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THE NUMBER OF SECTORS IN POLYGONAL SERPENTINE
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AssrRAcr

In their electron microscope study of polygonal serpentine @ovlen-type chrysotile), Yada & Wei (1987) noted that
the number of sectors in a complete polygonal section was restricted to 15 or 30 in the majority of cases. This
observation suggests an ideal geometrical model for the growth of equal polygonal sectors. The model depends first
on the incorporation of five extra b-repeats in the perimeter of each new layer added to the polygonal structure, just
as five extra r-repeats must be incorporated in the circumference of each new layer added to the cylindrical structure
of ordinary chrysotile. Further, this addition of five extra D-repeats is accomplished by the addition of whole numbers
of extra Mg(O,OH)6 octahedra to lhe new layer in each sector, These two requirements are met with minimal strain
across sector boundaries by polygonal microstructures with 15 or 30 sectors, and so account for the observations of
Yada & Wei (1987).
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SoMnaeIns

Dans leur 6tude de la serpentine polygonale (dite de type Povlen) par microscopie €lectronique, Yada & Wei (1987)
ont d€couvert que le nombre de secteurs dans une section polygonale compl0te se limite d 15 or 30 dans la majorit6
des cas. Ce fait mdne i I'hypothdse d'un modble g6om€trique id6al pour la croissance de secteurs polygonaux 6gaux.
Le modble repose d'abord sur I'insertion de cinq p6riodes suppl6mentaires le long de b dans le pdrimbtre de chaque
nouveau feuillet ajout6 ir la structure polygonale, tout comme cinq pdriodes suppldmentaires doivent 6tre incorpordes
le long de D i la circonf6rence de chaque nouveau feuillet ajoutd i la structure cylindrique du chrysotile ordinaire.
De plus, cette addition de cinq pdriodes b s'accomplit par I'addition de nombres entiers d'octaddres Mg(O,OH)6
suppl6mentaires au nouveau feuillet dans chaque secteur. Ces deux conditions sont satisfaites avec un minimum de
contrainte transversale aux bordures des secteurs des microstructures polygonales avec 15 ou 30 secteurs' expliquant
ainsi les observations de Yada & Wei (1987).

(Traduit par la Rddaction)

Mots-cldsi serpentine, serpentine polygonale, chrysotile, chrysotile de type Povlen, lizardite.

INTRODUCTION

Anomalous X-ray-diffraction and electron-dif-
fraction patterns have been described from poorly
aligned splintery and lathlike "chrysotile" @ck-
hardt 1956, Zussman et ol, 1957, Krstanovid &
Pavlovid 1964, 1967), The patterns show a series
of sharp ikl reflections on, odd layer lines instead
of the hlI reflections with diffuse tails charac-
teristic of diffraction by cylindrically wrapped
layers in chrysotile. Specimens that give the
anomalous diffraction patterns are often referred
to as "Povlen-type chrysotile" following
Krstanovid & Pavlovi6 (1964).

"Present address: Health & Safety Executive, occupation-
al Medicine and Hygiene Laboratory, Broad Lane,
Sheffield 53 7HQ, England.

A detailed interpretation of the diffraction
patterns of Povlen-type chrysotile led Middleton &
Whittaker (1976) to conclude that the anomalous
features result from a polygonal tubular structure,
possibly with a normal cylindrical core. Their
interpretation received immediate confirmation
from a study of ion-thinned samples of serpentinite
by transmission electron microscopy; this study
revealed large fibers (with diameters up to 0.1 pm)
with a structure of flat layers stacked in sectors to
form polygonal prisms, either alone or with a core
of cylindrical chrysotile (Cressey & Zussman 1976).
More examples of similar and more complex
stnrctures with flat layers stacked in sectors have
been observed in subsequent TEM studies (Cressey
1979, Wei & Shaoying 1984, Mellini 1986, Yada &
wei 1987, Mitchell & Putnis 1988).

The polygonal microstructure raises a problem
of nomenclature. The \ame lizardite is used for the
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serpentine polymorph with flat layers, chrysotile
for that with cylindrical or spiral layers, and
ontigorite for that with undulating layers. The
stacking sequences are different for the flat layers
in lizardite and the curved layers in chrysotile
(Wicks & Whittaker 1975). The flat layers in
Povlen-type chrysotile suggest that the name
lizarditeshould be adopted, but Cressey & Zussman
(1976) have described sections with polygonal layers
around the outside of a core with cylindrical layers.
The intensities of the 20l reflections from
monoclinic Povlen-type chrysotile indicate a stack-
ing sequence of the kind found for the curved layers
in chrysotile-2M.1, but those of orthorhombic
Povlen-type chrysotile indicate the sequence found
for the flat layers of lizatdite-2H,, The more
general term "polygonal serpentine" was adopted
by Cressey & Zussman (1976) and avoids any
contradiction.

