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ABSTRACT

Digital image-analysis is used for counting (modal analysis) and measuring grains (texture and fabric analysis).
Traditionally, minerals are visually recognized and manually outlined prior to digitizing and subsequent analysis. This
limitation can be overcome by using multichannel methods of classification, in which the minerals in multichannel digital
images are accurately recognized on the basis of their unique spectral or elemental signatures, established by a training stage
prior to classification. The technique is applied here for the modal analysis of three-color, electro-optical images digitized
using CCD video cameras and scanners, and multi-clemental X-ray maps acquired with an electron microprobe. In all three
case studies of the analysis of plutonic igneous rocks, the resulting mineral modes are sufficiently precise to identify signifi-
cant compositional heterogeneities between groups of samples and, in the case of X-ray clement maps, to quantify the degree
and type of alteration.

Keywords: digital images, multichanne] classification, electro-optical devices, electron microprobe, X-ray element maps,
modal analysis.

-SOMMAIRE

L’analyse d’images numériques de roches est utilisée pour calculer des surfaces (analyse modale), compter des grains
(granulométrie), mesurer leur forme et leur orientation (analyse de textures et de fabriques). Habituellement, les minéraux
doivent &tre au préalable identifiés et dessinés par 1’opérateur avant d’étre numérisés pour I’analyse. A cette identification
longue et laborieuse, il est préférable d’utiliser des classifications multispectrales semi-automatiques, rapides et objectives.
Un minéral est alors identifié par une signature spectrale spécifique obtenue lors d’un échantillonnage de I'image précédant la
classification. La technique est appliquée ici 2 des images couleur (rouge, vert, bleu) montrant la distribution modale des
minéraux, numérisées par caméra CCD et scanner, et aussi 2 des images de distribution d’éléments, telle que révélée par
rayons X, et obtenues par microsonde électronique. Dans les trois exemples de roches ignées et plutoniques, les déterminations
de mode sont suffisamment précises pour identifier des hétérogénéités significatives du mode d’un groupe d’échantillons a
Pautre. Dans le cas des cartes de rayons X, on peut méme quantifier le degré et le type de 1’altération.

Mots-clés: images numériques, classification multispectrale, détecteurs électro-optiques, microsonde électronique, carte de
rayons X, analyse modale.

INTRODUCTION

In the classical approach to characterize the mode,
texture and fabric of a rock, the minerals must be
visually recognized prior to point counting (modal
analysis) or the preparation of a grain-boundary map

* Present address: UFR des Sciences et des Techniques,
Laboratoire de Pétrologie Structurale, Université de Nantes,
2, rue de la Houssini2re, 44072 Nantes Cedex 03, France.

(texture and fabric analysis). Point counting is tedious,
and petrologists commonly prefer to a use whole-rock
chemical composition for normative classification.
Likewise, the use of indirect methods (anisotropy of
magnetic susceptibility, X-ray texture goniometry,
efc.) is common in structural petrology for fabric
analysis. However, there are many circumstances in
which direct analyses of mode and fabric are desir-
able.

Image analysis has long been recognized as poten-
tially useful to count and measure grains in rocks.



THE CANADIAN MINERALOGIST

Pnﬂn_rg X7 838 of Ea—nmwoaho (site EV




MINERAL RECOGNITION IN DIGITAL IMAGES OF ROCKS

However, one of the main problems encountered is the
recognition and separation of minerals in digital
images. Traditionally, the operator has identified
grains visually and outlined grain boundaries manually
(Fabbri 1984). Here, we describe a method for semi-
automatic identification of minerals in multichannel
digital images of planar sections of rocks. The tech-
nique is based on multispectral classification, which is
used extensively in remote sensing (Lillesand &
Kiefer 1987, Campbell 1987), and can be applied to
all types of multichannel digital images. We illustrate
the use of classified images for modal analysis with
three case studies: (1) analysis of thin sections of
syenites from the Lebel Stock, Abitibi Greenstone
Belt, northern Ontario, digitized using a flat-bed
scanner, (2) analysis of stained slabs of granitoid rocks
from the Mont-Louis — Andorra pluton, French
Pyrénées, digitized with a video camera, and
(3) analysis of major-element X-ray maps of a grano-
phyre from the Sudbury Igneous Complex, Ontario,
generated with an electron microprobe.

DiGITAL IMAGES

A digital image is an array of numbers (pixels)
depicting the spatial distribution of a measurable para-
meter. The relative intensity of each pixel is expressed
as a grey level, which ranges from 0 (black) to
255 (white). In geology, such images are convention-
ally acquired (digitized) using electro-optical devices,
such as CCD video cameras and flat-bed scanners
(Appendix), or by X-ray element mapping with an
electron microprobe, or from scanning electron micro-
scopes. If more than one parameter is measured, then
the image is referred to as a multichannel (or multi-
spectral) image.

