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ABSTRACT

Transfer reactions are those that are expressed by use
of the simplified reaction, (A,B)* = (A,B)", in which one
or more additional phases of fixed composition may
participate. Examples are (Fe,Mg) olivine crystal =
(Fe,Mg) olivine melt, and (Fe,Mg) biotite + sillimanite
+ quartz = (Fe,Mg) garnet + K-feldspar + H,0.
Thermodynamic equations derived by van Laar relate the
composition X of reactant and product phases to
temperature 7. A plot of the equations produces the
familiar 7-X loop, which rises with increasing pressure
and, for reactions that release H,O, falls with decreasing
H,0 activity. Much variation can occur in the relation
between volume of product and temperature or time (i.e.,
the reaction rate) depending on the constants in the
relevant van Laar equations and on the initial composition
of the reactant phase. Reaction far from equilibrium can
give rise to several possibilities for compositional zoning
in reactant and product crystals.

Keywords: transfer reactions, var Laar equations, reac-
tion rate, fractional crystallization.

SOMMAIRE

Les réactions de transfert sont celles qui satisfont
I’expression (A,B)* = (A,B)?; une ou plusieurs phases
additionnelles de composition fixe peuvent y participer.
Par exemple, (Fe,Mg) olivine cristalline = (Fe,Mg) liquide
de composition d’olivine, ou encore (Fe,Mg) biotite +
silimanite + quartz = (Fe,Mg) grenat + feldspath
potassique + H,O. Les relations thermodynamiques
dérivées par Van Laar décrivent la composition X des
réactifs et des phases produites a la température 7. Une
expression graphique des équations donne I’enveloppe
T-X familiére, qui augmente avec la pression, et qui
s’abaisse, dans le cas de réactions qui produisent de ’eau,
avec une diminution dans ’activité de H,O. Une grande
variation peut exister dans la relation entre volume du
produit et la température ou le temps (c’est-a-dire, taux
de réaction) selon les constantes utilisées dans les
équations de van Laar appropriées et la composition
initiale des réactifs. Si une réaction est éloignée de sa
position d’équilibre, les cristaux des réactifs aussi bien
que des phases produites pourraient bien &tre zonés en
composition.

(Traduit par la Rédaction)
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INTRODUCTION

It is now possible to recognize several classes of
mineral reactions, ranging from those that occur
within crystals to those that involve two or more
phases of variable composition. Reactions that
consume one phase of variable composition and
produce another, as expressed by the simplified
reaction,

(A,B?* = (A,Bf 6]

are referred to as transfer reactions. Normally the
A:B ratio is not the same in the two phases (i.e.,
the equation as written is not balanced), and two
mass-balance and energy-balance equations are
needed to describe a reaction as it approaches
equilibrium. Also, one or more additional phases
of fixed or nearly fixed composition may par-
ticipate in the reaction. Examples of transfer
reactions are,

(Mg,Fe) olivine crystal = (Mg,Fe) olivine melt 2)

(Mn,Fe) chlorite + quartz =
(Mn,Fe) garnet + H,O 3)

(Fe,Mg) biotite + sillimanite + quartz =
(Fe,Mg) garnet + K-feldspar + H,O 4)

Some natural and experimental data are avail-
able on these and other equilibria. For example,
Schmid & Wood (1976) have shown that in the
Ivrea — Verbano zone of northern Italy, equilibrium
(4) is displaced to the right with increasing
metamorphic grade, i.e., biotite is consumed, and
garnet is produced.

Interphase exchange-reactions form another
class of mineral reactions. These occur, for
example, when an increase in temperature causes
atoms of Mg to migrate from crystals of biotite to
crystals of garnet in exchange for an equal number
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of Fe atoms. Unlike transfer reactions, exchange
reactions do not consume or produce crystals;
rather, these only change in composition, and the
variance is sufficiently large to permit the composi-
tion of the minerals to vary (concurrently) at
constant temperature and pressure.