In their TEM study of a sample of Povlen-type
chrysotile, Yada & Wei (1987) found that in most
cases, the number of sectors making up a complete
polygon section was confined to either 15 or 30.
The present paper considers how their finding is
related to the crystal structure of serpentine and
the cylindrical wrapping of the layers in chrysotile.

OssnnvarloNs oF SECToRS
IN POLYGONAL SERPENTINE

In their study of Povlen-type chrysotile from the
Guangyuanpu asbestos mine, Sichuan Province,
China, Yada & Wei (1987) were able to obtain
electron micrographs of more than thirty complete
polygonal cross-sections. They reported that more
than half of these have 15 sectors, almost a quarter
have 30, and in the remainder, the number of
sectors is "not explicit but close to 15 or 30",
Figure I (kindly provided by Dr. Yada) shows
several examples of polygonal cross-sections with
15 sectors; for some cross-sections, the sectors and
their boundaries are not easily recognizable, and
the exact number of sectors is uncertain, but close
to 15. A polygonal cross-section with 30 sectors is
illustrated in Yada & Wei (1987) and Wicks &
O'Hanley (1988).

These observations are supported by other
published electron micrographs: the polygonal
sections in Figures 2 arrd 7 of Cressey & Zussman
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(1976) both have 15 sectors. Of the several
polygonal sections in Figure 9 of Cressey (1979),
two have 15 sectors, and others appear to have 14,
15 or 16. The exact number of sectors is uncertain
in some cases because there is little difference in
contrast at the boundaries between adjacent
sectors. The two polygonal sections in Figure 9 of
Mitchell & Putnis (1988) each have approximately
30 sectors.

Although it has not been specifically pointed out,
published micrographs of polygonal sections show
that the sectors are approximately uniform; the
sector angles do not vary very much, although they
are not all exactly equal. In the two examples taken
from Cressey & Zussman (1976), both with 15
sectors, the sector angles range from 20 to 30' (with
a standard deviation of t 3o) in their Figure 2, and
from 18 to 30' (with a standard deviation of t 3")
in their Figure 7. These measured sector angles lie
within approximately two standard deviations of
the ideal 24o as expected if the sector angle were a
random variable. In another example [Plate 5b of
Wei & Shaoyine (1984)1, also with 15 sectors, the
sector angles range from 17.5 to 30.5o with a
standard deviation of t 3.5o. And in the example
with 30 sectors illusrated by Yada & Wei (1987),
the sector angles range from 8 to l7o with a
standard deviation of t 2.5".

In attempting to measure the sector angles of
complete polygonal sections, it became apparent
that the sectors are in some cases only approximate-
ly concentric. They do not always have a common
center at a single point. Some of the variability in
measured "sector" angles may be related to
eccentricity. Examples of incomplete polygonal
structures [Fig. 3 of Cressey & Zussman (1976) and
particularly Fig. 5 of Mellini (1986)l show much
greater variations in "sector" angle, probably in
part for the same reason.

If the fiber section is not exactly normal to the
fiber axis, or if the section is not normal to the
electron beam, the sector angles observed will differ
from their true values, depending on the direction
and amount of the tilt. This too may contribute to
the observed variability of the sector angles
measured.

Nevertheless, for complete polygonal sections,
the sector angles are approximately equal. Uniform
sector angles are assumed in the main discussion

THE NUMBER OF SECTORS IN POLYCONAL SERPENTINE

Ftc. 1. Transmission electron micrograph of polygonal serpentine showing cross-sections of many fibrils. Several
fibrils with 15 sectors are visible. In some other fibrils, it is difficult to recognize all the sectors and their boundaries,
but the number is close to 15. [Previously unpublished micrograph kindly provided by Dr. Keiji Yada, Research
Institute for Scientific Measurements, Tohoku University, Sendai, Japanl.
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that follows, and possible scope for variations in
sector angle is considered later.

SEcron ANGLES, Spcron BouNoenrss eNn
LATERAL AopTrToN To LAYERS Srecrso

rN Sscrons

An idealized form of polygonal structure with
equal sectors is the simplest to consider. Let n be
the number of sectors in such a polygonal structure.
For rz : 15 and n : 30, the sector angles are 24o
and l2o, respectively. The radial planes bounding
the sectors are very close to {061J and {0,12,1}, for
which the angles (0kl):(0kl) are 23.68o and 11.97'
respectively, based on ̂ a single-layer cell with a b
of 9.2, a cof 7,325 A, and a I of 93o16' for
chrysotile-21\4.r (Whittaker 1956). [In considering
the wrapping of layers, it is convgnient to use a
single-layer subcell with a c of 7.3 A, although the
true unit cells for chrysotile-2M., and 2Or"1 contain
two layers.l Fifteen sectors bounded by planes {061 |
or thirty sectors bounded by planes {0,12,1} would
make up complete polygons with only minor strain
due to misfit across each sector boundary.