Image processing

Digital image processing (Jahne 1991, Russ 1992)
is used for enhancement of the image and extraction of
information (Lillesand & Kiefer 1987). Most digital
images must be filtered because of inherent noise
produced during signal generation and digitization.
For most images discussed here, we have found it suf-
ficient to apply a blank-image correction, to minimize
the effects of lighting or variations in thickness of thin
sections, followed by sequential application of a low-
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pass filter (Pratt 1978) to reduce noise, and a final
sharpening filter (Laplacian of the image added to the
image; Jourlin 1987, Russ 1992) to eliminate the blur
introduced previously (Appendix). Any processing of
the image at this stage must be global and linear in
order to preserve the relations among pixels and to
safeguard their content of information.

In multichannel digital imagery, the channels are
commonly correlated. For example, pixel values in all
three channels of the RGB (red, greeen, blue) image of
Figure la show a strong linear relationship. In such
cases, it is useful to decorrelate the information carried
by each channel using Principal Component Analysis
(PCA; Appendix). The objective of PCA is to deter-
mine a new, orthogonal set of axes by the Karhunen—
Loeve (KL) transformation, which recognizes the
maximum variance in the multichannel data.
Projection of the data onto these axes results in as
many new KL channels as there are input channels;
thus the original R,G and B channels (Fig. 1a) are
transformed into KL1, KL.2 and KL3 (Fig. 1b), which
are now decorrelated.

Significance of pixels

Pixels record information from a finite area, leading
to the occurrence of “pure” and “mixed” pixels
(Fig. 2a). Consider a rock consisting of four phases, in
which the fourth phase is an alteration product of
phase 3. Pure pixels are recorded only from inclusion-
free phases (1 and 2) away from the grain boundaries
(Fig. 2a). When pixels record information from more
than one phase, they represent an average of the infor-
mation (i.e., they are mixed). In the example, the digi-
tal image is incapable of resolving phases 3 and 4.
However, a distinct object, the characteristics of which
are an average of these two phases, is detectable
(Fig. 2b).

Pixel size and spatial resolution are strongly depen-
dent on the digitizing device. CCD video cameras
offer the greatest range of resolutions between 1 mm
and 50 pum; flat-bed scanners have typical pixel sizes
of 80 to 40 um (300 to 600 DPI). The resolution of
X-ray maps is given by the width of the electron
beam, which can vary from 50 um (defocused beam)
to 1 um (focused). The choice of device is therefore
dictated by the nature of the sample and technique fo
be used.

Fic. 1. Four stages in the multispectral classification of a thin section of alkali feldspar melasyenite from the Lebel Stock. (a)
Original RGB image digitized with a flat-bed scanner, after improvement with a denoising filter, Scattergrams next to the

image show the relative RGB contents of each pixel. (b) F:
Green, and KL3: Blue) and corresponding scattergrams

alse-color composite image of the KL channels (KL1: Red, KL2:
after decorrelation of the original RGB channels by Principal

Components Analysis. () Resulting image after training and classification (see text). Scattergrams show how each sub-
class is defined in KL channel space. (d) Final image after grouping of subclasses and postclassification smoothing.
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original image

classified image

FiG. 2. Problems associated with digitization and classi-
fication of an image with pixels of finite size (x, y). The
original image (a) contains four phases. Mixed pixels
typically occur at grain boundaries (bold pixels), or where
inclusions are smaller than the pixel size (e.g., inclusions
of phase 4 in phase 3). In the digitized image (b), four
classes of pixels are identified and classified on the basis
of their grey levels, but some pixels have been misclassi-
fied at this stage (bold pixels). The classification was
carried out as follows: class A: pixels classified as
phase 1, class A’: pixels misclassified as phase 1, class B:
pixels classified as phase 2, class C: unclassified pixels,
class D: mixed pixels classified as phases 3 + 4. In the
classified image (c), classes A, B and D have been
replaced by a code (grey level) identifying the respective
phases (1, 2 and 3 + 4). Classes A’ and C have been
deleted and replaced by a code, X, representing all
unclassified pixels, by application of a smoothing filter
(see text).

Mineral recognition in digital images

Mineral recognition in single-channel (mono-
chrome or monoelement) digital images must be done
on the basis of relative intensity of light or grey-level
alone. However, such images usually display signifi-
cant overlaps in grey-level ranges corresponding to
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F1G. 3. Problems associated with thresholding a single-
channel digital image. On the image histogram (a), the
total count of grey-level values (heavy curve) is made up
of the individual grey-level ranges of biotite, quartz and
feldspar. Best-fit limits or thresholds between the mineral
phases (dashed lines) can be defined in order to classify
all the pixels in the image (b). Because of the overlap
between the grey-level ranges of the minerals, this thresh-
olding process will result in misclassification of some
pixels, particularly at grain boundaries.

the different minerals (Fig. 3a), and unless the image
is strongly bimodal, any attempt to separate phases by
thresholding the image histogram (Fig. 3a) will
result in a significant amount of misidentification
(Fig. 3b). This problem can be alleviated by using a
three-channel color image, because with a coding of
8 bits per pixel in each channel, 2563 potential colors
are available for mineral recognition instead of
the 256 grey levels of a monochrome image.
This is the rationale for using multichannel classifica-
tion; minerals can be accurately identified on the
basis of their unique signatures in multichannel data
(unique colors or combinations of element concentra-
tions).
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MULTICHANNEL CLASSIFICATION

