MINERALS, MINERALOGY AND MINERALOGISTS:
PAST, PRESENT AND FUTURE;
ADDENDUM

FRANK C. HAWTHORNE

Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2

In my usual disorganized fashion, I omitted to acknowledge the provenance of several of the figures used in my presidential address (Hawthorne 1993); I apologize to everyone concerned. I am particularly contrite with regard to Figure 3, as I did not acknowledge the locality and current exhibitors of these superb specimens, or the photographers whose talent made them come alive on the printed page. This information follows:

Fig. 3a. Native copper from Cooper, Keweenaw Peninsula, Michigan, currently in the permanent collection of the Houston Museum of Natural Science; photographed by Harold and Erica Van Pelt, and taken from Wilson & Bartsch (1992).

Fig. 3b. Native gold from Breckenridge, Colorado, currently in the collection of the Carnegie Museum of Natural History; photographed by Harold and Erica Van Pelt, and taken from Souza et al. (1990).

Fig. 3c. Native silver from Batopilas, Mexico, currently in the collection of Miguel Romero; photographed by Wendell E. Wilson, and taken from Wilson & Panczner (1986).

Fig. 20. (a) K-edge X-ray absorption spectrum of Mn in MnO2; (b) scattering mechanisms giving rise to the various parts of the spectrum in (a); from Calas et al. (1987).

Fig. 32. Surface microscopies. a) Scanning tunnelling microscopy, in which an atomically sharp conducting voltage-biased tip interacts with the surface of conducting and semiconducting minerals to produce atomic (or near-atomic) resolution images of the surface. b) Atomic force microscopy, in which a sharp tip senses differences in the “Born” repulsion between the atoms of the tip and the surface, producing an atomic scale “topographic map” of the mineral surface; modified from figures provided by G.S. Henderson and F.J. Wicks (pers. comm. 1993).

REFERENCES


Received September 14, 1993.