The geometry of the polygonal microstructure
can be related to the crystal structure and the
modifications to it that are required in polygonal
serpentine. Take the n : 15 case first and consider
successive layers of a [00] projection bounded by
(061) and (061) (Fig. 2). Going outward from one
layer, the next layer must extend an extra b/6 on
each side of rhe normal ro (001) (Fig. 2). This
corresponds to the addition of one extra Mg-O
octahedron to the brucite sheet, as there are six Mg
atoms across the D repeat. The addition of two
Mg-O octahedra, one on each side of the normal
to (001), to successive serpentine layers (Fig. 2)
gives a sector bounded by radial planes {061}. To
maintain stoichiometry, it is necessary to add, gn
average, one SiOa tetahedron to both sides of the
serpentine layer at two out of three successive layers
stacked in the sector. Figure 2 shows an example
of one of a number of ways in which this might
be done.

For the n : 30 case, going outward, each layer
must extend an extra b/12 on each side of the
normal to (001). This corresponds to the addition
of half an Mg(O,OH)6 octahedron to each side of
the brucite sheet. It may mean either that an
Mg(O,OH)6 octahedron is added to both sides of
every second layer (Fig. 3a), or that one octahedron
is added at each successive layer alternately to the
left-hand and right-hand edges (Fig. 3b). Random
arrangements also will give rational indices for the
boundary plane so long as, on average, half an
octahedron is added to both sides of each successive
layer. For stoichiometry, one SiOa tetrahedron
must be added to both sides ofthe layer at one out

'Yt.YY'o'YY v Y'
]- -t ,l- _l-,l- _ _{.

b
Frc. 2. Serpentine layers in one 24o sector of an idealized

polygonal structure with 15 equal sectors in the
complete polygon. In each new layer, one Mg(O,OH)6
octahedron is added at each edge of the sector,
corresponding to sector boundaries [061 ]. To maintain
the serpentine composition, one SiO4 tetrahedron also
must be added at each edge of the sector at two out
of three layers, The diagram shows only one of the
possible ways in which this may be done. Small open
circles Mg, small filled circles Si, large open circles
o.oH.

of three successive layers @ig. 3). Figures 3a and
b each show an example of part of only one of the
possible ways in which this might be done.

The possibility that additions of octahedra are
random may point to an explanation for variations
in sector angle. Random incorporation of extra
octahedra at some layers, or the failure to add
octahedra, would lead to sector boundaries close
to [061] or [0,12,1J but with irrational indices, and
thus to sector angles that depart from the ideal
values.

In order to minimize strain at the sector
boundary, the boundary must be the same
crystallographic plane in the two crystals that form
the two adjacent sectors, i.e., the boundary plane
must be [061] or {0,12,11 in both, otherwise the
radial spacings in the two crystals will not match
along the boundary plane. But one may imagine a
sector bounded on one side by a plane 106l) and
on the other by a plane {0,12,1}, for example, with
a sector angle of 17.82" . Whereas this might explain
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Frc. 3. Serpentine layers in one l2o sector of an idealized polygonal structure with 30 equal sectors in the complete
polygon. At each new layer, on average, half an Mg(O,OH)6 octahedron is added to each edge of the sector'
corresponding to sector boundaries [0,12,11. This may be done either (a) by adding one octahedron to both sides
at every second layer, or (b) by adding one octahedron at each new layer alternately on the left-hand and right-hand
edges of the sector. To maintain the serpentine composition, one SiOa tetrahedron must on average be added to
each edge of the sector at one out of three layers. In (a), a SiOa tetrahedron is shown as being added to both
edges of every third layer, but this is only one of the possible arrangements, Similarly, in (b), only one of the
possible arrangements is shown, in this case the addition of a SiOa tetrahedron alternately to the left-hand and
right-hand edges of the sector at two layers out of three. Small open circles Mg, small filled circles Si' large open
circles O,OH.

some of the larger variations in sector angle, it
would also lead to varying numbers of sectors in
the complete polygon because the sector angles then
are not all the same. But the observations of Yada
& Wei (1987) show that the actual number of
sectors is virtually confined to 15 or 30, which
implies that the average number of octahedra added
at successive layers must be the same in all the
sectors. There is no structural requirement that this
should be so. But, if the polygonal structure
developed as an overgrofih on a nucleus of
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cylindrical chrysotile, the circular symmetry of that
nucleus should lead to the development of equal
sectors. Cases of a polygonal serpentine with a core
of cylindrical chrysotile have been observed (Cres-
sey & Zussman 1976, Mellini 1986, Mitchell &
Putnis 1988), and the presence of such cores was
inferred from diffraction evidence by Middleton &
Whittaker (1976), But there are also examples of
polygonal serpentine without a chrysotile core
(Cressey & Zussman 1976). The large variations in
sector angle for incomplete polygonal sections and

o
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specimens in which the sectors do not have a
common center may result from the lack of a
nucleus with a circular cross-section or from some
other lack of circular symmetry in the growth
conditions.