The multichannel (or multispectral) technique of
classification is well established in the field of remote
sensing, where it is used to characterize and map sur-
face materials that are detectable in multispectral
satellite and airborne digital data (e.g., Lillesand &
Kiefer 1987, Campbell 1987, Gupta 1991). We focus
here on its specific application to the characterization
of mineral assemblages. A step-by-step description of
the various procedures required to accurately identify
minerals in a digital image follows, using the analysis
of an alkali feldspar syenite as an example (Fig. 1).
With the appropriate software (Appendix), the classifi-
cation of an image usually takes several hours. When a
suite of rocks with similar compositions are analyzed,
the classification established for the first image can be
applied to all subsequent samples, in which case the
time spent on each image is substantially reduced.

Training stage
The first step, or “training” stage, of the mineral-

recognition procedure involves sampling, in each
channel, the characteristic grey-levels of previously
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identified minerals (Fig. 4a). A mineral phase is then
defined as a set of pixels that falls within a charac-
teristic range of color or class (Fig. 4b). Because of
alteration and residual noise, sampling of a number
of grains of each mineral is recommended. The
number of samples will be determined by the variabili-
ty of the mineral. In some cases, it is useful to define
subclasses, in which case both the host mineral and its
alteration product(s) are sampled (viz., Fig. 2a). In the
syenite example, three subclasses of feldspar, two of
biotite, two of pyroxene, one of magnetite and one
of titanite were defined (Fig. 1c).

Supervised classification

The second step is a “supervised” classification of
all the pixels using the above definitions of mineral
phases. The success of the classification strongly
depends on how representative the initial sampling of
minerals was with respect to the range of colors avail-
able in the image. If sampling was insufficient, then a
large number of pixels will be misclassified or un-
classified.

The “parallelepiped” method is the simplest tech-
nique of classification (e.g., Campbell 1987, Jihne

a Red subclass #1 b
upper
bound of
subclass #1 .
image
lower cloud
bound of
subclass #1
Training
7 Green
o Parallelepiped Minimum distance to
R -subclass #1 classification means classification

Blue

Classified image

FIG. 4. Stages in the multispectral classification of a three-channel image. During the training stage (a), subclasses are defined
and sampled from sampling areas outlined on the raw digital image, and the results are displayed on scattergrams (b).
Subclasses, outlined with heavy lines in (b), can be characterized using parallelepipeds (or rectangles in two dimensions),
but a “minimum distance to means” classifier (c) results in fewer misclassified and unclassified pixels. In three-channel
space (d), subclasses are represented by spheres, and overlaps between classes are smaller than if parallelepipedic bound-
aries were used. These subclass definitions are then used to classify all pixels in the image (e).
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1991). Minimum and maximum bounds of grey-level
values for each subclass are determined. A subclass is
then defined by a rectangular box (Fig. 4b) in two-
channel space and by a parallelepiped in three-channel
space. Pixels whose intensity values fall within a
given parallelepiped can now be classified, whereas
those falling outside or where two parallelepipeds
overlap remain unclassified. In practice, the most
appropriate limits between classes are chosen after
several iterations.

Because of these limitations, we use the “minimum
distance to means” or “barycentric” method (Lillesand
& Kiefer 1987), in which a class or subclass is defined
as a spherical cloud of data. The division between sub-
classes is chosen on the basis of the distance between
the centers of the clouds, and each subclass is charac-
terized by a centroid and a radius (Figs. 4c, d).
Because only relatively few pixels are sampled during
the training stage, the radius of each subclass is nor-
mally doubled for the final classification (solid lines in
Fig. 4c). This ensures that the majority of pixels are
classified (Fig. 4¢). Where two subclasses overlap,
their boundary is redrawn at mid-distance from their
centers (straight boundaries in Fig. 4c). In the classi-
fied image (Fig. 1c), the original color-variations of
the principal component image (Fig. 1b) are now con-
centrated into discrete color-codes corresponding to
mineral subclasses and unclassified pixels.

Improving the classified image

Classified data commonly have a salt-and-pepper
appearance (Fig. 1c), owing to the large number of
subclasses and the presence of misclassified pixels.
Regrouping of subclasses produces a substantial visual
improvement, but does not eliminate misclassified
pixels, which inevitably occur either as isolated pixels
or as one-pixel-thick lines between minerals. More
generally, grain boundaries look jagged. Both effects
can be removed by applying an “edge-smoothing
filter” (Launeau et al. 1990), which slightly increases
the percentage of unclassified pixels, but removes all
small within-phase holes, jagged edges, and reduces
the number of misclassified pixels at phase bound-
aries. In our example (Fig. 1d), unclassified pixels
now represent 5.7% of the image following this proce-
dure. In classified X-ray maps, misclassified and
unclassified pixels are mainly due to noise with a
Poisson spatial distribution, occurring as isolated
pixels or as strings of pixels within grains. In this case,
a statistical smoothing filter, as suggested by Ripley
(1988), is useful (Appendix).