The purpose of this note is a) to propose that
the van Laar (1908) equations (which at times have
been disregarded) provide the most rigorous
thermodynamic description of transfer equilibria,
and b) to examine qualitatively some possibilities
for variation in reaction rate and in fractional
crystallization in solid systems, resulting from the
thermodynamic demands that are stated by the van
Laar equations. The study is built on some earlier
proposals by the writer (Kretz 1973); a more general
and different approach to transfer equilibria in
assemblages of metamorphic minerals was taken by
Thompson (1976) and by Loomis & Nimick (1982).

EQUILIBRIUM AND REACTION

Although it is possible to present a definition of
equilibrium without referring to a process, a
process is always implied. For example, with
reference to a system composed of crystalline
forsterite (Mg,Si0,), one could say that in the
absence of temperature and pressure gradients,
equilibrium exists at 800°C, 1.0 bar when the Mg,
Si, and O atoms are arranged as in crystalline
forsterite. This implies that the molar Gibbs energy
of forsterite is less than that of some other atomic
arrangement, e.g., 2 MgO + 1 SiO,, or Mg,SiO,
melt, and if these phases were present, a process
(reaction) should occur to eliminate them. One can
expand, therefore, on the definition of equilibrium
(a minimum of Gibbs energy) for the system
Mg,Si0, by adding that all possible off-equilibrium
reactions, e.g.,

2 MgO (crystal) + 1 SiO; (crystal) =
Mg,SiOy (crystal) %

Mg,SiOy4 (melt) = Mg,SiO, (crystal) (6)

are displaced toward crystalline forsterite.
Consider next a system composed of crystalline
forsterite and forsterite melt at 1890°C, 1 bar, i.e.,
at the melting point. In addition to possible
off-equilibrium reactions, an equilibrium reaction
can be recognized and defined by observing the
changes that occur in response to a small change
in temperature. In this case, reaction (6) above
becomes the equilibrium reaction. Indeed, crystal-
melt equilibria and chemical reactions in general
are commonly thought of in terms of a reaction
which, on a microscopic scale, is constantly in
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progress, moving here to the right and there to the
left, at equal mean rates. By defining the
equilibrium reaction, we have obtained a mass-
balance equation, which leads to the energy-balance
equation,

GFo(crystal) - GFo(melt) (7)

(where G stands for molar Gibbs energy) as a
requirement for equilibrium.

Consider now a system composed of an olivine
crystal and a volume of olivine melt at 1500°C, 1
bar; the formula for both phases is (Mg,Fe),SiO,,
or (fo,fa), where fo and fa refer to solution
components Mg,SiO, and Fe,SiO,. The experimen-
tal results of Bowen & Schairer (1935) have shown
that the equilibrium composition of the crystal X*
at 1500°C is 0.42, and that of the melt X™ is 0.75,
where X = fa/(fo + fa) = Fe?*/(Mg + Fe?*).
The equilibrium reaction in this system can be
identified by decreasing the temperature slightly
and observing the crystallization of olivine, which
can be described as the transfer of Ny, moles of
fayalite from melt to crystal, and Ny, moles of
forsterite from melt to crystal. Thus the mass-
balance equations for the equilibrium reaction are,

Fe,Si0, (crystal) = Fe,;SiO,4 (melt) 8)
Mg,Si0, (crystal) = Mg,SiO, (melt) 9)
and the energy-balance equations are,

(10

Il

neacrystal = ppmelt

peocrystal = peomelt (1)
where u stands for chemical potential.

Equilibrium requires that both phases be com-
positionally homogeneous; this condition can be
achieved by Fe?*-Mg exchange occurring within
the crystal (between the newly deposited olivine and
the crystal’s interior) and within the melt. It is
unnecessary and inappropriate in this case to
consider a Mg-Fe exchange reaction between the
crystal and the melt, a viewpoint adopted by
Roeder & Emslie (1970) for olivine and Kudo &
Weill (1970) for plagioclase, i.e., the equilibrium
reaction is a fransfer reaction, not a between-phase
exchange reaction.

