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ABSTRACT

The derivation of ratios for plotting on Pearce element-ratio diagrams is facilitated by casting the problem in terms of
linear algebra. Two types of systems of linear equations result: systems of homogeneous equations and systems of non-
homogeneous equations. Systems of homogeneous equations with a rank less than the number of chemical elements in the
ratios lead to diagrams that can test whether chemical variations in a suite of rocks can be explained by sorting of a particular
assemblage of minerals. Systems of nonhomogeneous equations with ranks less than or equal to the number of elements in
the ratios lead to diagrams that can test whether an individual mineral in a postulated assemblage is required to explain the
chemical variations in a suite of rocks. The method of choice for finding the solutions to the systems of equations, which are
the coefficients of the chemical elements in the ratios, is singular-value decomposition.

Keywords: Pearce element-ratios, linear algebra, singular-value decomposition, chemical variations, testing hypotheses,
igneous petrology.

SOMMAIRE

La dérivation de rapports d’éléments pour la conception de diagrammes de Pearce est facilitée par la formulation du
probléme en termes d’algebre linaire. Deux types de systémes d’équations linéaires en résultent, soit des systémes d’équations
homoggnes et d’autres, d’équations non homog2nes. Les systémes d’équations homogenes ayant un rang moins élevé que le
nombre d’éléments chimiques dans les rapports ménent & des diagrammes visant & évaluer si les variations chimiques
exprimées dans une suite de roches ignées peuvent s’expliquer par le triage d’un assemblage spécifié de minéraux. Les
systémes d’équations non homogeénes ayant un rang plus petit ou égal au nombre d’éléments dans ces rapports ménent 2 des
diagrammes pouvant vérifier 'hypothése qu’un minéral particulier d’un assemblage proposé est nécessaire pour expliquer la
variation dans la composition d’une suite de roches ignées. La méthode préférée pour trouver les solutions a ces systémes
d’équations, qui sont les coefficients des éléments chimiques dans ces rapports, serait la décomposition a valeur singuliére.

(Traduit par la Rédaction)

Mots-clés: rapports d’éléments de Pearce, alggbre linéaire, décomposition a valeur singulidre, variations chimiques, hypotheses
pétrogénétiques, pétrologie ignée.

INTRODUCTION

Pearce element-ratio diagrams (Pearce 1968) are
designed to test hypotheses relating the compositions
of samples of a rock suite. There is an extensive liter-
ature on the application of Pearce element-ratio
diagrams to the solution of petrological problems (see
Nicholls & Russell 1990, Chapter 2, for a bibliography
through 1988). Ernst et al. (1988) provided additional
examples of the application of Pearce element-ratio
diagrams. To make these tests, diagrams that account
for the stoichiometry of the phases involved in
the mass exchanges that led to the compositional
variability are needed. Consequently, a common
problem for users of Pearce element-ratio diagrams
arises in the design of the ratios for plotting on
the axes of the diagrams. Because each suite of

rocks is unique, the ratios to be plotted may also be
unique.

For example, suppose the following hypothesis:
The chemical variations in an igneous rock suite are
due to the sorting of olivine with compositions repre-
sented by (Mg,Fe),Si0,, plagioclase with composi-
tions between albite (NaAlSi;Og) and anorthite
(CaAl,Si,0q), and clinopyroxene [Ca(Mg,Fe)Si)Ogl.
A diagram is required with axial ratios having the
property such that if the hypothesis is false, then
the data will not fall on a line with a given slope.
Usually, the given slope is set to unity. A pair of ratios
that can produce such a diagram are:

X/K =Si/K
Y/K= 1
(0.25 A1+ 0.5 FM + 1.5 Ca + 2.75 Na)/K
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FiG. 1. A Pearce clement-ratio diagram designed to test
whether the chemical variations in a suite of lava flows
from Kilauea Volcano (Wright 1971, Jackson et al. 1975,
Nicholls & Stout 1988) can be the result of sorting (frac-
tionation and accumulation) of olivine, plagioclase and
clinopyroxene. The arrow indicates the trend that the data
should follow if fractionation of olivine, plagioclase and
clinopyroxene caused the chemical variations in the
rocks.