APPLICATIONS
Once minerals have been recognized and separated

in digital images, many rapid, precise measurements
can be made. For example, the intercept technique
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(Launeau et al. 1990) can be used to quantify the
anisotropy of individual mineral phases in classified
images (Launeau & Bouchez 1992, Cruden &
Launeau 1994). Crystal shapes, spatial arrangements
and size distributions also can be measured (Cashman
1990). Three case studies, in which different types of
image were used for modal analysis, are presented.

Calculation of mode

Modal analysis of a classified image is obtained by
dividing the pixel counts for each mineral by the
number of classified pixels. Unclassified pixels are
thereby redistributed in proportion to the mode of each
phase. Because unclassified pixels of electro-optical
images are concentrated along grain boundaries, a cor-
rection of their redistribution using grain perimeters
may be envisaged but does not improve the precision
of the mode by more than 1%. In the syenite (Fig. 1),
we find: feldspar = 79.9%, biotite + magnetite = 3.6%,
pyroxene = 10.5%, titanite = 0.3%, with 5.7% pixels
unclassified. The recalculated mode using 94.3% clas-
sified pixels is, therefore: 84.7% feldspar, 3.8% biotite
+ magnetite, 11.1% pyroxene and 0.3% titanite.
Differentiation between biotite and magnetite was not
possible owing to their similarity in tone and color in
the image.

Lebel Stock (flat-bed-scanner images)

The Lebel Stock is a 6-km wide, ca. 2673 Ma old
syenitic pluton located in the Kirkland Lake area of
northern Ontario (Wilkinson ez al. 1993). Internally, it
shows a weak, concentric, transitional zonation from a
100- to 1000-m-wide marginal zone of medium- to
coarse-grained alkali feldspar melasyenite to coarse-
grained alkali feldspar syenite, which occupies most of
the central regions of the intrusion (Cruden & Launeau
1994). Modal analyses of six representative samples
within the stock (Fig. 5) were carried out on 4 X 6 cm
polished thin sections, cut paraliel to the principal
planes of the magnetic fabric ellipsoid of each sample.
A three-channel (RGB) digital image of each thin
section was made with a color flat-bed scanner with a
spatial resolution of 300 DPI (Appendix).

A principal component analysis (PCA) was neces-
sary for mineral identification because of the strong
correlation among channels in the images (Fig. 1a).
Following classification, modal analysis was done on
counting areas ca. 15 cm? (ca. 188 000 pixels).
Because of the scale used and the problems of separa-
tion discussed above, modes of magnetite and biotite
were calculated together.

The percentage of K-feldspar increases from 73%
in the melasyenite at the stock margin to 93% in the
syenite at the center (Fig. 5b). These modes also indi-
cated a previously unrecognized intermediate facies
with 84% K-feldspar. Modes of pyroxene are 22%,
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FiG. 5. Modes of K-feldspar, pyroxene, biotite + magnetite and titanite in the Lebel Stock. (a) Individual results showing
the modal variations between facies and thin sections (oriented parallel to the principal axes of the magnetic fabric, x, y, z).
(b) Averages and standard deviaitons between modes. (c) Average modes.

13% and 6% for the marginal, intermediate and central
syenite units, respectively, and those of biotite + mag-
netite, 5%, 3% and 1%. Standard deviations of mineral
modes, determined for each facies of the intrusion
(Fig. 5b), indicate the degree of compositional hetero-
geneity between thin sections. Titanite, which consti-
tutes 0.4% of the intermediate facies and 0.1% of the
other facies, shows a large standard deviation because
of its low mode and wide dispersion. The standard
deviations of the other minerals are relatively small,
and always less than the percentage differences
between facies. The intermediate syenite shows the
highest standard deviations in mineral modes, indicat-
ing a greater cm-scale compositional heterogeneity
than the marginal or central facies. This may be due to
incomplete mechanical mixing between mafic and
felsic syenites, as suggested by Sutcliffe et al. (1990)
for the origin of melasyenite in the petrologically
similar Otto Stock, exposed 2 km southwest of the
Lebel Stock. The subtle heterogeneities reported here
would not have been detected using whole-rock geo-
chemistry or mineral norms.

Mont-Louis — Andorra Pluton
(digitized video camera images)

The ca. 300 Ma old Mont-Louis — Andorra Pluion
is located in the Axial Zone of the Pyrénées, and
intrudes Cambrian to Lower Carboniferous sediments
(Autran et al. 1970, Pouget et al. 1989). It is normally
zoned, from quartz diorite with numerous mafic
enclaves at the margin, through granodiorite to
monzonite in the core (Gleizes er al. 1993). A steep
compositional gradient occurs between the monzonite
and the granodiorite, whereas the transition between
granodiorite and quartz diorite is gradational.

To differentiate between plagioclase, K-feldspar
and quartz in these rocks, slabs cut parallel to the
principal planes of the magnetic fabric ellipsoid and
stained with sodium cobaltinitrite and red amaranth
(Bailey & Stevens 1960, Laniz et al. 1964) were ana-
lyzed, although this did not allow the distinction
between amphibole and biotite. Multichannel digital
images were made with a monochrome CCD camera
and color-pass filters (Appendix). PCA was not neces-
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FiG. 7. Modes of plagioclase, biotite (+ amphibole), K-feldspar and quartz in the Mont-Louis — Andorra pluton. (a) Individual
results showing the modal variations between facies and slabs. (b) Averages and standard deviations between modes.