THE VAN LAAR TRANSFER EQUATIONS

Consider a system composed of phases o and 3
formulated as (A,B)* and (A,B)?, where A and B
are solution components, and suppose that a
reaction relationship exists, as in (2), above. Let X
stand for the mole fraction of B, i.e., B/(A+B).
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The van Laar (1908) equations are derived on the
proposition that at equilibrium, the chemical
potential of A (z,) must be equal in the two phases,
and similarly for B, i.e.,

wR = ul (12

w§ = uf (13)

In the original treatment, component activity
and mole fraction were assumed equal. This leads
to the following expressions for equilibrium in the
system at temperature 7:

(1-X2%/(1-X%) = exp(AGA/RT) (14)

X°/X8 = exp(AGy/RT) (15)
where AG, is the change in molar Gibbs energy for
the reaction A* = Af at the temperature 7, and
similarly for AGg. Equations (14) and (15) are now
differentiated at constant pressure, followed by an
integration and a rearrangement of terms to
produce the following two equations:

X8 =
exp [(AHR/R) (T-'-Tgh)] fexpl(-AHA/R) (T-1-T3)]-1}
exp [(FAH,/R) (T"'-T3D] -expl(-AHp/R) (T-'-Tg)]

(16)

X* =
exp [(FAHA/R) (T'-T3)] -1

exp [(-AHA/R) (T'-T31)] ~exp[(-AHy/R) (T"1-Tg)]

amn

Here AH, is the change in molar enthalpy for
the reaction A* = Af at temperature 7, and T,
stands for the equilibrium temperature for this
reaction, and similarly for AHy and Ty. After
deriving these equations, van Laar (1908) applied
them to the plagioclase system (liquidus and
solidus). Later, Bowen (1913) showed that they
provide a perfect fit to his experimental results for
this system, thus presenting evidence for near-ideal
behavior of liquid and solid in the plagioclase
system at high temperatures.

If the exponential term in equations (16) and (17)
that contains AH, is referred to as A,, and that
containing AHj, is referred to as A, then (16) and
(17) may be written:

X8 = N1/ 0g=hy) (18)

X% = (=1)/0g-0y) (19
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Thus,

XB = aXx 20)

Ramberg (1963) pointed out that equations (16)
and (17) apply just as well to metamorphic
equilibria, such as those described by equations (3)
and (4), above; now AH stands for the change in
molar enthalpy for the end-member reactions.

Froese (1973) has emphasized the influence of
H,O activity in reaction (4). A reduction in H,O
activity or fugacity causes a shift in the end-member
P-T boundary curves, and a downward displace-
ment of the composition curves. Tracy & Robinson
(1988) have explored an alternative approach,
which produces a w(H,O)-X loop at constant
temperature and pressure.

The effect of pressure (P) on transfer equilibria
was considered by Mueller (1963). Proceeding as
above, we obtain,

X8 =
exp [(CAVR/RT) (P-Pp)] {expl(-AVA/RT) (P-Pa)l-1}

exp [(-AVA/RT) (P-Py)] -exp[(-AVy/RT) (P-Pp)]

21

X* =
exp [(-AVA/RT) (P-Py)l-1

exp [(~AVA/RT) (P-P,)] —exp[(-AVy/RT) (P-Pg)]

22)

where AV, is the change in molar volume for
reaction A®* = AP at temperature 7, and similarly
for AVy. These equations are analogous to (16) and
(17); a plot of P against X also produces a loop.
An illustration is provided by the olivine - spinel
equilibrium at high pressure, which was inves-
tigated by Akimoto & Fujisawa (1968).

For reactions that involve a vapor (e.g., H,0),
AV in (21) and (22) is a function of pressure, and
the equations as written must be modified to take
this change into consideration.

The effect of pressure may also be viewed in
terms of a displacement of the 7-X loop. In
general, an increase in pressure produces an
increase in T, and Ty, and an upward displacement
of the loop; because AH, and AHj are not sensitive
to pressure, the shape of the 7-X loop will not
change greatly with increasing pressure. With
regard to the plagioclase system, this expectation
was confirmed by Lindsley (1968).

