNIERAIJ'

v

Quatz Qtz
Plagioclaso plg

Pyroieae Pyr
Amphibole Anp
Gmet Gn
Olivloe Olv
Sptrel Spl
Bpidob Epi

Chlortte Chl

SiO2 qtz
CaAI2Si2OS ptc
Mg2Si2O6 pyr
Mg?S8O22(OH)2 aop
Mg3Al2St3Ol2 grt
Mg2SiO4 olv
McAl2O4 lpl
C82Ar3Si3Or2(OrO epi
Mg5Al2Si3Ol0(OH)2 chl

*Mitrenl synbols @ stghtly nodtfied from thoe of K@ flg&l)-
bqrre of neod b disdnglisb mho8l symbols ild tb6o of thoir
cmpondilg oddldve @pondts from rhw of all orhq @|tlmab.
Ptx ald Anp rcfq to total plmrde ud @phibole.
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also contains the exchange components CaMg-t
(cm), and Al2Mg-tSi-1 (tk). The first is an I.V.
component of both pyroxene and garnet, and the
second, of pyroxene. Although more than one
pyroxene may be present, we shall refer both to the
same additive component, which will then monitor
total pyroxene. We shall see later that the kind of
pyroxene is usually obvious from other considera-
tions, and that we can gain more than we lose by
such simplification.

In Table 3, we see the compositions of the
components in the subsystem in terms of the
chemical elements as practical components. When
we use the elements as practical components' this
is simply a rewriting of the chemical formulas in
equation form, displayed so as to emphasize the
coefficient matrix. A Gauss-Jordan reduction of
this set of equations yields the results shown in
Table 4. The last three equations have no non-zero
terms on the right-hand side. All the terms on the
left represent I.V. components ofthe phases; hence
these three equations are those of three distinct
linear dependencies involving the additive com-
ponents of these phases, and also those exchange
components of these phases that lie in the same
subsystem. The closed-system modal space in this
example is therefore three-dimensional inasmuch as
there are three distinct processes that can alter
modal abundance without appeal to any external
source or sink. The first four equations in Table 4
tell us that the subsystem can be described in terms
of four practical components, rather than the five
with which we started. Their right-hand sides, in
fact, correspond to the formulas SiO2, Al2O3'
MgO, and CaO. Had we started with these, in fact,

TABLE 3. STOICEIOMETRIC EQUATIONS

-Componenl 
sl Al W ca

TABLE 4 REDUCED FQUATIONS

as practical components' we could have- achieved
equivalent results more compactly. In each of-these
fiist four equations, the terms on the left are
components that are I.V. in one or more of the
phases present. The entire right-hand side of each
is therefore a linear combination of I.V. com-
ponents and hence is itself a possible choice as an-I.V. 

component of both the subsystem and of the
larger system in which the assemblage lies. It is thus
evident'that SiO2, Al2O3, MgO, and CaO are all
I.V. in this system. Had we used a different
ordering of the initial equations, a different
ordering or selection of practical components, or
had we, on our computer, used a different method
of reduction, we would be likely to obtain our
results in a different but equivalent form. We
would still obtain the same number of independent
net-transfer reactions (and hence the same dimen-
sionality for our modal space), but the reactions
might appear as linear recombinations of the ones
in lable a. ny the same token, we will obtain the
same number of I.V. components for the subsys-
tem, but a set that again may involve recombination
of the ones in Table 4. In any case' the number of
I.V. components in the assemblage that are also in
the selected subsystem is equal to the rank of the
coefficient matrix in the initial equations' and the
dimensionality of the modal space is equal to its
row-nullity. There is, happily, still some room for
individual choice here, inasmuch as the set of I.V'
components, or the set of reactions that is first
obtained, though these are sufficient, may often be
improved upon by appropriate linear recombina-
tion. We will return to this matter below when
considering modal spaces for mafic and ultramafic
rocks.