An alternative explanation for the occurrence of
15 or 30 polygonal sectors might be provided by
the addition of different numbers of octahedra to
the two sides of each sector, giving two kinds of
boundary plane. For n = 15, the first sector might
be bounded by (010) and (031), the second by (031)
and (010), the third by (010) and (031), and so on.
Bqt the final plane of the fifteenth sector would be
(031) and would not match the (010) plane of the
first sector. The indices of the first and last
boundary plane would be the same for an
arrangement with boundary planes alternately {010}
and [061] for n : 30. The sector angle would then
be (010):(061) = 11.84' instead of 11.97' where
all the boundary planes are {0,12,1}. Sectors with
two kinds of boundary plane would therefore fit
together less well than sectors with only one. The
lower strain energy would therefore favor arrange-
ments with equal sectors and identical boundaries
between sectors. On the high-resolution electron
micrograph of Yada & Wei (1987), the sector
boundaries are symmetrical with respect to the 001
lattice fringes and therefore all of the same kind.

The addition of octahedra to the Mg-O,OH
sheets has been implicitly described in terms of
regular arrangements of sectors that should have
straight boundaries. Random arrangements also are
possible so long as, on average, the correct numbers
of octahedra are added equally to both sides of the
sector. But such irregular arrangements would be
expected to have sector boundaries with zig-zags
on a unit-cell scale. The actual boundaries observed
on electron micrographs are straight, so far as can
be seen, but this should not be taken as positive
evidence for regular addition of octahedra to the
layers in each sector. The steps in - a zig-zag
boundary should be multiples of 1.5 A, the step
for one octahedron (r/6). HRTEM is therefore
only capable of resolving the coarser steps (with at
Ieast three or four octahedra added to the layer),
and even those will only be seen on micrographs if
there is sufficient contrast. There is no conclusive
direct evidence for either random or regular
addition of octahedra to the lavers in each sector.

RrrarroNsHrp BETwEEN PoLycoNAL Leyens
Sracrsn IN SEcToRs AND THE CoNcrNrnlc

LAYERS oF CHRYSoTILE

There is a special geometrical relationship
between the microstructure of flat layers in
polygonal serpentine and the concentric wrapping
of curved layers in chrysotile. Consider a cylindrical

layer of chrysotile, of radius r, in which there are
N D-repeats in the circumference:

2trr : Nb
The next layer out has a radius (r + csinB) and
contains an additional number 6N of b-repeats in
its circumference:

2 t r ( r + c s i n B ) = ( N + 6 D ,
By subtraction,

5y : QrcsinB)/b.
6Nis equal to 4.995 for the singleJayer subcell of
chrysotile-2M"r with a b of 9.2, a c of 7 .325 A, and
a B of 93"16'. The same requirements in fact also
applies to layers that are wrapped as spirals instead
of concentric cylinders, as shown in Appendix l.

Thus, each successive cylindrical layer must
contain five more D-repeats in its circumference
than the previous layer, as first noted by Whittaker
(1954). Expressed in terms of the sheets making up
the structural layer, successive sheets of octahedra
and tetrahedra must contain 30 more octahedra and
20 more tetrahedra. The observations of Yada &
Wei (1987) show that polygonal growth also
requires the addition of five D-repeats to the
perimeter of the polygon. In the 30-sector polygon,
successive layers have 2 x b/12 = b/6 added in
each of the 30 sectors, making 5D around the
perimeter. In the l5-sector polygon, the extra 5,
around the perimeter is made up of 2 x b/6 =
b/3 added to successive layers in each of the 15
sectors. This. corresponds to the addition of one
octahedron to each successive sheet in each of the
30 sectors, or of two octahedra in each of the 15
sectors.

But could there be cases of fewer and larger
sectors, e.9., five sectors with a72" angle and one
D-repeat added to successive layers in each sector?
In general, r? sectors require a sector angle 360/n
and 5 / n D-repeats, 30 / n o ctahedr a, 20 / n tetrahedra
added to each successive layer in each sector. Each
layer would extend laterally by an extra 5b/2n on
either side of the normal to (001) and be bounded
by planes {0kf with k/l = 2n/5. But the angle
(\kD:Qkl) between the bounding planes is
2arctanl(b/csinil6/2n)1, and is not exactly the
same as the sector angle 360/n.

No cell dimensions have been reported specifi-
cally for polygonal serpentine. The cell dimensions
for both chrysotile and lizardite are now con-
sidered, mainly for comparison, but also because
monoclinic polygonal serpentine has flat layers with
a curvedJayer stacking sequence (Middleton &
Whittaker 1976, Cressey & Zussman 1976), and it
is not clear which cell is most appropriate in that
case.