Transfer equilibria may involve two ternary
solutions, i.e.,

(A,B,C)* = (A,B,C)° (23)
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An example is,

(Mn,Fe,Mg) chlorite + quartz =
(Mn,Fe,Mg) garnet + H,0O (24)
Composition curves are replaced by composition
surfaces, for which equations were obtained by
Seltz (1935). At any temperature between the lowest
and highest end-member equilibrium temperature,
an isothermal plane in the X-7 prism will contain
two lines, being intersections with the lower and
upper composition-surfaces. Tie lines may then be
located from a point on one line to a point on the
other, to show different possible compositions of
a and B at equilibrium. These tie lines will not, in
general, lie parallel to the sides of the composition
triangle. Information on the composition of
chlorite and garnet was presented in this form by
Albee (1965).

ILLUSTRATIONS OF TRANSFER EQUILIBRIUM IN
ASSEMBLAGES OF METAMORPHIC MINERALS

The nature of equations (16) and (17) may be
demonstrated by solving and graphing these
equations for different values of AH,, AHy, T\
and Ty. Consider for example the (Mn,Fe) chlorite
- (Mn,Fe) garnet equilibrium [equation (3), above],
with Ty, = 678 K and Ty, = 815 K at 2.0 kbar,
as determined experimentally by Hsu (1968). An
arbitrary selection of three sets of values for AH,,
and AHg, (a: 60 and 100 kJ, b: 100 and 140 kJ,
and c: 140 and 180 kJ) then produces the three
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concentration - temperature loops (a,b,c) shown in
Figure 1. Numerous solutions of this kind are
provided by Reisman (1970, p. 303-310).

In general, for AT = Ty - T, between 100 and
500 K and for small values of AH (<20 klJ), the
gap between the two curves is narrow; larger values
of AH, or AHjy or both cause the gap to widen.
For small values of AT (~ 100 K), both curves may
be concave up or down depending on AH, and
AHjy (Reisman 1970, p. 309-310).

Oonk (1981) has shown that where mixing in «
or B or both is nonideal, i.e., where activity
coefficients enter equations (16) and (17), the
concentration curves may contain inflections, and
the loop may be quite irregular in shape.

Certain gneisses from the Grenville Province,
Canadian Shield, contain Dbiotite, sillimanite,
quartz, garnet, and K-feldspar and provide a
natural example of the (Fe,Mg) biotite ~ (Fe,Mg)
garnet transfer equilibrium expressed by equation
(4), above. The two mass-balance equations are:

K ,3MgAl, 38i0,0/3(0H)y /3 + (1/3)ALSIOs + (2/3)SiO;,
phl in biotite

= MgAly;Si0, + (1/3)KAISi;05 + (1/3)H,0

prp in garnet (25)

K /3FeAl,35i0,0/,3(0OH), /5 + (1/3)AL,Si05 + (2/3)Si0,
ann in biotite

= FeAl;Si0, + (1/3)KAISi;Oq + (1/3)H,0

alm in garnet (26)

The equations define solution components

phlogopite (phl) and annite (ann) in biotite (Bt),

815
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Fig. 1. Illustrative solutions of van Laar equations with prescribed values of
temperature (T4 678 K, Ty 815 K) and with arbitrary enthalpy-of-reaction (AH 5
and AHpg) values of 60 and 100 kJ (curves ), 100 and 140 kJ (curves ), and

140 and 180 kJ (curves ¢).
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and pyrope (prp) and almandine (alm) in garnet
(Grt) for an idealized model system in which
additional components of garnet, biotite, and
K-feldspar are disregarded, and H,O occurs as a
pure vapor. Energy-balance considerations then
lead to the van Laar equations (16, 17) in which
X = X,, = prp/(prp + alm), X* = X =
phl/(phl + ann), and AHy and AH, are the
enthalpy changes for (25) and (26), respectively.