where FM is equal to Fe + Mg. Potassium is chosen as
the denominator of the ratios because, by hypothesis,
it is a conserved element and does not enter any of the
sorted phases invoked by the hypothesis being tested.
X and Y are vectors of the coefficients of the elements
that appear in the numerators of the ratios that are
plotted on the X axis and Y axis, respectively. Figure 1
shows an example of such a diagram. It is drawn with
data from lava flows of the 1968 eruption of Kilauea
(Wright 1971, Jackson et al. 1975, Nicholls & Stout
1988). One can check that this diagram will produce a
line with a slope of one for each of the phases in the
mineral assemblage invoked by the hypothesis by cal-
culating, for each phase, the ratios of the components
of X to those of Y:

Olivine:

X/Y =1 S8i/(0.5x 2 FM) = 1/1 )
Albite:

X/Y =3 Si/(0.25 Al +2.75 Na) = 3/3 3)
Anorthite:

X/Y =28i/(0.25x2 Al + 1.5 Ca)=2/2 4)
Clinopyroxene:

X7Y =2 Si/(1.5 Ca+ 0.5 FM) = 2/2 ()]

Note that end members of the plagioclase series are
used separately whereas the end members of the
olivine series are combined. The coupled substitution
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of Na and Si for Ca and Al makes it impossible
to combine the plagioclase end-members into one
formula that can represent all plagioclase composi-
tions.

The objective of this note is to provide a systematic
method of determining the coefficients for the ele-
ments in the ratios (e.g., the numbers: 0.25, 0.5 1.5
and 2.75 in Y and 1.0 in X). Stanley & Russell (1989)
expressed the problem of finding the ratios for plotting
on the axes of diagrams with matrices and linear alge-
bra. They found solutions to the matrix equations by
arbitrarily partitioning the matrices such that a deter-
mined set of simultaneous equations resulted; there
were as many equations as unknowns. Practically,
users of their procedure sometimes had to resort to
trial-and-error searches to find all the solutions in
chemically complex systems. Users could spend con-
siderable time searching for solutions without finding
a useful one. The procedures described in this note
find all the solutions to the stated problem and reveal
immediately where there are no useful ones.

MATRIX FORMULATION:
HoMOGENEOUS EQUATIONS

The problem of determining the ratios for the axes
of Pearce element-ratio diagrams can be formulated in
terms of matrix algebra (Stanley & Russell 1989). The
variables in the equations are schematically illustrated
on Figure 2, and the general equation, with terms that
are matrices, can be written:

C-A=P 6

X

FiG. 2. Schematic diagram showing the notation and relation-
ship of the variables in Eqn. (7).
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where C is the (M X N) matrix of known compo-
sitions of phases. M is the number of phases in the
system (e.g., M = 4 for the assemblage olivine, albite,
anorthite and clinopyroxene). N is the number of
distinct elements in the phases being sorted (e.g.,
N =5 in our example: Si, Al, Fe + Mg, Ca, and Na).
Note that the rows of C are the compositions of the
phases, and the columns correspond to the elements in
each phase. A is an (N X 2) matrix of unknown coeffi-
cients of the elements that appear in the numerators of
the ratios (e.g., the numbers: 0.25, 0.5 1.5 and 2.75 in
Y and 1.0 in X). The matrix P is an (M x 2) matrix
whose column vectors of length M are the displace-
ment vectors and are symbolized as u and v. The ele-
ments of u and v are constrained by the slope of the
line required by the hypothesis and are chosen to meet
the constraints. In order to construct a Pearce element-
ratio diagram, the elements of the vectors that consti-
tute the matrix A (the vectors X and Y) are required.
In the general case, these vectors are unknown and are
to be determined. The vectors X and Y are the
columns of A. For our example, the matrix equation
can be written:

C A P
Si Al FMCaNa
An | 22010 (XY, w v,
Ab|31001]|[X,Y, wnvy,|
ol |10200]|[X,Y;[=]uv,
Cpx 20110 X4 Y4 ll4 V4
X, Y,

Because the two matrices, A and P, each consist of
two column vectors, the last equation [Eqn. (7)] can be
split into two equations:

C:X=u ®)
C-Y=v ()]

If the desired slopes for all phases represented by the
displacement vectors are one (an assemblage test
diagram: Stanley & Russell 1989), then the constraints
on the slopes as reflected in the displacement vectors,
u and v, can be written:

u=v (10)

hence:

C-X-Y)=0 (11

Theories in linear algebra show that if a system of
homogeneous linear equations, such as Eqn. (11), has
a family of solutions in addition to and different from
the trivial solution:

X-Y=0 (12)
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then the rank of C must be less than N (e.g., Ayres 1962).
If the number of phases, M, is less than the number of
elements in the phases, N, then the rank of C must be
less than N. The elements of the solution vectors to
Eqn. (11) can be normalized, if desired, so that the
coefficient of at least one of the chemical elements in
the numerator of the X-axis ratio, say, is equal to one.

Singular-value decomposition (SVD) is a method of
solving systems of linear equations, determining the
ranks of matrices, and finding solutions to systems of
homogeneous equations such as Eqn. (11). The
method has been used by petrologists to determine the
number of independent components in a mineral
assemblage and mass balances (homogeneous equa-
tions) relating mineral compositions (Fisher 1989,
1994, Gordon et al. 1991). The theoretical basis for
the method was derived by Golub & Van Loan (1991,
p. 70 and following), and the algorithm and routines
for performing the calculations are described by Press
et al. (1989). Gordon et al. (1991) provided a brief
description of the use of the method to determine the
rank of a matrix. SVD is particularly useful for
the problem at hand because the method will always
find at least one solution to a set of simultaneous equa-
tions. The set can be underdetermined (have fewer
equations than unknowns), be exactly determined
(have same number of equations as unknowns), or be
overdetermined (have more equations than
unknowns). In the first case, the only solution may be
the trivial one, but where there are nontrivial solutions,
the method will find them. In the last case, the solution
will be a least-squares solution.

The rank of the matrix C in our example [Eqn. (7)]
is four; hence, because there are five unknowns, there
is one independent solution-vector in the family of
solutions (Press et al. 1989). Suppose, however, that
the hypothesis called for only three phases or end
members: olivine, albite and anorthite. The system of
equations then becomes:

C A P
Si Al FM Ca Na
An|2 2 0 1 0}[X;Y, w v
Abl3 1 0 0 1[|XY,]=lwv,] (13)
Oo|1 02 0 0||X;Y; Uy vy
4 Y,
X; Y5

In vector form, the two solutions to the matrix
equation [Eqn. (13)] returned by singular-value
decomposition are:

X-Y); (X-Y)
Si 1.0 0.0
Al -1.167 1.0
M -0.5 0.0 (14)
Ca 0.333 -2.0
Na -1.833 -1.0



972

Positive values in the solution vectors have been arbi-
trarily assigned as coefficients of elements in the
numerator of the ratio plotted on the X axis, whereas
negative values, with the minus sign dropped, have
been assigned to coefficients in the numerator of the
ratio plotted on the Y axis. The pairs of axial ratios are:

(Si + 0.333 Ca)/K versus

(1.167 Al + 0.5 FM + 1.833 Na)/K (15)
and

AVK versus (2 Ca+ Na)/K (16).

Thus it appears that the number of linearly indepen-
dent Pearce element-ratio diagrams that can be derived
from a matrix of phase compositions, C, is equal to the
number of columns in the matrix, N, minus the rank of
the matrix, a number called the nullity of the matrix.

Any linear combination of the two vectors [Eqn. |

(14)] also is a solution of the matrix equation and
provides a set of ratios for a Pearce element-ratio
diagram. For example, if 1.833(X ~ Y), is subtracted,
element by element, from (X — Y),, the result is:

X =Yy
Si 1.0
Al -3.0
M 0.5 an
Ca 4.0
Na 0.0

This linear combination can be cast into a pair of
ratios:

(Si+4 Ca)/K versus 3 AL+ 0.5 FMYK  (18)
a pair that will define a trend with a slope of one if the
chemical variations are caused by sorting olivine and
plagioclase.