(c) Average modes.

sary in this suite of samples because of the distinct
colors of each phase (Fig. 6a). The modes, determined
from counting areas ca. 12 cm? (96 000 pixels) of
18 samples analyzed from the three principal facies
of the pluton, are presented in Figure 7.

Modes determined from the classified images
(Fig. 6b) are similar to those reported in previous
studies of the pluton (Autran et al. 1970, Gleizes et al.
1993), but because numerous and differently oriented
sections were analyzed, several new observations on
the modal variability of the pluton are evident
(Fig. 7b). The standard deviations of all mineral
modes are greater in the quartz diorite and grano-
diorite than in the monzonite. In the quartz diorite,
the modal heterogeneity is due to clusters of mafic
minerals which form irregular patches and schlieren.
In the granodiorite, the largest deviations in mineral
mode are due to the presence of irregular centimeter
scale patches of K-feldspar with complex amoeboid
boundaries. Quartz is markedly constant in all three
facies. The very constant modes of the monzonite
probably reflect a homogeneous distribution of
minerals, as would be expected for crystallization in a
closed system. By contrast, the strongly variable
modes of the quartz diorite and granodiorite may be

due to crystallization in a more dynamic environment,
in which flow-related mechanical clustering, magma
mixing, or melt migration could produce the observed
cm-scale heterogeneities.

Granophyre from the Sudbury Igneous Complex
(electron-microprobe X-ray element maps)

Modal analysis of a sample of granophyre from the
North Range of the Sudbury Igneous Complex
(Naldrett & Hewins 1984) is presented. This sample
was difficult to analyze using electro-optical tech-
niques because the feldspars and quartz could not be
separated due to their similar grey-levels and fine
granophyric intergrowth. Fine-grained products of
alteration, such as epidote and chlorite, also lead to
difficulties in the classification of the main mafic
phases. Furthermore, because of the strong alteration,
staining could not be successfully applied. Therefore,
X-ray imaging using a microprobe seemed to be the
most appropriate technique for the analysis of this
rock.

Five elemental X-ray maps (Al, Ca, Mg, K, Si;
512 x 512 pixels), obtained from the center of a large
polished thin section, were used for the analysis
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(Appendix). Grey-levels in a single-channel elemental
X-ray map represent the relative concentration of the
element, normalized to 256 levels. Because of their
unique chemistry, the ranges in grey-levels of most
minerals define sharp peaks on the image histogram,
with less overlap than those typical of electro-optical
images (viz., Fig. 3). Many mineral phases can there-
fore be successfully separated by thresholding the
image histogram of a single-channel image. However,
because no single element occurs in all different
mineral species in unique amounts, a full recognition
of all the phases in a single-channel image is rarely
possible. We have found that the most effective
approach for the classification of multichannel X-ray
maps is to firstly decorrelate and concentrate the infor-
mation using PCA (Fig. 6¢), and secondly to perform
a minimum distance to means multichannel classifica-
tion on the first three principal-component images
(Fig. 6d).

The effect of the KL transformation on the data is
summarized in Tables 1 and 2. Prior to transformation,
the information content (6%; Appendix) is evenly dis-
tributed throughout all five channels of the X-ray map
(Table 1). Following the transformation, 88% of the
information content is now concentrated within
the first three components (A; Table 2). The remaining
12% of the information, left in the KL.4 and KL5
channels, largely corresponds to noise. The first three
principal components can now be displayed as a
pseudo-color image (Fig. 6¢) in which each mineral is

TABLE 1. CONTRAST IN THE X-RAY MAP IMAGE OF THE GRANCPHYRE

Channel i Al Ca Mg X Si o
6% 33205  925.1 25147 20517 25535 11365
C% 29.2 8.1 22.1 18.1 22.5 100

Channel i major elements, 6%: grey level standard deviations or contrast of the X-
ray map chennels, C: sum of 62} , total contrast or amount of information in the
image. C%: percentage of the total contrast in each chanvel,

TABLE 2. CONTRAST IN THE KL IMAGE OF THE GRANOPHYRE
Channel j KL1 KL2 KL3 KL 4 RLS Cx.
A 4148.7 3880.2 1969.7 11236 2433 11365
CKL% 36.5 34.1 17.3 9.9 2.1 160

Channel j: principal components of the X-ray maps following principal comp

analysis. Aj: eigenvalues of the covariance matrix of the X-ray map channels used
for the Karhunen-Loéve (KL) transformation, and contrast of the new channels
(KLt to KL5). CKL: sum of Aj, or total contrast of the KL channels (equal to C in
the original image) shows that all information is preserved.