Enthalpy changes for dehydration reactions do
not vary greatly with changes in temperature and
pressure, and a numerical estimate for the Mg
end-member reaction is obtained from the data
compiled by Berman (1988), to give AHpp) =
AHgpy) = +38.8kJ/mol. Assuming an equal value
for AH, implies that the heat of formation of
annite (which is not well known) is -5190 kJ/mol,
which compares with -5160 kJ/mol of
KFe;AlSi;0,o(OH), as listed by Helgeson et al.
(1978), and -5150 kJ/mol as listed by Holland &
Powell (1989). Thus AHy = AH, = 39.0 kJ/mol
is assumed.

The end-member equilibrium temperatures are
not vet determined experimentally. By assuming
values of 860 K for T, and 1160 K for Ty, the
van Laar equations produce the curves shown in
Figure 2. These curves provide a satisfactory fit to
the natural data, barring one specimen that is

anomalous. By this interpretation, the observed
variation in Mg/(Mg + Fe?*) of biotite and garnet
is attributed to a variation in temperature within
the gneissic terrane.

It is not possible to sketch a P-X loop for this
equilibrium [equations (21) and (22)] because the
volume change for the end-member reactions (AV)
is very small.

An activity of H,O less than 1.0 in an assumed
vapor or grain-boundary phase does not change the
AH values, but will reduce Ty, and Ty, causing
the T-X curves in Figure 2 to shift downward. The
shift can be calculated by use of the modified
Clapeyron equation,

d(1/m) R

= - 27
d In f(H,0) AHp; + AVErp(P)

where f is fugacity, R is the gas constant, and AV3zp
is the volume change for the solid phases in the
end-member reaction. Calculations show that
moderate variations in f{H,0O) are sufficient to
provide an alternative interpretation to the data of
Figure 2, namely that the observed variation in
Mg/(Mg+ Fe?*) is the expression of a variation in
the activity of H,O, not in temperature.

1 200 T T T T T T T Y
2
2
% !
=
Q
1000F 1720
K C
. - 650
900 — .
800 5 i i i L 1 1
o) 0.5 1.0

X=Mg/(Mg+Fe®)

FiG. 2. Mg/(Mg + Fe®*) ratios of associated garnet and biotite in Grenville gneisses
that also contain sillimanite, quartz, and K-feldspar [transfer equilibrium defined
by equations (25) and (26)]. The 7-X curves represent a particular solution to
the van Laar equations. The uppermost garnet - biotite tie line represents an
anomalous mineral pair. Analytical error is shown by the error bar. The example
is taken from Kretz (1990).
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Numerous examples of 7-X relations in
metamorphic mineral assemblages were proposed
by Thompson (1976), and others. In many cases,
the above procedure was not followed in dealing
with these equilibria. Thus Thompson (1976)
combined one of the two equations (14, 15, above)
with a quotient of the kind,

X3 1-
3 . X3 8)
1-X§ X3 ‘

which appears in the equation for exchange
equilibrium. If the equilibrium reaction is a transfer
and not an exchange reaction, as is argued above,
then the quotient (28) is not a thermodynamic
expression.

Very few experimental data are available on
solid-state transfer equilibria. The reaction,
(Fe,Mg) biotite + muscovite + quartz = (Fe,Mg)
garnet + K-feldspar + H,O was investigated by
Dahl (1968).

REACTION RATES FOR TRANSFER REACTIONS

In general, the rate of a continuous reaction of
the kind here considered is expected to depend to
a large extent on the rate of change of temperature.
Provided that the difference in Gibbs energy
between products and reactants remains small, the
nature of the van Laar equations will determine,
for a given rate of heating, the rate of production
of the B8 phase, i.e., the rate of reaction.

