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PROCEDURES FOR THE CALCULATION OF AXIAL RATIOS
ON PEARCE ELEMENT.RATIO DIAGRAMS
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AssrRAsr

The derivation of ratios for plotting on Pemce element-ratio diagrams is facilitated by casdng the problem in terms of
linem algebra. Two types of systems of linear equations result: systems of homogeneous equations and systems of non-
homogeneous equations. Systems of homogeneous equations with a rank less than the number of chemical elements in the
ratios lead to diagram$ that can test whether chemical variations in a suite of rocks can be explained by sorting of a particular
assemblage of minerals. Systems of nonhomogeneous equations with ranks less than or equal to the number of elements in
0re ratios lead to diagrams tlat can test whether an individual mineral in a posnrlated assemblage is required to explain the
chemical variations in a suite of rocks. The method of choice for finding the solutions to the systems of equations, which are
the coefficients ofthe chemical elements in the ratios, is singular-value decomposition,

Keywords: Pearce element-ratios, linear algebra, singular-value decomposition, chemical variations, testing hypotheses,
igneous pe[ology.

Sovnraane

La d6rivation de rapports d'616ments pour la conception de diagnmmes de Pearce est facilitde par la formulation du
problbme en termes d'algbbre lin6aire. Deux types de systbmes d'dquations lin6aires en r6sultenl, soit des systdmes d'6quations
homogdnes et d'au[es, d'6quations nou homogdnes. ks systbmes d'6quations homogbnes ayant un rang moins 61ev6 que le
nombre d'6l6ments chimiques dans los rapports mdnent h des diagrammes visant i dvaluer si les variations chimiques
exprim6es dans une suite de roches igndes peuvent s'expliquer par le triage d'un assemblage sp6cifi6 de min6raux. I,es
systimes d'6quations non homogbnes ayaot un rang plus petit ou 6gal au nombre d'6l6ments dans ces rapports mbnent d des
diagrammes pouvant v6rifier l'hypothbse qu'un nin6ral particulier d'un assemblage propos6 est n6cessaire pour expliquer la
variation dans la composition d'une suite de roches ign6es. La mdthode pr€t1r€e pour trouver les solutions d ces systimes
d'6quations, qui sont les coefncients des 6l6ments chimiques dans ces rapports, serait la ddcomposition i valeur singulihre.

(Traduit par la R6daction)

Mots-cl6s: rapports d'6l6ments de Pearce, algbbre lin6aire, d6composition i valeur singulibre, variations chimiques, hllnthdses
p'6trog6n6tiques, fftrologie ign6e.

IurnonucnoN

Pearce element-ratio diagrams (Pearce 1968) are
designed to lest hypotheses relating the compositions
of samples of a rock suite. There is an extensive liter-
ature on the application of Pearce element-ratio
diagrams to the solution of petological problems (see
Nicholls & Russell 1990, C\apter 2, for a bibliography
through 1988). Emst et al. (1988) provided additional
examples of the application of Pearce element-ratio
diagrams. To make these tests, diagrams that account
for the stoichiometry of the phases involved in
the mass exchanges that led to the compositional
variability are needed. Consequently, a common
problem for users of Pearce element-ratio diagrams
arises in the design of the ratios for plotting on
the axes of the diagrams. Because each suite of

rocks is unique, the ratios to be plotted may also be
unique.

For example, suppose tle following hypotlesis:
The chemical variations in an ignzous rock suite are
due to the sorting of olivine with compositions repre-
sented by (Mg,Fe)2SiOo, plagioclase with composi-
tions between albite (NaAlSi3Os) and anorthite
(CaA12Si2Os), and clinopyroxezre [Ca(Mg,Fe)Si2O6].
A diagram is required with axial ratios having the
property such that if the hypothesis is false, then
the data will not fall on a line witl a given slope.
Usually, the grven slope is set to unity. A pair of ratios
that can produce such a diagram are:

X/I( = Si/I(
Y/I( = (1)
(0.25 Al + 0.5 FM + 1.5 Ca + 2.75 Na/K
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FIG. 1. A Pearce element-ratio diagram designed to test
whether the chemical variations in a suite of lava flows
from Kilauea Volcano (Wright 1971, Jackson et al. 1975,
Nicholls & Stout 1988) can be the result of sorting (frac-
tionation and accumulation) of olivine, plagioclase and
clinopyroxene. The arrow indicates the trend that the data
should follow if fractionation of otvine, plagioclase and
clinopyroxene caused the chemical variations in the
rocks.