CKL%: p ge of total in each ck l. Note that most of the
information is now concentrated in the first three channels (88% of C).
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characterized by a distinct color. The chemical compo-
sition corresponding to each color can be checked by
examining the original element-distribution maps.
Information, not obvious in thin section or single-
channel data, on the nature and spatial distribution of
the alteration of minerals also can be determined, and
is important for the definition of subclasses during
classification of the image.

The KL1, KL2, KL3 pseudocolor image (Fig. 6¢c)
was used for mineral identification (Fig. 6d) according
to the training and classification procedures outlined
previously. The number of pixels belonging to each
subclass (Table 3, raw-data column) was determined
from a 6.55-cm? (262 144 pixel) area. When grouping
the subclasses, chlorite was included with amphibole
because it almost always occurs as alteration-related
inclusions in the amphibole. A statistical smoothing
filter (Appendix) was applied to reduce the number of
misclassified pixels in the classified image. This
increased the number of unclassified pixels from 0.2
to 4.5% (Table 3, processed data column), and caused
a slight change in the area of each phase due to the
deletion of mixed pixels at grain boundaries (e.g.,
Fig. 2b) and within-phase noise. For most minerals
this change in area is less than or equal to 2%. The
area of plagioclase increased by 2.2%, whereas that of
epidote was reduced by 1.8% because of the replace-
ment of some small epidote grains by plagioclase
during application of the smoothing filter. Although
this resulted in an underestimation in the mode of
epidote, greater accuracy would have required a much
higher spatial resolution. The same effect deleted a
few needles of apatite, and magnetite lost 2.2% in area
due to misidentification with certain amphibole grains
that are intergrown with a Ca-rich alteration. The mag-
netite mode is considered accurate, as verified by
comparison to the original thin section. The final
mode (Table 3, mode column) is a good estimation of
the composition of the rock at the 50-um scale.

CONCLUSIONS

Multichannel classification, as developed for the
analysis of digital multispectral satellite and aircraft
images (Lillesand & Kiefer 1987), also can be applied
to digital multichannel images of rocks at length scales
between about five centimeters to less than one milli-
meter. Such images are made using electro-optical
devices (scanners, CCD cameras), in which the image
channels are the primary visible colors, or with an
electron microprobe, as X-ray element maps.
Although X-ray element mapping is time-consuming
(0.1 s/pixel dwell-time versus 0.1 us/pixel dwell-time
for a CCD device; Appendix), it provides images with
higher spatial resolution and greater ability to separate
mineral phases than is usually possible with electro-
optical images, in which only the rock-forming
minerals can normally be identified. Problems related
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TABLE 3. GRANOPHYRE CLASSIFICATION AND MODAL ANALYSIS DATA

Class names comments Raw Data Processed Data
subclasses classes classes Modes

pixel size 50um pixels %area %area pixels %area %

unclassified 496 02 0.2 11881 4.5 0.0

quartz 1 20863 8.0

quartz 2 with K-feld mixed on edges 36747 140 220 56415 215 22.5

plagioclase 1 35676 13.6

plagioclase 2 rich in sericite 12029 4.6

plagioclase 3 rich in epidote 31021 11.8 30.0 84464 322 33.8

epidote Jree grains 9083 35 35 4408 1.7 1.8

chlorite 1 with sericite (K rich)? 4595 1.8

chiorite 2 8433 32 50

amphibole 1  with low alteration 13777 53

amphibole 2 with chlorite + magnetite 26665 102 15.4 52160 199 20.8

magnetite with other minerals 14202 54 54 8280 3.2 3.3

apatite 2273 09 0.9 425 0.2 0.2

K-feldspar 1 19067 7.3

K-feldspar 2 with quartz mixed on edges 27217 104 17.7 44111 168 17.6

sum 262144 100 262144 100 100

Raw Data : list of the number of pixels and percentages of each subclass counted after
barycentric classification of the KL 1, KL2, KL3 image; the percentages for each class are
sums of the subclass counts. Processed Data : pixel counts and percentage for each class after
subclass grouping and statistical smoothing of the resulting image. Modes (in bold text) are

calculated for the number of classified pixels.
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to finite size of pixels, mixed pixels and phase and
phase-boundary definition still exist with both types of
data. Choice of digitization technique should be made
on the basis of the nature of the sample and the type of
image-analysis measurements required.

Principal Component Analysis is used to decorre-
late the information content of multichannel images,
and allows for more effective visualization of differ-
ences in mineral colors. PCA is particularly useful for
combining the large number of channels available in
X-ray element maps. Minerals in the resulting pseudo-
color image are well defined and easy to identify by
comparing them to the original X-ray element images
or thin section.