LHERZOLITES

Lherzolites are peridotites consisting primarily
of olivine, orthopyroxene and clinopyroxene, but

TABI,E 5. SOME N)DITIVE COMFOI\IU\TS'

-Compon€nts  
S l  A l  l v lc

Formulas

NaAlSitos
KAlSirOe
CaAlSizog
CaMgSizOo
MgzSizOo
MgnSiOn
FezSiOl
CazMgsShOzz(OH)z
MgrSisO22(OH)z

D Y x = 2 0 2 0 6' *  
=  - r  2  - l  0  0

o l v = 1 O 2 0 4
c m  =  0  0  - l  I  0

s r t  =  3  2  3  0  1 2

i o t = 0 2 r 0 4
p i g = 2 2 0 1 8

Ca Ox

0 2
0 3
0 1
1 1
0 0
0 0
0 0

Symbo l s

ab
or
an
d i
en
fo
fa
t r
oaUfr - olv

& i 0 5 I r F
olv - 05 pyx

cm t olY - 0J Iyx
c r t - 2 p y r - t t

s p l - o l v - t k  =
p l g * o l v - 2 p y x - t k - m  =

1 0 0
o 2 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0

*Most of lho abovg alt slandard comlxlnsnts as used in the

slculatim of a 'CIPW" nom as introduced by Cro8,s a al.
(1902); the last two are normative amphibole componentr in

the $pirtt of the 'm€{onom' of Barth O959).
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not uncommonly containing small amounts of
garnet, spinel or plagioclase. An assemblage of all
these phases allows four independent net-transfer
reactions, which would correspond to a four-
dimensional modal space. We can simplify the
problem, however, by referring both pyroxenes to
the same additive component, which means that
one of these reactions can be taken as the trivial
one based on:

pyxcpx = pyxopx (l)

The reaction defined by (l) may be neglected if we
initially concern ourselves only with total pyroxene.
This is a sacrifice, but a sacrifice that will prove to
be a minor one inasmuch as we shall find that the
kinds of pyroxene that correspond to a point in the
simpler space are usually fairly obvious. With pyx
(no subscript) thus monitoring only total pyroxene,
we may then obtain from Table 4 the following
three equations for net-transfer reactions that, in
turn, define a three-dimensional modal space:

o l v + t k = s p l

and

plg + olv = 2pyx + cm + tk (4)

The components in equations'(2) and (3) above
are Ca-free, and hence their effects may be
visualized in the three-component system. MgO-
Al2O3-SiO2, as shown in Figure 4 (see Burt 1988).

From equations (2) and (4) we may also obtain:

plg + olv = grt * cm (5)

where both terms on the right-hand-side are I.v.
components of garnet and could be combined as
CaMg2Al2Si3O,r. Further equations may be derived
as linear recombinations of (l), (2) and (3). Some
of interest are:

(3)

g r t = 2 p y x + t k

g r t + o l v = 2 p y x + s p l

p l g + 2 o l v = 2 p y x + s p l + c m

Quorlz, elc,

CorundumPericlose 
ffi Spinel Al20s

Mol froction

Al2Q -Si02-Mq0

Ftc. 4..The.composition plane SiO2-A129::MgO. The point Al-2MgSi is negative rk; rherefore, ,,adding,,rk is a
motion, in this plane, away from Al-2MgSi (see Burt 1988, p. 563). bquation 1Z; in the rexr dealswirh the-solubility
of garnet in orthopyroxene (see Wood & Banno 1973, o'Hara & Howells 197i), and equation (3) shows thar theproportions of olivine and spinel may be varied in the presence of a phase such as pyroiene thai has tk-exchange
capacity.