where FM is equal to Fe + Mg. Potassium is chosen as
the denominator of the ratios because, by hypothesis,
it is a conserved element and does not enter any of the
sorted phases invoked by the hypothesis being tested.
X and Y are vectors ofthe coefftcients ofthe elements
ttrat appear in tle numerators of the ratios that are
plotted on the X axis and I axis, respectively. Figure I
shows an example of such a diagram. It is drawn with
data from lava flows of the 1968 eruption of Kilauea
(WriCht 1971, Jackson et aL 7975, Nicholls & Stout
1988). One can check that this diagram will produce a
line with a slope of one for each of the phases in the
mineral assemblage invoked by the hypothesis by cal-
culating, for each phase, the ratios ofthe components
of X to those of Y:

Olivine:
)VY=1Si(0.5x2FM)=1/ l  (2)

Albite:
X/Y = 3 Si( 0.25 N+2J5 Na) = 373 (3)

Anorthite:
XJl[ =2 Si(0.25 x 2 Al + 1.5 Ca) =212 (4)

Clinopyroxene:
XN =2 Si(1.5 Ca+ 0.5FNI)=212 (5)

Note that end members of the plagioclase series are
used separately whereas the end members of the
olivine series are combined. The coupled substitution

of Na and Si for Ca and Al makes it impossible
to combine the plagioclase end-members into one
formula that can represent all plagioclase composi-
tions.

The objective of this note is to provide a systematic
method of determining the coefficients for the ele-
ments in the ratios (e.9., the numbers: 0.25, 0.5 1.5
and2.75 in Y and 1.0 in X). Stanley & Russell (1989)
expressed the problem of finding the ratios for plotting
on the axes of diagrams with matrices and linear alge-
bra. They found solutions to the matrix equations by
arbifrarily partitioning the matrices such that a deter-
mined set of simultaneous equations resulted; there
were as many equations as unknowns. Practically,
users of their procedure sometimes had to resort to
trial-and-error searches to find all the solutions in
chemically complex systems. Users could spend con-
siderable time searching for solutions without finding
a useful one. The procedures described in this note
find all the solutions to the stated problem and reveal
immediately where there are no usefirl ones.

Mernx Fop.uut-p^rrox:
HoMocENEous EeuATroNs

The problem of determining the ratios for the axes
of Pearce element-ratio diagrams can be formulated in
terrns of matrix algebra (Stanley & Russell 1989). The
variables in the equations are schematically illusaated
on Figure 2, and the general equationo with terms that
are matrices. can be written:

C ' A  = P (6)

Y

x
Ftc. 2. Schematic diagram showing the notation and relation-

ship ofthe variables in Eqn. (7).
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where C is the (M x lI) matrix of known compo-
sitions of phases. M is the number of phases in the
system (e.g., M = 4 fot the assemblage olivine, albite,
anorthite and clinopyroxene). N is the number of
distinct elements in the phases being sorted (e.g.,
N = 5 in our example: Si, Al, Fe + Mg, Ca, and Na).
Note that the rows of C are the compositions of the
phases, and the columns correspond to the elements in
each phase. A is an (N x 2) matrix of unknown coeffi-
cients of the elements that appear in the numerators of
the ratios (e.g.,the numbers: 0.25, 0.5 1.5 and 2.75 iI
Y and 1.0 in X). The matrix P is an (M x 2) matrix
whose column vectors of length M arc the displace-
ment vectors and are symbolized as u and v. The ele-
ments of u and v are constrained by the slope of the
line required by the hypothesis and are chosen tb meet
the consftaints. In order to construct a Pearce element-
ratio diagtam, the elements of the vectors that consti-
tute the maftix A (the vectors X and Y) are required.
In the general case, these vectors are unknown and are
to be determined. The vectors X and Y are the
columns of A. For our exarnple, the matrix equation
can be written:

c
Si Al FMCaNa

A" f22OrO
Ab l3 r00 l
o l l l 0200
Cpxl  2 0 I  I  0

then the rank of C must be less than N (e.e., Ayre's 1962).
If the number of phases, M, is less than the number of
elements in the phases, N, then the rank of C must be
less than N. The elements of the solution vectors to
Eqn. (11) can be normalized, if desired, so that the
coefficient of at least one of the chemical elements in
the numerator of the X-axis ratio, say, is equal to one.