Nontrivial solution-vectors of the homogeneous
equations are the differences between the elements of
the columns of the matrix (X — Y). Individual values
for the components of X and Y are required for a
Pearce element-ratio plot, however. The components
of a solution vector can be arbitrarily partitioned into
components of the X and Y vectors provided only that
their differences equal the components of the solution
vector in question. In the example whose result is
given by Eqn. (15), the vector difference, normalized
toASi=1,is:

ASi: Xg -Yg = 1.000
AAL Xy Y= -l167
AFM: Xpm—Yey=  -0.500 (19)
ACa: X - Yo, = 0.333
ANa: Xy - Yy, = -1.833

The coefficients of the chemical elements used to
construct the ratio pair for Eqn. (15) were arbitrarily
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partitioned into the X and Y vectors by setting:
Y, =0ifX;-Y)>0

X,=0if (X;- ¥) <0

(20
and
1.

These criteria are arbitrary because the only
requirement is that the two vectors sum to zero. Con-
sequently, an equally valid diagram with which to test
the hypothesis can be obtained by setting AX, = 0,
say, with the result that the ratio pair:

Si/K versus (1.167 Al + 0.5 FM —
0.333 Ca + 1.833 Na)/K 22)
will provide the same test of the hypothesis.

Again, the validity of these ratios, given the hypo-
thesis that variations are due to sorting of plagioclase
and olivine, can be checked by calculating the ratios of
the numerators for each phase or end member:

Ab: (1.167 Al + 1.833 Na)/(3 Si) =3/3 (23)

An: (2x 1.167 Al1-0.333 Ca)/(2 Si) =2/2 (24)

OL: (2x 0.5 FMY/(1 Si) = 1/1 (25)
Figure 3 shows schematically why a shift of the coef-
ficient of an element from one numerator to the other
while changing the sign does not change the nature of
the Pearce element-ratio diagram.

Deleting Ca/3 from u and subtracting Ca/3 from v
shortens both vectors by the same amount. Thus, the
vector sum of the new vectors, u’ and v’ (Fig. 3), will
have the same slope as the vector sum of the original
vectors, u and v. Note, also, that the entire coefficient
need not be transferred from one axis to the other. The
same element can appear on both axes with different
coefficients without changing the properties of the
diagram.

Generally, if the number of phases, M, is equal to
the number of clements, N, the rank of C will also
equal N. In most such instances, the set of homo-
geneous equations:

C-X-Y)=0 11)
will only have the trivial solution (X ~ Y) = 0 or, in
other words, the X-axis ratio is the same as the Y-axis
ratio. This will produce a plot with a perfect straight
line, but it will also contain no information. Excep-
tions occur if the rank of the coefficient matrix is less
than N. If the composition of one (or more) of the
phases is a linear combination of some of the other
phases, then the rank of C will be less than N.

Suppose, for example, the hypothesis that the varia-
tions are due to sorting of plagioclase, clinopyroxene,
olivine, ulvospinel and apatite. The number of phases
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FiG. 3. Schematic diagram showing the effect of moving an
element, Ca, from the numerator on the X axis to the
numerator on the Y axis.

or end members, M, is 8: An, Ab, Fo, Fa, Di, Hd, Usp,
and Ap. The number of elements to be placed in the
ratios, N, also is 8: Si, Ti, Al, Fe, Mg, Ca, Na, and P.
The rank of the coefficient matrix, C, is less than 8
because there is a linear combination relating the com-
positions of four of the end members:

Fe,Si0, + CaMgSi, 04 =

CaFeSi206 + Mg28i04 (26)
i 140 T T Y T T T T T T
f | Lava Flows, ]
% 130 Diamond Craters Oregon —
+ - -
8
w 120 -
]
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& L A
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2 100 —
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(8i + Ti + 2.5 P))K

F16. 4. Pearce clement-ratio diagram derived for a phase-
composition matrix with N phases (end members) and N
elements. The rank of the composition matrix is less than
N because of the linear dependence of some of the phases
(end members), Data from Russell & Nicholls (1987).
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The following ratios will provide a slope of one on
a Pearce element-ratio diagram if the variations are
due to sorting of plagioclase, clinopyroxene, olivine,
ulvdspinel and apatite:

(0.25 A1+ 0.5FM + 1.5 Ca +2.75 Na)/K
versus (Si+ Ti+ 2.5 P)/K @27
An example based on this pair of ratios is shown on
Figure 4.

The discussion up to this point has been for the case
of displacement vectors of equal length and of the
same sign. These properties are the ones that make
the linear equations homogeneous and also permit ele-
ments to be transferred from one numerator to the
other with a change in sign.