Table I gives the angle (0kI):(OEf calculated
using the cell dimensions for three different samples
of lizardite (with flat layers) and chrysotile-2M",
(with curved layers). For flat layers with the cell
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MBLE 1. SECT(F' AT.!3LSS, SECIOR BCIAIDIIRIES AIID O'ENN.L INSTTT TUR IDEAJT POLTGOIIAX, SEUcIIJFS
liIB DIFFBET NT]IIBBS OF SECIIF.S

36r

Mrdber s'ector
of angle

gectors

rr eadt 6€ctor

Arerage ltr'[ber of
b-repeabs (5y't),

!19 @trhedra lrilLces
(304) a$l sl of

tetrahedra (20/tt) bondary
added at eacb pl-ane

nm la1er
5h 30/n 20in {0k1}

Angle between bqldary planes

(0k1): (ofu)

orerall B16flt for cq)lete trDllEul

n t (Okr ) : (0 -k r ) l  -  360

02L
0,L2,5

041
061
081

0,L2,L
0,16,1
0,18,1
0,24,L

I O

5/6 s
L/2 3
L n 2
v4 1.5
y6 1
L/S 0.75
L/9 0.67

LA2 0.s

5 7 2
6 6 0

10 36
15 24
20 18
30 L2
4 0 9
4 5 8
o u o

5 . 5 J

1.33
t

0.67
0 .5

0.44
0.33

65.11 64.85 64.70
56.03 55.79 55.66
35.41 35.24 35.15
24.03 23.9L 23.85
18.14 18.05 18.00
12.15 12.09 12.05
9.13 9.08 9.05
8.11 8.08 8.05
6 .09  6 .06  6 .04

-34.45 -35.75 -35.50 -38.30
-23.83 -25.26 -26.04 -28.08
-5.93 1.60 -8.50 -10.80
{-0.41 -1.35 -2.25 {.80
+2.72 +1.00 0 -2.60
+4.41 +2.10 +1.50 -'0.90
+5.01 +3.20 +2.00 -{1.40
+5.17 +3.60 +2.25 0
+5.44 +3.60 +2.40 0

64.34
55.32
?4.92
23.68
L7.87
LL.97
8.99
8.00
6.00

1. Cnrolated for an ortholFxagonal- cell rlth b 9,235, c 7.233 A mrrequdlng to the trlg([Dl c€ll of llzarallte-l7
(a 5.332, c 7.233 Ar l{elttni 1982).
i. Cafcuiatea for air orthotrexagoriJ. ceU rtth b 9.223, c 7.259 A correqnding to the trtgdnl celL of llzardttFll
(a 5.325, c 7.259 A, tbluni e Zarazzl L9871.
i. Cafcuiaea for an orthohexagutal cell rlib b 9.2U, c 7.270 ^ corre4)6din9 to the hexagual c'ell of llzarclitem
(a 5.318, c 14.541 Ar neUiid & zil:,azzI L987't.
i. ciicuiatea for thi stngl*la1er ell rtth'c 7.325 A &rtved fro that of chri'sottle2ilcl (a 5'34' b 9'2' c L4'65 A'
B 93oL6' ; rttlftaker 1956).
llngl-es are o€resBed ln degrees.

dimensions of lizardite, the sector arrgle, 360/n,
and tlp angle between the boundary planes
Qkh:(DkD are close for values of n > 15: for such
arrangements, the sectors would be expected to fit
together reasonably well. For fewer sectors, there
is a discrepancy between the sector angle,360/n,
and th€ angle between the boundary planes
(lkD:-@kl); such large sectors will not fit together
without gaps. This explains why polygons with n
< 15 have not been found.

The overall fit for the complete polygon may be
gauged from the difference between the sum of the
angles (0k4:(0kt) and360" , i.e., nIQkD:(0kDl - 360.
Values of this difference (given in Table l)
demonstrate that the best overall fit is obtained for
values of r between 15 and 30, which depend on
the exact cell-dimensions. For small values of t?,
there would be a gap left if the sectors were fitted
together. For large values of n, there would be
insufficient room for all the sectors. In this case,
although each individual sector is only slightly too
big, the overall misfit is large enough to be
significant. This fuller analysis suggests that
polygonal structures with r = 15, 20 and 30 are
those most likely to be found.

Layers with the dimensions of the curved layers
in chrysotile show different behavior, as would be
expected: both the misfit between 360/n and
(0kD:QkD and the overall misfit decrease as rl -
o and the polygon becomes a circle. But the

distinction in behavior between flat and curved
layers may not be as well established as Table I
suggests. The accuracy to which D can be
determined for chrysotile is limited by the displace-
ments of the hlc0 maxima from the ideal positions'
in diffraction from a cylindrical lattice (Whittaker
1955a). To that extent, the way in which the
chrysotile data in Table I exemplify the expected
behavior may be fortuitous.