Consider for example a volume of rock in which
equilibrium (3), above, is slowly displaced to the
right, such that the system is never far from
equilibrium, and suppose that the rate of increase
of temperature is a known constant. The lever rule
may then be used to determine the mass fraction
(F) of product (garnet) as a function of temperature
(7), and hence as a function of time. Figures 3a
and 3b show F-T relations for loops ¢ and ¢ of
Figure 1, respectively, and they demonstrate clearly
that the F-T relation depends greatly on the initial
composition of the reactant phase. A comparison
of Figure 3b with Figure 3a demonstrates further
that the F-T relations also depend on the shape of
the composition loop. In particular, curvature in
the F-T plots increases as the composition curves
in the loop move apart.

In natural systems, Mn/(Mn + Fe + Mg) in chlor-
ite is much less than in the associated garnet; if X
in Figure 1 is defined as (Fe + Mg)/(Mn + Fe + Mg),
curve ¢ may represent approximately the 7-X
relations in the Mn-Fe-Mg system. Beginning
with a Mn-bearing chlorite with (Fe+Mg)/
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Fic. 3. Fraction of product crystallized (F) as a function
of temperature (7); upper figure (a) is for loop a in
Figure 1, and lower figure (b) is for loop c in Figure
1. Results (obtained by use of the lever rule) are shown
for initial compositions X of the reactant of 0.1, 0.3,
0.5, 0.7 and 0.9.

(Mn + Fe+Mg), equal to 0.9, Figure 3b suggests
that a steady increase in temperature should
produce a sharp increase in the reaction rate. This
is in agreement with conclusions arrived at
independently, based on garnet zoning and crystal-
size distributions (Kretz 1973).

FRACTIONAL CRYSTALLIZATION

In van Laar systems, many possibilities exist for
fractional reaction and crystallization. With regard
to crystallization from a melt, some of these
possibilities were defined by Maalde (1984). With
regard to solid-state reactions, the patterns of
concentration that develop with temperature and
time in reactant and product crystals will depend,
for a given van Laar loop, on the rate of increase
of temperature relative to the rate of diffusion
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within the crystals. Some of these possibilities will
now be explored by taking for example the loop
shown in Figure 2 and by assuming, in each case,
an initial composition for the reactant crystals at
X = 0.5.

Figure 4a shows (only for comparison) composi-
tion paths for reactant crystals (denoted b) and
product crystals (denoted g) during near-equi-
librium reaction.. Both .reactant and product
crystals remain homogeneous throughout, either by
Fe-Mg exchange.diffusion or by recrystallization
in response to deformation.

A rapid rise in temperature could conceivably
take the reactant crystals from the lower composi-
tion-curve (945 K) to the upper composition-curve
(1040 X) before reaction commences (Fig. 4b),
causing the product to crystallize with the same
Fe:Mg ratio as that of the initial reactant. Reactions
of this kind may possibly have occurred locally
during rapid heating at igneous contacts or as:a
result of shock metamorphism.

In the next example (Fig. 4c), the Fe-Mg
diffusion coefficient for reactant crystals greatly
exceeds that for product crystals, and the rate of
heating is such that no diffusion occurs in the
product, and complete diffusion occurs in the
reactant, i.e., reactant crystals are at all times
homogeneous. Also, the rims of reactant and
product crystals remain at equilibrium, a condition
here referred to as rim equilibrium. There are now
three X-T paths for the product phase, one (g’) for
the cores of the first-formed crystals, one (g’*’) for
the rim composition of all crystals, and one (g’’)
representing the mean product composition. Path
g’’ must lie between g’ and g’”’, but the paths g’
and g” for any particular crystal will depend on
the time of nucleation for that crystal. Compared
with near-equilibrium reaction (Fig. 4a), the range
in temperature of crystallization is extended, and
the path for the reactant crystals moves farther to
the right. This example is an extension of a model
proposed by Hollister (1966) for the formation of
zoned crystals of garnet.