MATRIX FORMULATION:
NONHOMOGENEOUS EQUATIONS

If one wishes to test whether an additional phase
also was being sorted by the processes causing the
chemical variations, or if the slope of the trend needed
to test a hypothesis is not unity, then the displacement
vectors will not be equal [i.e., Eqn. (10) will not
apply]. As a result, the right-hand side of Eqn. (11)
will not be a zero vector, and the system of equations
will not be homogeneous, a feature that may make the
determination of the ratios more difficult.

Suppose, for instance, we wish to test whether sort-
ing of clinopyroxene is required in addition to sorting
of olivine and plagioclase to explain the chemical
variations in a suite of rocks. Clinopyroxene
[Ca(Mg,Fe)Si,Og] is then called a rival phase (Stanley
& Russell 1989).

The object is to devise a diagram that will produce
the greatest divergence of the data from a slope of one
if clinopyroxene is sorted as well as olivine and
plagioclase. This greatest divergence will occur if the
displacement vector for clinopyroxene is at right
angles to the displacement vectors for olivine and
plagioclase (a phase-displacement test diagram:
Stanley & Russell 1989). Such a diagram is shown on
Figure 5. The ratios plotted on the axes are:

Si/K versus (2.25 A1+ 05 FM -
2.5 Ca+0.75 Na)/)K (28)

The components of the displacement vectors
for clinopyroxene (Cpx) must be such that a slope
of —1 results for the Cpx-vector on a Pearce element-
ratio diagram. Such a feature will occur if ucy, =

vC %

I.% we assign the coefficients of the elements in the
numerator of the left-hand ratio to X and the coeffi-
cients of the elements in the numerator of the right-
hand ratio [Eqn. (28)] to Y, then one can show that the
resulting vectors satisfy the equation:
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FiG. 5. Schematic diagram showing displacement vectors to
test whether clinopyroxene is part of a sorting assemblage
that also includes plagioclase and olivine. Symbols: Ab
albite, An anorthite, Cpx clinopyroxene, Ol olivine.

C A P
Si Al FM Ca Na
Ab |3 1 0 0 1]]X,Y 3 3
An |2 2 0 1 O[|X,Y,]=]|2 2| 29
O |1 02 0 0]|X3Y, 11
Cpx|2 0 1 1 0]|X,Y, 2 2
X; Y

Note that the components of the column vectors corre-
sponding to clinopyroxene have opposite signs. The
magnitudes of the components of P were set to the
number of moles of Si in the formulae of the corre-
sponding end-members or phases. Again, because of
equality in number of elements in the vectors X and Y
and in the vectors u and v, this last equation can be
written as two:

CX=u (30)

C-Y=v @31

The coefficients for the X and Y vectors for the
nonhomogeneous system of equations can be extracted
by solving for X and Y separately. Solving Eqn. (31)
will provide the coefficients for the numerator of the
ratio plotted on the X axis, whereas solving Eqn. (31)
provides the coefficients for the Y ratio. These two
equations are, in general, enough to give a pair of
ratios with the desired properties. However, the results
commonly are complex.
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In part, this complexity arises because the systems
of equations [Eqns. (30) and (31)] usually have more
unknowns than equations. Consequently, the solutions
of the two systems will not be unique; rather, there
will be an (N — M)-dimensional family of solutions
(Press et al. 1989). Because the solutions are not
unique, we can commonly rearrange the coefficients in
a simpler pattern.

For example, suppose we wish to test whether
chemical variations in a suite of rocks can be
explained by sorting of plagioclase and clinopyroxene
without involving olivine. A matrix equation that
reflects this hypothesis is:

C A P
Si Al FM Ca Na
Ab |3 1 0 0 1}IX,Y; 33
An |2 2 0 1 0||IX,Y,]=12 2| (32
O |1 0 2 0 0[|X;Y, 1-1
Cpx|2 0 1 1 0|]X,Y, 2 2
5 Ys

A pair of solution vectors for this system can be
obtained by singular-value decomposition. They are:

X Y
Si 1.1124 0.9101
Al |-0.5281 0.0225
FM |-1.0562 0.0449 (33)
Ca | 0.8315 0.1348
Na | 0.1910 0.2472