The analysis in Table I suggests that polygonal
structures with n : 15, 20 and 30 are those most
likely to be found. Why then have structures with
n : 20 not been observed? The sectors will fit
together satisfactorily for n = 20, better for some
cell dimensions than for n : 15 or 30. The case n
: 20 corresponds to the addition of a complete
tetrahedron at each layer in each sector but not a
whole number of octahedra, whereas n = 15 and
n : 30 correspond to the addition of whole
numbers of octahedra. For other values of z (16
to 19 and 2l to 29), an irrational number of both
octahedra and tetrahedra would have to be added.
The restriction of polygonal structures to 15 and
30 sectors suggests that it is the addition of
octahedra to the "brucite" sheet that controls
sector development. If so, this would eliminate
polygonal structures with r : 20 and others in
which the number of added octahedra in each
sector,30/n, is not an integer. Only r = 15 and
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n : 30 then remain to yield polygonal microstruc-
tures with minimum strain.

For polygons with 15 or 30 sectors, the fitting
of the sectors to form a polygonal structure is
unlikely to be perfect and will depend on the cell
dimensions of the flat layers. Some strain across
sector boundaries will remain and will have to be
accommodated. This residual strain may account
for the departures of sector angles from the ideal
values and from perfect regularity, and in more
extreme cases for the absence of a sector or lhe
presence of an extra one. The need to accommodate
this residual strain may also explain why the sectors
sometimes lack a single common center.

GEOMETRY oF POLYGoNAL WRAPPING
OF LAYERS

An alternative view is obtained if the geometry
of polygonal wrapping of layers in equal sectors is
considered. If there are ,? sectors each at a distance
r from the center of the polygon measured normal
to the (001) plane, the perimeter of that layer is
2nnan(180/n), where 180/n is half the sector angle.
The next layer out is at a distance (r + cinB) from
the center, and its perimeter will have increasbd by
2ncsinStan(180/n). The number of additional
D-repeats in the perimeter of each successive layer
is then [2ncrinBtan(|80 / n)]/ b.

The numbers of extra b-repeats in successive
layers calculated for various values of n are shown
in Table 2 for the same four sets of cell dimensions

TABI.E 2. NI'ITBER OI' POLYGON SECTORS AND INCREASE
IN PERIUETER AS EACE NBW I,AYER IS ADDED

Nunber of Nunber of additioml b-reDeats
sectors in Irerineter of each gucc-essive

ltew layer

2 3

as in Table l. For the cell dimensions of lizardite
(flat layers), five extra D-repeats at each new layer
can be accommodated with minimal strain in
polygonal arrangements with n between 15 and 30,
depending on the exact cell-dimensions. For larger
numbers of sectors, there would be insufficient
room, whereas for smaller numbers of sectors,
there would be a large gap. As noted above,
polygonal structures with r : 20 have not been
found, and the common occurrence of structures
with n equal to 15 or 30 shows the controlling
influence of the addition of a whole number of
octahedra to the Mg-O sheet in each sector.

For the cell dimensions of chrysotile (curved
layers), the incorporation of five ,-repeats at the
perimeler of each new layer would leave a gap that
becomes progressively smaller as rz becomes larger,
approaching an exact fit for cylindrical or spiral
wrapping (n - o). But as noted earlier, the way
in which the chrysotile data follow the expected
trend may be fortuitous because of the limited
accuracy of b.

Srnaru ENERcy AND THE GnowrH
oF PoLYGoNAL SERPENTINE

Some insight into the formation of polygonal
serpentine may be gained by considering the strain
energy of serpentines with curved and flat layers.
The local strain energy associated with a single
curved layer of radius r is made up of two
components: (a) intralayer strain arising from the
difference in cell dimensions between the sheets of
tetrahedra and of octahedra. This strain is zero at
only one radius of curyature, that for which Du".
: bt"t. At higher radii, the curvature of the layer
will be insufficient to compensate for the mismatch
between Doo and 0,.,, and the intralayer strain will
increase and approach the value for flat layers as
r - a (Fig. 4a). At lower radii, the curvature will
overcompensate for the mismatch, and the in-
tralayer strain will increase steadily as the radius
falls (Fig. 4a). (b) interlayer strain that arises
because concentric layers must be out of register
along the b axis as a result of the extra D-repeats
inserted at each layer. The interlayer strain will be
5b/2zrr and will fall steadily to zero as r increases
(Fie. 4b). The interlayer strain for flat layers is of
course zero.

The intralayer and interlayer strain energies must
be similar in magnitude. If the intralayer strain
were very small at all radii, curved layers would
never occur; if the interlayer strain were very small
at all radii, flat layers would never be found.