Singular-value decomposition (SVD) is a method of
solving systems of linear equations, determining the
ranks of matrices, and finding solutions to systems of
homogeneous equations such as Eqn. (11). The
method has been used by petrologists to determine the
number of independent components in a mineral
assemblage and mass balances (homogeneous equa-
tions) relating mineral compositions (Fisher 1989,
1994, Gordon et aI. I99l). The theoretical basis for
the method was derived by Golub & Van loan (1991,
p. 70 and following), and the algorithm and routines
for perforning the calculations are described by Press
et al. (7989). Gordon et al. (L991) provided a brief
description of the use of the method to determine the
rank of a matrix. SVD is particularly useful for
the problem at hand because the method will always
find at least one solution to a set of simultaneous equa-
tions. The set can be underdetermined (have fewer
equations than unknowns), be exactly determined
(have same number of equations as unknowns), or be
overdetermined (have more equations than
unknowns). In the first case, the only solution may be
the trivial one, but where there are nontrivial solutions,
the method will find them. In the last case, the solution
will be a least-squares solution.

The rank of the manix C in our example tEqn. (7)l
is four; hence, because there are five unknowns, there
is one independent solution-vector in the family of
solutions (hess el al. 1.989). Suppose, however, that
the hypotlesis called for only three phases or end
members: olivine, albite and anorthile. The system of
equations then becomes:

A

Xr Yr
xz Yz
Xr Y:
X, Y,
Xs Ys

a)
ut v1
vz Yz
u: Y3
U, Y;

Because the two matrices, A and P, each consist of
two column vectors, the last equation [Eqn. (7)] can be
split into two equations:

C ' X = u  ( 8 )

C . Y = v  ( 9 )

If the desired slopes for all phases represented by the
displacement vectors are one (an assemblage test
diagram: Stanlsy & Russell 1989), then the constraints
on the slopes as reflected in the displacement vectors,
u and v. can be written:

u = Y

hence:

c ' (X -D=O

(10)

Theories in linear algebra show that if a system of
homogeneous linear equations, such as Eqn. (11), has
a family of solutions in addition to and different from
the rivial solution:

In vector form, the two solutions to the matrix
equation IEqn. (13)l returned by singular-value

(i 1) decomposition are:

C
Si  AIFMCaNa

A" l22o1o
Ab l3  l  0  o  I
o l f  l  o  2  o  o

A P

llliiil=l*iiil ,"'
lf:Yll

(X-Y)z
0.0
1.0
0.0 (r4)

-2.0
-1.0

Si
AI
FM
Ca
Na

6-Y) r
1.0

-t.t67
-{.5
0.333

-1.833X - Y  = 0 (r2)
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Positive values in the solution vectors have been arbi
trarily assigned as coefficients of elements in the
numerator of the ratio plotted on the X axis, whereas
negative values, with the minus sign dropped, have
been assigned to coefficients in the numerator of the
ratio plotted on the laxis. The pairs of axial ratios are:

(Si + 0.333 Ca)IKversus

TIIE CANADIAN MINERALOGIST

(ls)

(16).

partitioned into the X and Y vectorc by setting:

Y=0 i fo ( -Y r )>o
and

4 = 0if (Xi-YJ < 0

(20)

(21).

Thus it appears that the number of linearly indepen-
dent Pearce element-ratio diagrams that can be derived
from a matrix of phase compositions, C, is equal to the
number of columns in the marix, N, minus the rank of
the matrix, a number called the nullity of the matix.

Any linear combination of the two vectors [Eqn.
(14)l also is a solution of the matrix equation and
provides a set of ratios for a Pearce element-ratio
diagram. For example, if 1.833(X - Y)2 is subtacted,
element by element, from (X - Y)r, the result is:

(1.167 Al + 0.5 FM + 1.833 Na)/I(
and

AllKversus (2 Ca + Na)/K

These criteria are arbitrary because the only
requirement is that the two vectors su'n to zero. Con-
sequently, an equally valid diagram with which to test
the hypothesis can be obtained by setting AX6u = 0,
say, with the result that the ratio pair:

Si./K yersrr (1.167 Al + 0.5 FM -
0.333 Ca + 1.833 Na/K Q2)

will provide the same test of the hypothesis.
Again, the validity of these ratios, given the hypo-

thesis that variations are due to sorting of plagioclase
and olivine, can be checked by calculating the ratios of
the numerators for each phase or end member:

Ab: (1.167 Al + 1.833 Nay(3 Si) = 3/3 (23)

An: (2 x 1.167 Al - 0.333 CaYQ Si) = 212 Q4)

Ol: (2 x 0.5 FM)(l Si) = 171 (2s)

Figure 3 shows schematically why a sffi of the coef-
ficient of an element from one numerator to the other
while changing the sign does not change the nature of
the Pearce element-ratio diagram.