In the next possibility (Fig. 4d), diffusion in the
product crystals is again prohibited, whereas
diffusion in the reactant crystals is somewhat
restricted; rim equilibrium is maintained. As the

FiG. 4. Possible concentration (X) - temperature (7) paths
for hypothetical reactions in which reactant crystals
(b) yield product crystals (g); the equilibrium van Laar
loop is that of Figure 2. The different possibilities
include near-equilibrium crystallization (a) and frac-
tional crystallization (b to f). Superscripts refer to
compositions in the core of largest crystals (*), at their
rim (*”*), and a mean composition (*) of reactants and
products. -
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reactant crystals are consumed (decrease in size),
margins encroach on cores, and hence paths b’
(core composition) and b>’ (mean composition)
merge with b’”’ (rim composition).

Where diffusion in reactant crystals is further
restricted (Fig. 4¢), path b’ (mean composition of
reactant) could conceivably intersect the path for
the composition of the product rim (g’’’ as shown
at point X; this would result in a reversal in path
g’”’. In this example, rim equilibrium is maintained
only to 1100 K, the temperature at which rims of
the reactant crystals are consumed, exposing the
more Fe-rich interiors. From 1100 to 1115 K, the
remaining reactant crystals yield a product with
Mg/(Mg + Fe) lower than that which was deposited
at 1100 K, i.e., the final crystals produced will show
reverse zoning in their margins. This example
provides a possible explanation for garnet crystals
that show a reversal in their zoning profiles (Kretz
1973).

The idea that the composition of a product
nucleus need not fall on the product composition-
curve was considered in relation to metals (as
reviewed by Burke 1965), and this behavior is
expressed in Figure 4f. The reactant crystals do
follow their composition path, and homogeneity
within them is maintained. Rim equilibrium is
obtained only during the second half of the reaction
period, i.e., from 1025 to 1080 K. Evidence for this
kind of fractional reaction might be found in garnet
populations in which the largest crystals do not all
have the same core composition.

The above and other possibilities could in
principle be recognized by a detailed examination
of mineral assemblages, combined with informa-
tion on phase relations. It is well known, however,
that zoning in crystals is commonly destroyed by
diffusion or recrystallization that occur after
reaction has ceased. Bodies of rock that escaped
deformation and were rapidly cooled soon after
reaction ceased are the ones most likely to reveal
a record of fractional crystallization.

RETROGRADE REACTIONS
/

The reversal of a transfer reaction could possibly
take place in response to a decrease in temperature,
a change in pressure, or an increase in H,O activity.
Thus, in a study of garnet crystals from Mas-
sachusetts, Tracy et al. (1976) proposed that the
enrichment of Fe in the margins of these crystals
resulted from a shift of reaction (4), above, to the
left during cooling. Another possibility is that
during cooling, the van Laar reaction does not
reverse and is replaced by an energetically more
favorable Fe-Mg exchange reaction involving only
biotite and garnet. This almost certainly has
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occurred in some rocks where the two minerals are
in contact; the evidence was summarized by Tracy
(1982).

CONCLUSIONS

In reactions of the kind here considered, e.g.,
(Fe,Mp) biotite + sillimanite + quartz = (Fe,Mg)
garnet + K-feldspar + H,0, exponential or
near-exponential relations between chemical poten-
tial and component concentration in the solid
solutions lead to complex relations between con-
centration (X) and temperature (7), as expressed
by the van Laar equations. The equations and the
resulting 7-X loops that appear when the equations
are plotted are determined principally by tempera-
ture and enthalpy changes for the end-member
reactions, provided that mixing in the solid
solutions is ideal or nearly ideal.

The van Laar equations for a particular reaction,
occurring near equilibrium, determine the rate of
increase in mass or volume of product in relation
to the rate of increase of temperature, and quite
different relations (from near-linear to strongly
nonlinear) result from differences in the terms that
appear in the equations and in the initial composi-
tion of the reactant phase.

In general, for crystallization farther from
equilibrium (fractional crystallization), solid-state
transfer reactions produce compositionally zoned
product-crystals, and possibly also reactant crys-
tals. The particular microstructure and microchemi-
cal details that are produced in a rock volume
depend in part on the nature of the van Laar
equations of equilibrium for the transfer reaction,
and in part on other controls, including rates of
heating, nucleation, and within-crystal diffusion,
which also require further study.
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