The total local strain energy at a curved layer is
the sum of the intralayer and interlayer com-
ponents. How it varies with the radius will depend
on the relative magnitudes of the two components

5  5 . 6 9
6  5 . 4 3

1 0  5 . 0 9
1 5  4 . 9 9
2 0  4 . 9 6
3 0  4 . 9 4
4 0  4 . 9 3
4 5  4 . 9 3
6 0  4 . 9 3

5 . 7 2  5 . 7 3
5 . 4 5  5 . 4 7
f . l l  ) . t J

5 . 0 2  5 . 0 3
4 , 9 9  5 . 0 0
4 . 9 6  4 . 9 8
4 . 9 6  4 . 9 7
4 . 9 5  4 . 9 7
4 . 9 5  4 . 9 6

5 . 7 7
5 . 5 1
5 .  1 7
5  . 0 7
5  . 0 4
5  . 0 1
5 . 0 0
5 . 0 0
5 . 0 0

1. Calculated for an ortbohexaqoral cell wlth b
9.235. c 7.233 A correepondinq to-tbe triqonal ceII
o f  l l z a r d i t e - l T  ( a  5 . 3 3 2 ,  c  7 . 2 3 3  A r  M e l l i n l  1 9 8 2 1 .
2. calculated for m orthobexaqonal cell with'b
9.223, c 7-259 A correspondlnq to-the trlqonal ceII
o f  l i za rd i te - lT  (a  5 .325,  6  7 .259 A; -MeI I ln i  E
zanazzL 19871.
3. Cal.cu!.ated for an ortbobexaqonal cell wltb b
9.21L, c 7.270 A correspondlnq- to the bexaqoml
ceL l  o f  l l za rd i te -2E l  (a  5 :318,  c  14 .541 e ;  ue i l in l
&  Zawzzt  1987t .
4. calculatod'for the single-layer ceII wlth c
7.325 A derlved fron ttrat- of cirysotlLe-2[.^r (a
5 . 3 4 ,  b  9 . 2 .  c  1 4 . 6 5  A ,  F  9 3 . 1 5 , ;  w l i t t a t c e r  r g 5 6 ) .
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(Fies. 4c and d). In Figure 4c, at larger radii, the
interlayer strain is sufficiently large relative to the
intralayer component to make the total local strain
energy for a curved layer exceed that for a flat
layer. As such, flat layers will be preferred at larger
radii, and this will account for the occurrence of
polygonal structures almost exclusively in fibrils of
large diameter and around centers with cylindrical
or spiral layers (Cressey & Zussman 1976, Mellini
1986, Mitchell & Putnis 1988). Figure 4d shows the
case in which the interlayer strain is too small to
make the total local strain for a curved layer exceed
that for a flat layer. Polygonal growth of flat layers
should not occur in this case.

It is important to distinguish the local strain
energy associated with one particular layer and the
strain energy for the bulk material. The strain
energy of a chrysotile fibril depends on the area

r .
mrd

ndrycr

under the curve describing local strain between rin,
and r"*1, the internal and external radii ofthe fibril.
Theoretically, the arrangement having the lowest
strain energy will consist of many fibrils, each of
which consists of a single layer whose radius
corresponds to the minimum total local strain
energy in Figures 4c or d. But this ignores the
contribution of surface energy to the free energy'
which would be excessively large for a singleJayer
fibril. In practice, the minimum in the curve
describing total local strain will lead to an
energetically favorable arrangement consisting of
many fibrils with rin and r"", close to r.in. This
should be so whether the curve describing local
strain energy follows Figure 4c or Figure 4d. Such
a microstructure is what is found in normal
chrysotile.

Which microstructure actually occurs must

Flc. 4. Qualitative variation of the local strain associated with a single layer as a function of its radius r for (a) the

intrafiyer strain arising from the mismatch in b between the sheets of octahedra and tetrahedra; (b) the interlayer
strain irising from the lack of register along the b axis in adjacent sheets; (c) the total strain if, the interlayer
component is sufficiently large to make the total strain at larger radii exceed the intralayer strain for a flat layer
(dasired line)i polygonal-structures with flat layers should occur for larger "radii" in this case; (d) the total strain

ii the interlayir strain is too small for the total strain to exceed that for a flat layer (dashed line); polygonal

structures should not occur in this case.
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depend on the relative rates of nucleation of new
fibrils and of radial growth of existing fibrils (1.e.,
addition of material at the outer circumference of
the fibril, increasing its outer diameter). The
occurrence of normal chrysotile implies growth
conditions with a relatively high rate of nucleation,
whereas formation of polygonal serpentine would
require a relatively high rate of radial growth, so
that the fibril radius becomes large enough for flat
layers to be preferred (right-hand region of Fig.
4c).