Deleting Cal3 from u and subtracting Cal3 from v
shofiens both vectors by the same amount. Thus, the
vector sum of the new vectors, u' and y' @g. 3), will
have the same slope as the vector sum of the original
vectors, u and v. Note, also, that the entire coefficienr
need not be fransferred from one axis to the other. The
same element can appear on both axes witl different
coefficients without changing the properties of the
diagram.

Generally, if the number of phases, M, is equal to
the number of elements, N, the rank of C will also
equal N. In most such instances, the set of homo-
geneous equations:

c. (x-Y) = 0 (1 l )

will only have the trivial solution (X - Y) = 0 or, in
other words, the X-axis ratio is the same as the Y-axis
ratio. This will produce a plot with a perfect straight
line, but it will also contain no information. Exceo-
tions occur if the rank of the coefficient matrix is leis
ttran l/. If tle composition of one (or more) of the
phases is a linear combination of some of the other
phases, then the rank of C will be less than N.

Suppose, for example, the hypothesis that the varia-
tions are due to sorting ofplagioclase, clinopyroxene,
olivine, ulviispinel and apatite. The number of phases

(X-Y)z_r
si 1.0
Al -3.0
FM -O.5
Ca 4.0
Na 0.0

This linear combination can be cast into
ratios:

(17)

a pair of

(Si + 4 Ca/K versw (3 Al + 0.5 FMyK (18)

a pair that will define a trend with a slope of one if the
chemical variations are caused by sorting olivine and
plagioclase.

Nontrivial solution-vectors of the homogeneous
equations are the differences between the elements of
the columns of the manix (X - Y). Individual values
for the components of X and Y are required for a
Pearce element-ratio plot, however. The components
of a solution vector can be arbiharily partitioned into
components ofthe X and Y vectors provided only that
their differences equal the components ofthe solution
vector in question. In the example whose result is
given by Eqn. (15), ths vector difference, normalized
to ASi = l, is:

ASi: Xsi -Ysi = 1.000
AAI Xor -Y^ = -1.167
AFM: Xrur -Yn,r = -0.500 (19)
ACa: Xca - Yca = 0.333
ANa: Xru -YNu = -1.833

The coefficients of the chemical elements used to
construct the ratio pair for Eqn. (15) were arbitrarily
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Y

The following ratios will provide a slope of one on
a Pearce element-ratio diagram if the variations are
due to sorting of plagioclase, clinopyroxene, olivine,
ulvdspinel and apatite:

(0.25 Al + 0.5 FM + 1.5 Ca + 2.75 Na/K
versas (Si + Ti + 2.5 P/I( (n)

An example based on this pair of ratios is shown on
Figure 4.

The discussion up to this point has been for the case
of displacement vectors of equal length and of the
same sign. These properties are the ones that make
the linear equations homogeneous and also permit ele-
ments to be transferred from one numerator to the
other with a change in stgn.

Mernx Fop.vrm^toN:
NoNnoNaoceNsous EQUArroNs

If one wishes to test whether an additional phase
also was being sorted by the processes causing the
chemical variationso or if the slope of the trend needed
to test a hypothesis is not unity, then the displacement
vectors will not be equal [i.e., Eqn.-(10) will not
applyl. As a result, the right-hand side of Eqn. (11)
will not be azeto vector, and the syslem of equations
will not be homogeneous, a feature that may make the
determination of tle ratios more difncult.

Suppose, for instance, we wish to test whether sort-
ing of clinopyroxene is required in addition to sorting
of olivine and plagioclase to explain the chemical
variations in a suite of rocks. Clinopyroxene
[Ca(Mg,Fe)Si2O6] is then called a rival phase (Stanley
& Russell 1989).