(6)

l0)(2)

Al-2MgSi

N
Si02
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and

2grt + cm = 2pyx + spl + Plg (8)

We may note that reactions corresponding to (2)

and (3) are independent of each other and do not

alter modal plagioclase. The same arguments apply
to (3) and (5) with respect to pyroxene' to (3) and
(a) with respect to garnet, to (2) and (8) with respect
io olivine,-and to (2) and either (4) or (5) with

(ol

8
A

l (3)
I

6

Uszollto Hs *  ov( l f  PYx

ClpW - gan + ab + (7 + x)io + (3 + y)st + (ddl

CIPW:3or lob+(7+r)fo +(3+y)en rzdt

Plc0iocloee

'  2  
G o r n e t l  

o

Frc. 5. Two views of a modal space for lherzolites as discussed in text. The internal

inclined planes in 5a are oiivine isopleths; spinel isopleths are parallel to the

base and shown as contours in 5b. Plagioclase lherzolites lie near the A vertex,

gamer lherzolires lie near the line BC, and spinel lherzolites lie near the line EF.

'i
,l-
.L

Pyrolgno
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zero isopleth for olivine would pass through the E
vertex, if greater than zero, it would miss the
polyhedron entirely, and if less than zero it would
truncate the polyhedron. Similarly, if 0, + e) were
zero, the zero isopleth for pyroxene would pass
through the edge AB, parallel to the edge DE. If
U + z) were greater than zero, it would miss the
polyhedron entirely, and if (f a 3) were less than
zero, it would truncate the polyhedron. The initial
abundances of the major phases, pyroxenes and
olivine, may thus vary widely with little or no effect
on the appearance of the accessible modal space.
Such variations, even though they may cause
truncation of the polyhedron, simply alter the
labeling of the isopleths, not their orientation.
One's concern is commonly to deduce the reaction
history of a rock from the textural evidence of
modal change. In this instance, the shape of the
accessible region is a matter of little interest, and
the orientation of the isopleths with respect to each
other and the reaction coordinates is the kev to the
problem.

We may also note that generalization of the
compositions of the phases by the presence of
exchange components such as KNa_1 (ak), FeMg-1
(fm), FeAl_,, CrAl-1, FeMn_1, TiFe_1, CaAlNa_1Si_i
(pg), NaAlSi_, (ed), and others, does not alter the
isopleth orientation in modal space, because these
isopleths record only variations in the additive
components of the phases (see Thompson 1982a,
p.22 for clarification of FeMn-, and FeTi_,). There
may, however, be other truncations if all phases
having these components reach an extreme limit of
exchange capacity. We have an example of this in
the plane BCEF in Figure 5, where both plagioclase
and pyroxene have reached the sodic end of the
substitution CaAlNa_,Si_, (pg). Varying normative
ab while holding all else constant produces the
effects shown in Figure 6. In Figure 6b, the modal
space is as in Figure 5, whereas in Figure 6a, the
ab is wholly removed. If x is at least two, then
Figures 6c and 6d result from adding one and two
formula units of ab, respectively. The substitution
FeMg-1 (fm) has no effect on the appearance of the
modal space. All net-transfer reactions that are
written in terms of Mg-bearing components could
equally well be written in terms of equivalenr
Fe-bearing components.

It should by now be evident that the modal
spaces for a wide variety of ultramafic rocks have
a great deal in common, and that their precise form
may be anticipated from the normative composi-
tion. Everl'thing we have said applies with equal
force, for example, to harzburgites, by simply
setting z at zero, or to the "pyrolite', compositions
of Green & Ringwood (1967b), The assemblages
indicated in Figure 5 include everything likely to

respect to spinel. Reactions corresponding to (6),
(7), and (8), any two ofwhich are independent, are
all possible where any pyroxene is free of Al and
thus at the low-aluminum limit [tk_] of its tk
exchange capacity. Reactions corresponding to (4)
and (6) are possible where any plagioclase or
pyroxene is at the sodic limit [pg_] of its pg
exchange capacity. In this last case, (4) is
equivalent to:

NaAlSi3O6 + Mg2SiOa = Mg2Si2O6 + NaAISi2O6 (4a)

That this last is equivalent to (4) may be surprising,
but makes sense when we realize that NaAlSi3O8
may be written as plg - pg, and that NaA6i;O;
may be written as pyx + cm + tk - pg.