As was done earlier, it is a simple matter to calculate
the slope expected from sorting each of the end
members or phases (see p. 4):

Ab: 373
An: 272
o -1
Cpx: 212

—

G4

|
—

I nau
-t

—

The pair of ratios that tests the hypothesis are:

(1.1 Si-0.525 A1~ 1.05 FM + 0.85 Ca
+0.225 Na)/K versus

(09 Si+0.025 A1 +0.05 FM + 0.15 Ca
+ 0.275 Na)/K

(€8))

These ratios can be simplified if the rank of the
coefficient matrix is less than N. In our example,
the rank of C is 4, whereas N is equal to 5.
Consequently, there is a nontrivial solution to the
companion homogeneous system of equations:

C-A=0 (36)
For our example, the solution to the homogeneous
system is:
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Si | -0.2998
Al 0.0750
FM | 0.1499 37
Ca 0.4497
Na | 0.8245

We can add a linear combination of the solutions to
the homogeneous system to the solution to the com-
panion nonhomogeneous system, and the result will
also be a solution to the nonhomogeneous system. In
the present example, we can calculate new vectors, X'
and Y’, such that the coefficient of Si, say, is equal to
one in each axial ratio. This operation is accomplished
by adding 0.37492 times the vector in Eqn. (37) to X,
and -0.29987 times the vector in Eqn. (37) to Y
[Eqn. (33)]. The result, after accounting for round-off
error is:

(5i-0.5 A1-FM + Ca + 0.5 Na)/K
versus SVK (38)

Even if the rank of the coefficient matrix is equal to
N, we can re-arrange the coefficients by moving them
from one ratio to the other as long as the element
appears ONLY in the formulae of phases or end
members for which we require slopes of one. In this
particular example, Na, Ca, and Al do not occur in the
rival phase, olivine. Consequently, these elements
could be transferred, with a change in sign, from the
X-axis to the Y-axis ratio. In this way, we get a slightly
simpler-appearing pair of ratios that still has the same
ability to test the hypothesis as Eqn. (38):

(1.1 Si— 1.05 FM)/K versus
(0.9Si+0.55A1+0.05FM-0.7Ca
+0.05 Na)/)K

39

INCORPORATING MINERAL CHEMISTRY
IN PEARCE ELEMENT-RATIO DIAGRAMS

Pearce element-ratios are usually calculated for the
stoichiometry of ideal mineral formulae or end mem-
bers. The compositions of minerals actually sorted in
rock-forming processes deviate to a greater or lesser
extent from the compositions of end members. At best,
these deviations will cause small amounts of scatter
from the predicted trends on Pearce element-ratio
diagrams. At worst, they can produce significant
deviations from the predicted trends.

Real minerals, for example, contain defects, minor
amounts of trace elements and can show more
complex substitutions, such as Al, for MgSi. Two
commonly occurring minerals in mafic rocks, olivine
and plagioclase, do not differ sufficiently from the
ideal formulae to cause scatter that exceeds that from
analytical uncertainty. Listed in Table 1 are the slopes
expected for ideal solid-solutions. Also shown are the
slopes calculated from compositions of minerals from
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Formula ‘e + Mg)/Si
Olivine (Mg,Fe),8i0, 2
Orthopyroxene (Mg,Fe), 81,0, 1
Clinopyroxene €)S1,04 12
Fe-Ti Spinel Fe(Fe, Ti),0, Infinity
Fe-Ti Rhombohedral Fe(Fe,TDHO, Infinity
Formula (2 Ca + Na)/Al
Plagioclase NaAlSi;0,-CaALSi,0y 1
Clinopyroxene Ca(Mg,Fe)Si,04 Infinity
Measured Mineral Compositions
e + i Sl Slope in di
Olivine 1.980+0.033 63.2°:04° (634°)
Augite 0.638+0.037 324°£1.5°  (26.6°)
Ca + Na)/Al S Slope in d
Plagioclase 1.054+0.015 46.4°:0.4°  (45.0°)
Augite 13.473+3.347 85.8°+1.2°  (90.0°)

Ammmmaﬁmmmmmmmofwmmdmmm

basaitic rocks. The worst case is an error in slope of 4°
for an augite with considerable (Al + Ti) per six oxy-
gen atoms in solid solution. If the sorted assemblage
contains minerals of more variable stoichiometry, such
as amphibole, then the deviations from the slopes
expected for ideal compositions may be more extreme.