The object is to devise a diagram that will produce
the greatest divergence ofthe data from a slope of one
if clinopyroxene is sorted as well as olivine and
plagioclase. This grcatest divergence will occur if the
displacement vector for clinopyroxene is at right
angles to the displacement vectors for olivine and
plagioclase (a phase-displacement test diagram:
Stanley & Russell 1989). Such a diagram is shown on
Figure 5. The ratios plotted on the axes are:

SilKversus (2.25 N + 0.5 FM-
2.5 Ca+ 0.75 Na)/K (28)

The components of the displacement vectors
for clinopyroxene (Cpx) must be such that a slope
of -1 results for the Cpx-vector on a Peatce element-
ratio diagram. Such a feature will occur if usr, =
-Yc*'

If we assign the coefficients of the elements in the
numerator of fhe left-hand ratio to X and the coeffr-
cients of the elements in the numerator of the right-
hand ratio [Eqn. (28)] to Y, then one can show that the
resulting vectors satisfy the equation:

x
Flc. 3. Schematic diagram showing the effect of moving an

element, Ca, from the numerator on the X axis to the
numeratoronthe f axis.

or end members, M, is 8: An, Ab, Fo, Fa, Di, Hd, Usp,
and Ap. The number of elements to be placed in the
ratios, N, also is 8: Si, Ti, A1, Fe, Mg" C4 N4 and P.
The rank of the coeffcient matrix, C, ib less than 8
because there is a linear combination relating the com-
positions of four of the end members:

FgSiOa + CaMgSi2O6 =
CaFeSi2O6 + Mg2SiOa Q6)

Lava Flows,
Diamond Craters Oregon

Slope = 1

V 1rl0
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-30 100 110 t20 130 t40 150
(Si + Ti + 2.5 P)A(

Frc. 4. Pearce elemetrt-ratio diagram derived for a phase-
composition matrix with lf phases (end members) and /V
elements. The rank of the composition matrix is less than
ifbecause of the linear dependence of some ofthe phases
(end members). Data from Russell & Nicholls (1987).
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In part, this complexity arises because the systems
of equations lEqns. (30) and (31)] usually have more
unknowns than equations. Consequently, the solutions
of the two systems will not be unique; rather, there
will be an (N - M)-dimensional family of solutions
(Press er al. 1989). Because the solutions are not
unique, we can commonly rearrange the coefficients in
a simpler pattern.

For example, suppose we wish to test whether
chemical variations in a suite of rocks can be
explained by sorting ofplagioclase and clinopyroxene
without involving olivine. A matrix equation that
reflects this hypothesis is:

Si Al FMCaNa

filt LB ? lllilI;l=li ll e2,
3i.lt3??3tllilt;-:l

A pair of solution vectors for this system can be
obtained by singular-value decomposition. They are:

Si/I(
Ftc. 5. Schematic diagram showing displacement vectors io

test whether clinopyroxene is part of a sorting assemblage
that also includes plagioclase and olivine. Symbols: Ab
albite, An anorthite, Cpx clinopyroxene, Ol olivine.

Note that the componenB of the column vectors corre-
sponding to clinopyroxene have opposite signs. The
magnitudes of the components of P were set to the
number of moles of Si in the formulae of the corre-
sponding end-members or phases. Again, because of
equality in number of elements in the vectors X and Y
and in the vectors u and v, this last equation can be
written as two:

As was done earlier, it is a simple matter to calculate
the slope expected from sorting each of the end
members or phases (see p. 4):

Ab: 313 = |
A n :  A 2 = 1
Ol: ll-l = -l
Cpx: 212 = L

The pair ofratios ttrat tests the hypothesis are:

(1.1 Si - 0.525 Al - 1.05 FM + 0.85 Ca
+ 0.225 Na)lK versas (35)
(0.9 Si + 0.025 Al + 0.05 FM + 0.15 Ca
+ 0.275 Na)/K

These ratios can be simplified if the lank sf tle
coefficient matrix is less than N, In our example,
the rank of C is 4, whereas N is equal to 5.
Consequently, there is a nontrivial solution to the
companion homogeneous system of equations:

C . A = O  ( 3 6 )

For our example, the solution to the homogeneous
system is:

si I  r . trz+
Ar l-o.s28l
FM l-1.0562
Ca | 0.8315
Na |  0.1910

Y
0.9101
0.0225
0.0449
0.1348
0.2472

(33)C A P
Si AIFMCaNa

fflt tB ? lllilY;l=li ll es,
or  l t  o  2  o  0 l lX rYr l  l r  l l
Cpxt2 o r ' ' ' l * I i l  t2-21