In Figure 5 we see two views of a (closed-system)
modal space for the CIPW normative comoosition
(see Table 5) indicated ar A, and for which (2), (3),
and (5) provide convenient basis-vectors. As diawn,
(2) and (3) are orthogonal, and (5), though normal to
(3), is inclined to (2). The accessible space is within
the polyhedron. Three of the bounding faces of the
polyhedron are zero isopleths. The plane CDE is
1h! ::rg isopleth for plagioclase; the basal plane
APCD is the zero isopleth for spinel, and the plane
ADEF is the zero isopleth for garnet. Spinel
isopleths are horizontal and shown by contours in
Figure 5b. The other two bounding iurfaces arise
where a limit to an exchange capacity is reached.
In the plane ABF, a pyroxene is at the limit [tk-],
and in the plane BCEF, plagioclase and pyroxene
are at the limit [pl-]. Point A corresponds to an
idealized "CIPW" lherzolite having the mineralogy
and modal abundance implied by the classical
normative calculation (Cross et al, 1902). A real
igneous rock that has crystallized at or near the
earth's surface, however, contains somewhat less
plagioclase than the amount implied by its norm,
and thus corresponds to a point slightly displaced
Jrgn A along the line AD, the missing plagi-oclase
being hidden or ',occult" as a Ca-Al component in
pyroxene. Garnet lherzolites lie on or near the line
BC, and spinel lherzolites, on or near the line EF
(see O'Hara 1968, and Wyllie 1970, and references
therein, for relevant experimental results). Those
near the plane DEF must have an omphacitic
component in the clinopyroxene, and at the D
vertex, all normative plagioclase would be ,,occult,'
in pyroxene. A plagioclase in the plane BCEF can
only be pure ab, and, inasmuch as sodic plagioclase
is known to coexist with Ca-Al pyroxene, any
plagioclase in the entire triangular prism between
CDE and BFH is probably very nearly pure ab.

In Figure 5a, the inclined internal planes are
olivine isopleths. The one labeled BGH is at a
modal abundance of (4 + x). If x were zero, the
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End Mew of All:

(Spinel)

(a) (b) (c) (d)

L 0

Plg

Frc. 6. Lherzolite spaces obtained by removing ab from (6a)' or adding it to (6c,d), the normative-composition (6b)

ol the lherzolite in Figure 5. Theinset labelid "end ui.*; may also be regaided as a two-dimensional modal space

based on equations (i) and (3) and the composition space of Figure 4'

form in the crust or uppermost mantle. Deeper in
the earth, plagioclase is out of the picture entirely.
The compositional constraints on spinel and garnet
are less severe at extremely high pressures, where
both may show variations in tk sufficient to allow
spinel to encompass olivine compositions, and
garnet (majorite) to encompass pyroxene composi-
iions. Other R2O3 phases, having either the
corundum-ilmenite or perovskite structures, also
may appear, and our modal spaces may be adapted
to allow for them, if we so wish.

Beselrs, PvnoxnNr GlanuLlTrs, ECLoGITES

The mineral phases and the reactions that have
just been discussed also occur in olivine basalts.
The space of Figure 6d could, in fact, with x equal
to 2, and / equal to 0, indeed be that for the
metamorphism of an olivine-rich basalt at the
boundary of the nepheline-normative region. In
Figure 7, we have the modal space to deal with the
closed-system metamorphism of a similar basalt
that is also at the boundary of the nepheline-nor-
mative region. It differs, however, from the basalt
consistent with Figure 6d in having less normative
olivine, and hence is truncated by the zero isopleth
for olivine.