The success of any multichannel classification is

dependent on the judgement and skill of the operator,
because the mineralogy of the rock and the choice of
training sites must be established by standard tech-
niques of mineral identification prior to classification.
When studying a suite of rocks of similar composition,
the classification parameters need only be determined
once. The procedures can therefore be used for rapid
petrological measurements. The technique of modal
analysis illustrated here is sufficiently precise to detect
subtle heterogeneities in the modes of rock-forming
minerals between samples digitized using electro-
optical devices (Lebel Stock and Mont-Louis —
Andorra pluton studies). A higher precision in deter-
mining modes can be achieved from X-ray element
maps (Sudbury Igneous Complex granophyre).
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APPENDIX
Creating digital images

Electro-optical devices. A Sony CCD (coupled
charge device) video camera (sensing area: 8.8 x
6.6 mm) and a digitizing card were used for the study
of the Mont-Louis — Andorra pluton, and an Abaton
24-bit flat-bed color scanner was used for the Lebel
Stock study. A detailed description of the operation of
both devices was given by Pratt (1978), Jihne (1991)
and Khosla (1992). Both instruments record infor-
mation on the intensity of incident visible electro-
magpetic radiation that is reflected or transmitted by
the sample. The intensity of the signal produced by a
CCD cell is a function of the number of photons that
strike it over a given “dwell-time”, which is usually on
the order of 0.1 us. Most CCD cameras are designed
for broadcast television and produce images with a
% shape ratio, which imparts an anisotropy to the
pixels of the digital image. This distortion should be
corrected before processing the image. A second source
of distortion of the image comes from the digitization
of the analog output signal from the camera because
the grid size of the CCD is different from the grid size
of the digitized image (580 X 500 on the CCD versus
512 x 512 on the image). Such distortions can be
avoided by using a CCD with square pixels and a
proper frequency of digitization (Russ 1992). For
multispectral classification, the three primary colors
must be available on three independent channels.
Pixels in each channel should also correspond to the
same point on the sample. This can be done directly
with a 3-CCD, or 3-chip, camera, or indirectly with a
black and white CCD camera using different color
filters. It cannot be done with a conventional, single-
chip, color video camera because primary color pixels
are offset, rendering channel superpositions impos-
sible. The digitizing card used to “grab” the image
from the CCD must be able to record at least 8 bits per
pixel, giving 256 grey-levels. Twenty-four-bit flat-bed
scanners are well suited for petrological purposes, as
the image grid is square (no distortion), light intensity
is homogeneous over the entire image, and the result-
ing three 8-bit channels (RGB) are ideal for multi-
spectral analysis.

Microprobe device. A CAMECA SX-50 electron
microprobe (Department of Geology, University of
Toronto) was used to create X-ray maps of five major
elements (Al, K, Mg, Ca, Si) for the study of the
Sudbury Igneous Complex granophyre by mechani-
cally translating a polished thin section beneath a
stationary, 50-um-wide defocused electron-beam. The
stage was moved continuously in the row direction at
a velocity determined by the 0.1 s “dwell-time”,
during which X rays are counted for each pixel, giving
a beam path on the thin section of 50 um per pixel.
The distance between rows was set to 50 um to pro-
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duce a square grid between pixel centers.
Image processing

Images were processed using the software package
DIDACTIM (ICARE International, Prologue —
B.P. 2736, 31312 Babege Cedex, France) on a
486DX33 PC clone with a VIPIX RGB image-display
card and Mitsubishi 20” RGB color monitor. Most
commercial image-processing packages for remote
sensing applications are capable of the main filtering
and classification procedures recommended here.
Certain routines (post-classification smoothing, modal
and other analyses) must be programmed indepen-
dently.

Preprocessing of the image is usually required
before classification. This step must be global and
linear in order to maintain the mutual relationships
among pixels, and hence to safeguard information
content. Among the many techniques that are available
(Ripley 1988, Jahne 1991, Russ 1992), the following
procedures were used for our images.

Blank-image correction. A blank image is gener-
ated 'in order to record noise coming from the CCD
camera, such as dust on the lens and lighting varia-
tions. For each pixel, the calculated average grey-level
of the digitized blank image is subtracted from the
original blank image (Russ 1992). This difference is
then subtracted from the image to be corrected.

Denoising filter. Random electronic noise with a
high spatial frequency is removed using a low-pass
filter (Pratt 1978). A digital filter, also known as a
kernel or sliding mask, is an array of numerical values
that is moved across the image, and centred consecu-
tively on each pixel. The new pixel value is given by
the sum of the products of the array values and the
underlying pixel values. This value is usually normal-
ized by the sum of the kernel coefficients in order to
keep the final pixel value between 0 and 255. The
matrix, Al, which calculates a weighted average of the
nine neighboring pixel values (Pratt 1978), is particu-
larly well suited for denoising electro-optical images.

131
393 (Al
131

For example, application of this kernel on a pixel
(%, y) gives the following intensity z for each channel i:

z(X, y) =
{1 z(x-1, y-1) + 3 z(x, y-1) + 1 z(x+1, y-1)
3z(x-1,y) +9zKxy) +3zx+ly)

1 z(x—1, y+1) + 3 z(x, y+1) + 1 z(x+1, y+1)} /25

Sharpening filter. The hazy image produced during
denoising can be sharpened by adding a fraction of the
Laplacian of the image to the image (Jourlin 1987,
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1 pixel (x,y) value
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Channel j

Fic. Al. Ilustration of a Principal Component Analysis (PCA) or Karhunen — Loéve (KL) transformation of channels i and j.
The first component (KL1 is given by the direction of maximum contrast in the image. The second (KL2) is the maximum
contrast orthogonal to KL1. After transformation, a pixel located in column x and row y, with intensities Ic; and Ic;,
becomes Ic,; and Ic, in the new KL1, KL.2 system of coordinates. C; and C; are the original contrasts, and Cy; and Cyy are

the contrasts after KL transformation.