(34)

C ' X = u

C ' Y = v

(30)

(31)

The coefftcients for tle X and Y vectors for the
nonhomogeneous system of equations can be extracted
by solving for X and Y separately. Solving Eqn. (31)
will provide the coefficients for the numerator of the
ratio plotied on the X axis, whereas solving Eqn. (31)
provides the coefficients for the Y ntio. These two
equations are, in general, enough to give a pair of
ratios with the desired properties. However, the results
commonly are complex.
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si
AI
FM
Ca
Na

4.2998
0.0750
0.1499
0.4497
0.8245

(37)

TA3I.B1. NAIGlNMINRATs

We can add a linear combination of the solutions to
the homogeneous system to the solution to the com-
panion nonhomogeneous system, and the result will
also be a solution to the nonhomogeneous system. In
the present exarnple, we can calculate new vectors, X'
and Y', such that the coefficient of Si, say, is equal to
one in each axial ratio. This operation is accomplished
by adding 0.37492 times the vector in Eqn. (37) to X,
and -0.29987 times the vector in Bqn. (37) to Y
[Eqn. (33)]. The result, after accounting for round-off
error is:

(Si - 0.5 A1- FM + Ca + 0.5 Na/K
versus SilK (38)

Even if the rank of the coefficient matrix is equal to
N, we can re-turange the coefficients by moving them
from one ratio to the other as long as the element
appears ONLY in the formulae of phases or end
members for which we require slopes of one. In this
particular example, Nq Cq and Al do not occur in the
rival phase, olivine. Consequently, tlese elements
could be fansferred, with a change in sign, from the
X-axis to the l-axis ratio. In this wayo we get a slightly
simpler-appearing pair of ratios that still has the same
abifity to test the hypothesis as Eqn. (38):

(1.1 Si - 1.05 FM)/K versas
(0.9 Si + 0.55 Al + 0.05 FM - 0.7 Ca (39)
+ 0.05 Na/K

INconponerwc MDIERAL Cnmmsrrv
N PsARcE EI-EtvENr-Reno Dncnaus

Pearce element-ratios are usually calculated for the
stoichiometry of ideal mineral formulae or end mem-
bers. The compositions ef minerals actually sorted in
rock-forming processes deviate to a greater or lesser
extent from the compositions of end members. At best,
these deviations will cause small amounts of scatter
from the predicted trend$ on Pearce element-ratio
diagrams. At worst, they can produce significant
deviations from the predicted trends.

Real minerals, for example, contain defects, minor
amounts of trace elements and can show more
complex substitutions, such as A12 for MgSi. Two
commonly occurring minerals in mafic rocks, olivine
and plagioclase, do not differ sufficiently from the
ideal formulae to cause scatter that exceeds that from
analytical uncertainty. Listed in Table I are the slopes
expected for ideal solid-solutions. Also shown are the
slopes calculated from compositions of minerals from

Lteal Cas
Fomuh (Fs+Mslsi
(Mg;Fe)ttq 2
(MqFe).SLO I
caltusFqsqb. rn
F{Fefi}O. IDffrttY
F{F",TlP. Iddtt

Fomula (2Ca+Na)lAl

NaAtSLO"C€Al4St O" 1
culvgi.u)sqo"- 

- - 
IEtuitt

Memd lifl aeml ComPosldom

ffi
0.63st0.047 3L4"'75" (26,'6)

OIM$
Onhopyume
C|laopyrcxene
FeTl Splncl
Fe-TlRh@boh€dnl

Plsgl@laF
CXhopyure

OIM$
At8ite

Plaglcl@
Argfte

ffi
73.473!9347 85.8fr1.2' (s.e)

AsagF d st@dd dsld@ elsldrtturwla od 15 @dtsa d0dEbdl tNB

basaltic rocks. The worst case is an error in slope of 4o
for an augite with considerable (Al + Ti) per six oxy-
gen atoms in solid solution. If the sorted assemblage
contains minerals of more variable stoichiomefly, such
as amphibole, then the deviations from the slopes
expected for ideal compositions may be more extreme.