For quartz-bearing basalts, devoid ofolivine and
spinel, we find, by the same methods, that a
reaction corresponding to (2) is possible, but that
reactions (3) and (4) are replaced by a single
reaction that can be taken either as:

or as

plg = pyx + cm + tk + qtz (10)

We may alsq obtain:

plg + pyx = gr1 + cm + qtz (ll)

If reaitions corresponding to (2) and (9) are
selected as orthogonal basis-vectors, we obtain the
two-dimensional modal space shown in Figure 8'
with isopleths as indicated, for a basalt that is at
the boundary of the quartz-normative region' The
edges CD and DA arczero isopleths for plagioclase
and garnet, respectively. The edge AB is at the limit

ttk-], and the edge BC is at [pg-]. Note that these
6ounOt correspond closely to those in Figure 4 or
Figure 7. The zero isopleth for quartz is a
horizontal line passing through A.

The bulk compositions for Figures 7 and 8 differ
only in silica content, the normative olivine (fo) in
Figure 7 being replaced by normative or-
thopyroxene (en) in Figure 8. In Figure 9, we have
four'intermediate steps, spaced at regular intervals
in silica content. In 9a, the zero isopleths for
olivine, spinel, and plagioclase all meet at the edge
CD, At the C vertex, the assemblage is garnet-om-
phacite, a perfect eclogite, and at the D vertex, it
is orthopyroxene-omphacite, an assemblage in

which a// normative plagioclase is occult in
pyroxene.

For a basalt composition appropriate to Figure
9c, the mineral content at the A vertex would be:

Plagioc lase:6an + 6ab2plg : grt + 2cm + tk + zqtz (9)
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A

Plogioclose

P y r o x e n e : 6 d i + 9 e n
Olivine: 6 fo

in other words, that which is implied by the CIPW
norm itself. At point E, midway on the line at which
the two modal spaces meet, the mineral contenr
would be, approximately:

Plagioclase: 6 ab
Plroxene: 9 di + 9 en + 3 CaAI2SiO6
Olivine: none
Garnet: 3 Mg3Al2Si3O12

In this the plagioclase could be slightly calcic owing
to pg-exchange with pyroxene, as the garnet could
also be by cm-exchange with pyroxene. Points to
the left of E would have more garnet, those to the
right, less. The phase compositions may, of course,
be generalized by the operation of exchange
components such as FeMg_1. and others, without
altering the modal space. The pyroxene would
probably be a two-phase mixture of augite and
minor orthopyroxene. The assemblage is thus thar
of a fairly typical two-pyroxene garnet granulite.

c

/ - -  ,1- / / /6  12  t 8 r
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ClPlY. 6on +6ob*6di + l5fo

Olivine
+

Spinel

At the C vertex, the mineral content would
probably be:

Quartz: 6 SiO,
Plagioclase: none
Pyroxene: 12 di + 3 en + 6 NaAlSi2O6
Garnet: 6 Mg3Al2Si Ol2

in which the pyroxene would probably be a
two-phase mixture of omphacitic clinopyroxene
and minor orthopyroxene. If the 6 di were
eliminated from the original composition, the
clinoplroxene at C would be an omphacite. In each
of the Figures, 7 through 9, the transformation
from A to C is from a CIPW-type assemblage
through a pyroxene granulite assemblage to an
eclogitic assemblage (see Green & Ringwood 1967a,
for some relevant experimental results).

ArapHrsoLrrss

By adding 6 SiO2 and 6 H2O to the bulk
composition for Figure 8, and introducing two new

Pyrorene

5 4 3 2
Gornel

Ftc. 7. A modal space for an olivine basalt. The reactions serving as basis-vectors
are as in the lherzolite spaces. Note the similarity to Figure 6d.
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Gtl -------------+ Pyx

24 ?7

Pyroxene

Frc. 8. A modal space for a silica-saturated basalt. The composition is obtained
from that of Figure 8 by adding 15 Sio2.