The problems of variable mineral chemistry can, in
some cases, be overcome by using mineral composi-
tions directly in the element ratios. To introduce
chemical compositions into Pearce element-ratios,
simply enter the cation numbers from the structural
formulae into the composition matrix, C. As an
example, Figure 6 shows some Pearce element-ratio
diagrams for the 1955 lava flows from Kilauea
Volcano, Hawaii. Figure 6a is a diagram that should
display a trend with a slope of one if the chemical
variations in the rock suite can be accounted for by the
sorting of olivine, plagioclase, ideal clinopyroxene,
Ca(Mg,Fe)Si,0¢, and a magnetite-ulvdspinel solid
solution, Usp,s. There is considerable scatter of the
data about a line with a slope of one, and at least one
uncertainty ellipse does not overlap the expected
uncertainty about the line (shaded area). The scatter
could be due. to sorting of orthopyroxene, which
would generate a slope of ¥ on the diagram or, possi-
bly, the scatter is due to sorting of augite (Aug, Fig. 6)
with some solid solution other than Fe for Mg. The
slope for augite and the ratios plotted on Figures 6¢
and 6d were calculated from a composition of an
augite from the 1955 lava flow (Ho & Garcia 1988,
Table 2, p. 40, sample 2). The formula entered into the
phase-composition matrix, C, was calculated with
the program written by Cebrid Gémez (1990) after
deleting the value of Cr,O; from the analytical data.
As shown, an augite with the composition of phe-
nocrysts in the lava would generate a steeper slope and
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might be the cause of the scatter. The expected slope
from sorting such a pyroxene is less than one (Fig. 6a).
Figure 6b shows a diagram with orthopyroxene as a
rival phase. In order to ensure that the scatter from a
line with a slope of one is due to sorting of the rival
phase, the other phases should give expected slopes of
one.

Figures 6¢c and 6d are diagrams with the expected
slope for the analyzed augite (Ho & Garcia 1988)
equal to one. Again, there is greater scatter than
expected if the variations are due to sorting of olivine,
plagioclase and augite. The scatter on Figure 6d
cannot be attributed to augite and is consistent with
orthopyroxene being a sorted phase. This interpreta-
tion is consistent with the petrography [orthopyroxene

phenocrysts are present in the lava flows (Wright &
Fiske 1971, Ho & Garcia 1988, Russell & Stanley
1990)] and with the results of thermodynamic modeling
(Russell & Stanley 1990). The latter show that at low
to moderate pressures (0 to 0.3 GPa), orthopyroxene
begins to crystallize at 100 — 150°C below the liquidus.

SUMMARY

The design of proper ratios for plotting on the axes
of Pearce element-ratio diagrams, given a specific
hypothesis to constrain the displacement vectors, pre-
sents a problem in linear algebra. The common case
involves the solution of a system of underdetermined
linear equations. If the slopes derived from the dis-



AXIAL RATIOS ON PEARCE DIAGRAMS

placement vectors that are required by the hypothesis
for all phases or end members are one, then the system
of linear equations is homogeneous, and nontrivial
solutions are possible. Less commonly, the system of
homogeneous equations has an N X N coefficient
matrix of phase compositions, where N is the number
of chemical elements in the system. In such instances,
there are nontrivial solutions only if the rank of the
coefficient matrix is less than N.

If the slopes required by hypothesis for one or more
phases or end members are different from the slopes
required for the remaining phases or end members,
then the system of equations is nonhomogeneous. In
the usual case, the system of equations is still under-
determined, and unique solutions are not possible. It is
possible to transform the problem into systems of non-
homogeneous equations, from which it is possible to
extract a pair of ratios that have the properties required
by the hypothesis being tested.

Exceptionally, the hypothesis being tested can
be cast into a set of nonhomogeneous equations with
an N x N coefficient matrix having a rank equal to N,
i.e., the number of equations. The procedures for
solving this exactly determined system of non-
homogeneous equations parallel those for the under-
determined systems. The method of choice for solving
the systems of equations that arise in constructing
Pearce element-ratio diagrams is singular-value
decomposition.
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