Russ 1992). Matrix A2 is used for this purpose
(Launeau ef al. 1990) and is also useful for enhancing
edges between phases.

-1 4 -1
-4 30 4 (A2)
-1 4 -1

Principal Component Analysis (PCA). For images
of very low contrast, the Karhunen—Loéve transforma-
tion (Loéve 1955) or PCA is used to decorrelate the
information in each channel (Lillesand & Kiefer
1987). It can also be used to concentrate the informa-
tion carried by many channels. The covariance matrix
Q of three or more channels is calculated using equa-
tion A3, If Icl(x,y) and Ic;(x,y) are the intensities of the
pixel (x,y) in the channels ¢; and c;, and Nx, Ny are
the number of columns and rows, then the covariance

of the channels is:

COV(ci, ¢j) =
1 Nzy Nx (T, (x,y)—Icl) (Ic; (X,y)—Ic) (A3)
Nx.Ny Y"l x—l

where Ici_. ): Z Ie(%,y)

NNy

For an RGB image, the covariance matrix of the image
is:

COV(cg,cr) COV(cg,c) COV(cg,cp)
COV(cg,cr) COV(cg.cq) COV(cg.cp) |(A4)
COV(cp,cg) COV(cg.cq) COV(cp,cp)

Q=

The covariance of one channel with respect to itself is
equal to its standard deviation, 62, and is a measure of
the contrast, or information content of the channel:



MINERAL RECOGNITION IN DIGITAL IMAGES OF ROCKS

COV(ci, ci) =

1Y % Go®y)rTe?=oic)
Nx.Ny y=1 x=1

(A3)

The sum of the diagonal components of Q gives the
total contrast C,

C =0%(cy) + 6%(cg) + 6%(cy) (A6)
The goal of the Karhunen-Loéve (KL) transformation
is to determine the direction of maximum contrast in
the channel space of the image (Fig. Al). This opera-
tion defines a new axis oriented in the long dimension
of the distribution of the data. Projection of the data
onto this axis gives a new set of intensity values in the
“first component” channel (KL1). Similarly, the
“second component” (KL2) is calculated to find
the second axis perpendicular to KL1 (Fig. Al). The
“third component” (KL3) is perpendicular to KL.1 and
KL2. Collectively, KL1,2,3 are known as the principal
component axes. Their directions are given by the
eigenvectors of the covariance matrix, and their inten-
sities by the eigenvalues A;;:

Ay
QKL=[ A ZG]with(xl>>\q>7\3) (A7)

This operation is equivalent to a rotation of the axes of
the coordinate system (Fig. Al), and the sum of the
eigenvalues of the matrices Q and Qy;, is constant.
All of the contrast or information is preserved during
the KL transformation, and C = Cg; = A; + A, + A,
If the corresponding eigenvectors of Q are:

CIr Cr C3r
KLI = CIG KL2 = C2G KL3 = 03G
Cip Cop C3p

then the KL transformation is

Igr 1 (%.y) = c g Ieg(x,y) + €16 Ieg(x.¥) + 45 Icg(x,y)
Ik o(%,Y) = eop Ieg(R,y) + €o Ieg(X,y) + o5 Icp(X,y)(AB)
Ig1a(%,) = Cag Iep(%,y) + €36 Ieg(%,y) + ¢35 Ien(x,y)
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and the new channels of the transformed image are
called KL1, KL2 and KL3. The new intensities of
each KL channel must be normalized to the maximum
intensity of KL.1 because the original length of KL1
can be greater than 255 (there are 360 possible inten-
sity values for an axis inclined at 45° between
channels i and j).

Post-classification smoothing

The values of pixels in the classified image are now
used as labels, describing the mineral subclasses, as
opposed to the quantities of the original image. Spatial
filters, used in the preprocessing stage, can no longer
be applied to smooth the salt-and-pepper appearance
of the image because post-classification smoothing
algorithms must operate on the basis of logical opera-
tions, rather than simple arithmetic computations
(Lillesand & Kiefer 1987). Smoothing is done using
various “majority filters”. An example of such a
routine, which was developed for smoothing classified
X-ray map images, follows. First, a search is made
for pixels that have two neighbors or less than two
neighbors belonging to the same class. Then, using the
kernel, A9, and the algorithm below:

1 21
1 3 431
2 4 8 4 2 (A9)
1 3 4 31

121

“for each phase, i, of the kernel, P; = ¥ {if pixel, ,
€ class i : 1 else 0} x C,,” the number of pixels
belonging to each phase weighted by the corres-
ponding coefficients is calculated. The central pixel
is then assigned to the majority class except where
two classes are equally represented, or where the
weighted density of the majority class is less than 16,
in which case the pixel is not classified. A weighted
density-limit of 16 is chosen; below this value, there is
insufficient statistical representation of any class in the
area surrounding the pixel in question.