?ll 8t5

"normative" amphibole components: Ca2MgrSi6Or2
(OH), or lr, and Mg7SisO22(OH), or oa, we may
replace all the pyroxene of Figure 8 by amphibole.
Because amphibole, like pyroxene, has both tk- and
pg-exchange capacity we may, on the basis of
equations (2) and (9), construct a two-dimensional,
closed-system modal space as shown in Figure 10.
This space is analogous to that for Figure 8, but
enables us to deal with assemblages contarning
amphibole as well as quartz, plagioclase, garnet,
and pyroxene. Because we are using total am-
phibole and there are no other hydrous phases, the
total modal amphibole necessarily must remain
constant in a closed system. Its composition,
however, can vary widely, as we shall see. This is
also why a triangular area on the left side of the
space in Figure 8 is missing in Figure 10. The line
ABC is here the zero isopleth for pyroxene, and is
a bound to the modal space because amphibole
cannot be transformed isochemically into garnet.

Amphiboles, however, allow an exchange com-

ponent, NaAlSi-l, or ed, that is not present in
pyroxenes. Because it is a second sodic exchange
component, in addition to pg, we should, to be
safe, add Na2O as a further practical component
in our procedure for determining the net-transfer
reactions. We then find that our amphibole
assemblages have a third closed-system net-transfer
reaction that may be written:

4qtz + Pg + ed = Plg (J2)

Because pg-exchange capacity may be provided by
both plagioclase itself and amphibole, equation (12)
tells us that plagioclase may be converted into
quartz in a closed system containing amphibole.
Wittr a reaction corresponding to (12) as a third
basis-vector, we obtain the three-dimensional
modal space of Figure 11. Figure l0 may now be
regarded as simply its base, at the limit [ed-] of
ed-exchange capacity. Figure 12 is then the
left-hand face of the polyhedron of Figure 11,

CIPW = 6on+ 6ob+6di+lsen
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CIPW = 6ont 6obi6di+6en+ gfo

c

CIPW" 6on r 6ob+6dit l2en+ 3foCIPW = 6on + 6ob + 6di +gen + 6fo

(cl

Ftc. 9. Modal spaces for olivine basalts intermediate to those of Figures 7 and 8, al intervals of 3 SiOr.



MODAL SPACE

"CIPW" =  6on +6ob+3 i r+3oo

62',7

Qfz Pls
l 2 A

3
I
I

I
c)

+
e

/Ou+
x
a4

t2

Grf >Pyx

Frc. 10. A partial modal space for a high-silica basalt in which normative pyroxene
is replaced by amphibole (see text).

which is also the zero isopleth for pyroxene. The
zero isopleth for garnet is the back face, and the
top is the exchange limit [ed+ ], where the A sites
of the amphibole are fully occupied by sodium
atoms. Plagioclase isopleths are parallel to the
plane CDFG, and quartz isopleths, parallel to the
line CD, dip more gently, as shown in Figures ll
and 12.

Along the line AH, as plagioclase is converted
into quartz, we regain, as quartz, all of the silica,
and more, that we have added since we began with
the olivine basalt composition of Figure 7, the one
that was at the boundary of the nepheline-norma-
tive region. Had we simply added 6 H2O to that
basalt, converting all its initial pyroxene to
amphibole, its closed-system modal space would
then be the volume in Figure I I that lies above the
quartz isopleth labeled (1). This isopleth then
becomes the zero isopleth for quartz. Similarly, had

we added 6 H2O to the basalt of Figure 8, the modal
space would have as its zero isopleth for quartz the
one that is labeled (6) in Figure I l. Adding 6 H2O
to the basalts of Figure 9 provides the intermediate
cases corresponding to the isopleths labeled (2)
through (5) in Figure ll. It is thus evident that the
modal space of Figure I I can cope with basalt
compositions ranging from quartz-normative to
nepheline-normative, thanks to the exchange
capacity of amphibole!