CoNcr-usroN AND DrscussroN

Polygonal microstructures in serpentine ideally
develop around a nucleus with circular cross-sec-
tion, which could well be a fibril of ordinary
chrysotile with concentric cylindrically or spirally
curved layers. The central zone, having circular
symmetry, should ensure the development of an
outer polygonal structure with equal sectors.

For cases of polygonal serpentine with perfectly
equally developed sectors, the number of sectors
and the sector angle are controlled by the increase
in the perimeter of each new layer and the increase
in the length of the new layer in each sector. Just
as five extra b-repeats must be incorporated around
the circumference of a new concentric cylindrical
layer or around each new turn of a spiral layer,
any arrangement of sectors must incorporate five
extra ,-repeats around the perimeter of each new
layer with minimal misfit. Depending on the exact
cell-dimensions, only arrangements with l5 and 30
sectors can do this, and these are the structures
observed in natural polygonal serpentines. In those
arrangements, each new layer in each sector
increases in length by a multiple of b/6 as a result
of the addition of a whole number of octahedra;
this controls the development of polygonal sectors.
These geometrical requirements constitute a model
for the development of regular polygonal
microstructures in serpentine that satisfactorily
explains the observation of Yada & Wei (1987)
concerning the number of sectors in the polygon,
restricted to 15 or 30 in most cases. Small
departures from regular sectors and from the ideal
number of sectors may arise in order to relieve
residual strain in the ideal polygonal microstruc-
Iures.

The sectors observed in polygonal serpentines
are not perfectly regular; the sector angles vary
within t 3o of the ideal values. Departures of the
sector boundaries from the ideal {0kl} plane may
be related to the way the atoms adjust their
positions at the interface. But there may also be
more complex structures althe sector boundaries,
in which the change in orientation of the flat layers
takes place via aregion with curved layers, such as

in Figure 6b of Mellini (1986) or one with
"antigorite offsets", in which the tetrahedra switch
from one side of the octahedral layer to the other
(Mitchell & Putnis 1988).

The model for polygonal microstructures
described is purely geometrical and tells us nothing
of how the atoms actually fit together at the
interface between two sectors. The fit is likely to
require considerable departures from the crystal
structure of lizardite expected for flat layers. In the
lizardite structure itself, the Mg(O,OH)6 octahedra
are distorted, the plane of Mg atoms is buckled,
and the SiOo tetrahedra are tilted out of the (001)
plane. These features differ in the other serpentine
-polymorphs, chrysotile and antigorite (Wicks &
Whittaker 1975). Figures I and 2 suggest that the
Mg(O,OH)6 octahedra near a sector boundary are
likely to be highly distorted. The boundary itself
may be thought of as a local severe buckling of the
plane of Mg atoms, accompanied by tilting of the
SiO4 tetrahedra out of the (001) plane.
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APPENDIX I.

INconponarroN oF ADDTTToNAL b-REpEATS
AT EACH TURN OT.A SPIRALLY WRAPPED Laypn

OF CHRYSOTILE

In polar coordinates a spiral is represented by the
equation r = k9, where k is a constant depending on how
tightly the spiral is wound.

Ifp denotes the length along the line of the spiral from
the center. then for a small increment dd

6 p = r N = k q c n
The length of n complete turns of the spiral must then

be
o!2"nk|.de = 2ilkn2.

The length of the rth turn alone of the spiral is easily
shown to be 2r'k(2n - l). The increase in length of the
(r? + l)th turn over the nth is 4f k and is independent of
n, i.e., the same at each turn.

For one turn of the spiral, r increases by 2rk, the
radial spacing of the spiral, which, in chrysotile, is the
layer spacing csinB. Therefore k = (csin!)/2n, and the

increase in length around succssive turns of the spirally
wrapped layer is 2:rcsinB. The number of extra b-repeats
added at each turn, DN, is thus (2zrcsin!)/b and has the
same value, 5, as for the concentric cylindrical wrapping
of layers.

High-resolution electron micrographs (Yada 1967,
1971) show examples of both single and multiple spiral
layers in sections of chrysotile, but in none are the 020
lattice fringes resolved around the complete fibril. For
multiple layers with m layers in the spiral, 3N is equal to
Qrmcsin?)/b, and so a multiple of 5 extra D-repeats must
be incorporated into each turn of the multiple spiral.

The case of helical wrapping of layers in chrysotile,
for which there is evidence from both X-ray and electron
diffraction and HRTEM images (Whittaker 1955b,
Whittaker & Zussman 1971, Yada l97l), is more
problematical. The length around a turn in the helix
depends not only on the layer spacing but also on the
pitch of the helix. If there is indeed a requirement that
the increase in length around each successive turn of the
helix should be a whole number of b-repeats, then this
will restrict the pitch of the helix to specific values.