The problems of variable mineral chemisty can, in
some cases, be overcome by using mineral composi-
tions directly in the element ratios. To introduce
chemical compositions into Pearce element-ratios,
simply enter the cation numbers from the structural
formulae into the composition matrix, C. As an
example, Figure 6 shows some Pearce element-ratio
diagrams for the 1955 lava flows from Kilauea
Volcanoo Hawaii. Figure 6a is a diagram that should
display a trend with a slope of one if the chemical
variations in the rock suite can be accounted for by the
sorting of olivine, plagioclase, ideal clinopyroxene,
Ca(Mg,Fe)Si2O6, and a magnetite-ulvOspinel solid
solution, Usp75. There is considerable scatter of the
data about a line with a slope of one, and at least one
uncertainty ellipse does not overlap the expected
uncertainty about the line (shaded area). The scatter
could be due.to sorting of orthopyroxene, \ilhich
would generate a slope of Vz on the diagram or, possi-
bly, the scatter is due to sorting of augite (Aug, Fig. 6)
witl some sotd solution other than Fe for Mg. The
slope for augite and the ratios plotted on Figures 6c
and 6d were calculated from a composition of an
augite from the 1955 lava flow (Ho & Garcia 1988,
Table2, p. 40, sarnple 2).T\e formula entered into the
phase-composition matrix, C, was calculated with
the program written by Cebrid G6mez (1990) after
deleting the value of Cr2O, from the analytical data.
As shown, an augite with the composition of phe-
nocrysts in the lava would generate a steeper slope and
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phenocrysts are present in the lava flows (Wright &
Fiske 1971, Ho & Garcia 1988, Russell & Stanley
1990)l and with the results of thermodynamic modeling
@ussell & Stanley 1990). The latter show that at low
to moderate pressures (0 to 0.3 GPa), orthopyroxene
begins to crystallize at 100 - 150'C below the liquidus.

Sulauany

The design ofproper ratios for plotting on the axes
of Pearce element-ratio diagramso given a specific
hypothesis to consftain the displacement vectors, pre-
sents a problem in linear algebra. The common case
involves the solution of a system of underdetermined
linear equations. If the slopes derived from the dis-

Frc. 6. Pearce element-ratio diagram testing whether orthopyroxene (Opx) is part of the sorted assemblage. Data from
Macdonald & Eaton (1964), Wright & Fiske (1971). Symbols: Ab albite, An anorthite, Cpx (ideal) Ca(Mg"Fe)SirOu,
Ol olivine, Usp ulviispinel, Aug augite (Ho & Garcia l98g).

might be the cause of the scatter. The expected slope
from sorting such a pyroxene is less than one (Fig. 6a).
Figure 6b shows a diagram with orthopyroxene as a
rival phase. In order to ensure that the scatter from a
line with a slope of one is due to sorting of the rival
phase, the other phases should give expected slopes of
one.

Figures 6c and 6d are diagrams with the expected
slope for the analyzed augite (Ho & Garcia 1988)
equal to one, Again, there is greater scatter than
expected ifthe variations are due to sorting ofolivine,
plagioclase and augite. The scatter on Figure 6d
cannot be attributed to augite and is consistent with
orthop5noxene being a sorted phase. This interpreta-
tion is consistent with the petrography [orthopyroxene

Y
oPr
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placement vectors that are required by the hypothesis
for all phases or end members are one, then the system
of linear equations is homogeneous, and nontrivial
solutions are possible. lpss eemmonl!, the system of
homogeneous equations has an N x N coefficient
matrix of phase compositions, where N is the number
of chemical elements in the system. In such instances,
there are nontrivial solutions only if the rank of the
coefficient matrix is less than N.

If the slopes required by hypothesis for one or more
phases or end members are different from the slopes
required for the remaining phases or end members,
then the system of equations is nonhomogeneous. In
the usual caseo the system of equations is still under-
determined, and unique solutions are not possible. It is
possible to transform the problem into systems of non-
homogeneous equations, from which it is possible to
extract a pair ofratios that have the properties required
by the hypothesis being tested.

Exceptionally, the hypothesis being tested can
be cast into a set of nonhomogeneous equations with
an N x N coefficient matrix having a rank equal to N,
i.e., the number of equations. The procedures for
solving this exactly determined system of non-
homogeneous equations parallel those for the under-
determined systems. The method of choice for solving
the systems of equations that arise in constructing
Pearce element-ratio diagrams is singular-value
decomposition.
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