Our results are, in fact, more realistic than they
may seem. Let us consider the basalt of Figure 9c,
with 6 H2O added so as to form an amphibolite.
The zero isopleth for quartz is then the one at (4)
in Figure I I that passes through the edge CD. The
mineral content would then be:

Plagioc lase:6an + 3ab
Amphibole: 3 Ca2Mg5Si6Oz(OlDz +

3 Mg7SisO22 (OH)2 + 3 NaAlSi-r
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FIc. ll. The iull modal space for the basaltic composition of Figure l0 (see text).
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Ftc. 12. The left-hand face of the polyhedron in Figure ll.

in other words a sodic andesine and two or more some combination thereof, as in the assemblages
amphiboles, one of which would be a hornblende considered by Robinson & Jaffe (1969), by Stout
with a partially filled.  site. The other amphiboles (1971, 1972), and by others (see Robinson et a/.
could be anthophyllite, gedrite, cummingtonite, or 1982, for further references). At a point midway
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between (4) and the vertex C, the mineral content
would be:

Plagioclase: 4.5 ab
Garnet: 3 Mg3AlrSi,O,
Amphibole: 6 Ca2Mgu.rAlSi7.jO22(OH)2 +

1.5 NaAISi-t
in which the amphibole would be a single-phase
hornblende. Finally, at the C vertex, we obtain:

Plagioclase: none
Garnet: 6 CaMg2Al2Si3Ol2
Amphibole: 3 NarMgrAl2Si8O22(OH)2 +

3 Ca2Mg5SisOzz(OH)z
All of the above may be generalized and made

yet more realistic by the operation of exchange
components such as FeMg-1, FeAl-1, TiFe-1, and
others that do nol alter the modal space. At C, the
amphibole would be either a single-phase winchite
or a mixture of glaucophane and actinolite. If we
were to modify the composition at the A vertex in
Figure 11 by removing the 3 tr, the amphibole at
(4), then at the limit [ed + ], would be: 3
NaMgTAlSiTOzz(OH)2, that at the midpoint would
be: 3 Na6.rCa2MgaAl2.rSi6.5O22(OH)2, and that at
the C vertex would be glaucophane. Note that total
amphibole remains constant and that the net effect
is the transformation of plagioclase into garnet, a
feat that is possible thanks to the remarkable
exchange-capacity of amphibole. Although the
total remains constant, the kind of amphibole

varies greatly as plagioclase is destroyed and garnet
is created. A similar role is played by pyroxene in
the anhydrous assemblages. Some relevant ex-
perimental work has recently been presented by
D.M. Jenkins (1990). The reactions that make this
possible are based on equations (5) and (9) above'
and have much in common with the garnet-
plagioclase reactions used by Ghent (1976) in pelite
geobarometry.

Epidote is an additional phase that is charac-
teristic of many garnet amphibolites and garnet
glaucophanites. Its presence adds, inconveniently,
one more dimension to the modal space of the
amphibolite. The extra reaction equation' however,
may be written simply as:

amp + qtz + 4cm + 3tk = 2epi  (13)

and we may partially visualize this larger modal
space by eliminating one of the reaitions considered
in Figure 11. In Figure 13, a three-dimensional
section of the larger space has been constructed
with basis-vectors on equations (2), (9), and (13),
but omitting (12).

OPEN-SYSTEM MoPel SPAcES

It is recommended that closed-system modal
spaces be investigated before considering open or

fi
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Frc. 13. A partial modal space for epidote-bearing amphibolites (see text).
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partially open systems. The closed-system space
may well contain the answers we seek, in which
case there is no need to go further. However, if we
wish to consider the transformation of anhydrous
granulites into amphibolites, or vice versa, it is
necessary to allow, at least, for open-system
reactions that permit the gain or loss of H2O. To
do this, we may add H2O as an environmentol
component to the list of phase components in the
initial stoichiometric equations. If H2O is I.Y. in
the assemblage (not always so), an open-system
reaction involving H2O will be obtained. One is
always sufficient. If two are obtained, then H2O
can be eliminated between them, yielding one
open-system and one closed-system. reaction. The
hydrous and anhydrous assemblages discussed
above can be related, if quartz is present, by the
equation:

2amp = Tpyx + 2qtz + 2H2O (14)

or, in any case, by:

4amp +  ed  +  pg  =  l 4pyx+  p lg  +  4H2o  (15 )

Lower-grade amphibolites, such as those con-
sidered in an earlier paper (Thompson et al. 1982),
commonly contain chlorite. Chlorite may be related
to garnet by either:

2 c h l +  4 q t z + t k = 3 g r r + 8 H 2 O  ( 1 6 )

or by:

2chl  + p lg + tk  = 3gr t  + ed + pg + 8H2O (17)

as may be appropriate to the assemblage.
In both (16) and (17), thirty-six oxyequivalenrs

of chlorite replace thirty-six oxyequivalents of
garnet or yice versa, a very nearly constant-volume
replacement. The accompanying effect, left-to-
right, is the consumption of quartz or plagioclase,
or both, with the release of the same number of
oxyequivalents of water, an apparent conversion,
therefore, of quartz or plagioclase to water! These
processes are thus somewhat reminiscent of a long
ago event (Exodus, xvii, l-7), and may therefore
be referred to as Sinai reactions. The exchange
operator or component, HaSi_1, is found in calcic
garnet, and possibly in other silicates having
isolated SiOn tetrahedra. It leads to the simplest of
Sinai reactions, namely:

qtz + H4Si-1 = 2HzO

and

We also may write, from (16) and (18):

3grt + 4H4Si-r = 2chl + tk (20)

in which the two components on the right-hand
side sum to a chlorite midway between an idealized
clinochlore and an idealized corundophyllite. It is
thus clear that it is saturation with respect to
chlorite that prevents Fe-Mg garnet from showing
significant variation from its anhydrous composi-
tions by means of the operator H4Si-r. Chlorite
simply forms instead. Variation by H.Si-' does
occur, however, in calcic garnet because there are
no calcic chlorites. Interestingly, some further pairs
of phases are, like garnet and chlorite, related by
H4Si-r, and hence related by equations analogous
to (16) and (17). These include cordierite (an-
hydrous) and sudoite:

Mg2AlaSi5O16 + 2H4Si-r  =

Mg2AlaSi3Ol6(OH)3 Ql)

suggesting that some pinite alterations of cordierite
may contain sudoite rather than an ordinary
chlorite. Orthopyroxene and lizardite (or antigorite)
are similarly related:

3 MgSiO3 + H4Si-1 = Mg3Si2O5(OH)a Q2)

as are olivine and brucite (via the hydroxy-humite
series):

Mg2SiOa + H4Si-r = 2Mg(OH)z Q3)

This last relationship is perhaps the reason why
variation by HoSi-, is absent or minor in olivine.

Funrgrn ApplrcettoNs

The foregoing discussion has been based primari-
ly on considerations of material balance and of the
constraints imposed by crystal chemistry on the
chemical variability of minerals. Very little has been
said or even implied about thermodynamic equi-
librium, kinetics, or other matters of petrological
concern. A path through modal space that
represents a succession of equilibrium states, either
in experimental results or in natural occurrence, is
a special case of considerable interest, either as a
way of displaying modal aspects of the experimen-
tal results, or as an aid in deciphering the P-T-t
history of a metamorphic rock (Thompson et a/.
1982, Ferry 1983, 1984, Chamberlain 1986,
Schneiderman 1990). It has also been shown
recently that the distribution of oxygen isotopes is
profoundly influenced by variations in modal
abundance (Chamberlain et al. 1990).

(18)

plg + 4H4Si-r = 8H2O + ed + pg (19)
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