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ABSTRACT

In general, the structures of the borate minerals are based on B¢, and B¢, polyhedra, which occur as discrete oxyanions or
polymerize to form finite clusters, chains, sheets and frameworks. The B-¢ bonds (¢: unspecified anion) are of much higher
bond-valence than the interstitial bonds, and thus borate minerals readily lend themselves to hierarchical classification based on
the topological character of the FBB (fundamental building block) and the structural unit. Here, we derive topologically and
metrically possible finite clusters of the form [B,0,,], where 3 < n < 6, and identify those clusters that occur as FBBs of the
structures of borate minerals. In addition, we have developed graphical and algebraic descriptors of the topological and chemical
aspects of the clusters and their mode of polymerization. In the structures of the borate minerals based on FBBs with 3 <n <6,
all FBBs are polyhedral rings or decorated polyhedral rings. Moreover, three-membered polybedral rings are almost completely
dominant; the only exception is the four-membered polyhedral ring in borcarite. Three-membered polyhedral rings occur in the
following order of preference: <A2[ 1> >> <2A[ > > <3[1> > <3A>. Only a small number of the topologically and metrically
possible clusters occur as FBBs in borate minerals; Nature seems to produce structural diversity by using only a small number
of FBBs and then polymerizing them in many different ways.

Keywords: borate minerals, hierarchy of stractures, fundamental building block, crystal structure, boron, structure classification.

SOMMAIRE

En général, les structures des minéraux boratés ont comme unités de base des polysdres B, et Bd,, présents sous forme
d'anions distincts ou en agencements polymérisés, qui sont soit des regroupements limités de polyedres, des chafnes, des
feuillets ou des trames. Les liaisons B—¢ (¢: anion non spécifié) possédent une valence de liaison beaucoup plus €levée que
les liaisons interstitielles, de telle sorte que les minéraux boratés se prétent tout naturellement & un schéma de classification
hiérarchique fondé sur le caractére topologique du bloc structural fondamental et de I'unité structurale de base. Nous dérivons
ici tous les agencements finis possibles selon les critdres topologiques et métriques appropriés pour les agencements de type
[B,0,,1, dans lesquels 3 < r < 6, et nous identifions les agencements qui servent de bloc structural fondamental dans les structures
de minéraux boratés. En plus, nous développons les attributs graphiques et algébriques requis pour décrire les aspects
topologiques et chimiques des agencements et leur mode de polymérisation. Dans toute structure d'un minéral boraié impliquant
un bloc structural fondamental avec 3 £ r < 6, ce bloc constitue un anneau de poly2dres, décoré on non. De plus, les anneaux
trois membres sont fortement prédominants. La seule exception, en fait, est la borcarite, qui contient un anneau 2 quatre
poly2dres. Les anneaux 2 trois poly&dres se rencontrent avec une fréquence dans T'ordre <A2[ 1> >> <2A[ 1> > <3[1> > <3A>.
Les minéraux boratés ne contiennent qu'un nombre restreint des agencements topologiquement et métriquement possibles. La
diversité structurale s'explique donc par un petit nombre de blocs structuraux fondamentaux, qui sont polymérisés de plusieurs
fagons dans les structures.

(Traduit par 1a Rédaction)

Mots-clés: minéraux boratés, hiérarchie des structures, bloc structural fondamental, structure cristalline, bore, classification
structurale.
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1116, U.S.A.



1132

INTRODUCTION

Boron has an ionic radius of 0.11 A (Shannon 1976),
and hence can occur in both triangular and tetrahedral
coordination where bonded to oxygen. Bos (¢: O,
OH") groups have an average B—¢ bond-valence
approximately equal to 1 valence unit (v.u.), and B,
groups have an average B—¢ bond-valence approxi-
mately equal to % v.u. Hence, both Bo; and B¢,
groups can polymerize by sharing corners without
violating the valence-sum rule (Brown 1981). Such
polymerization is very common in both minerals and
synthetic inorganic compounds, and gives rise to great
structural diversity. In general, a borate structure
contains clusters of corner-sharing B¢, and B,
polybedra, which occur as discrete polyanions
or polymerize to form larger clusters, chains, sheets or
frameworks. The excess charge of the array of borate
polyhedra is balanced by the presence of low-valence
interstitial cations. In the structures of most borate
minerals, the B—¢ bonds are of much higher bond-
valence (2 0.7 v.w.) than the remaining cation—¢ bonds
(£ 0.3 v.u.). Thus, the borate structures readily lend
themselves to classification on the basis of the
geometry of the clusters of borate polyhedra.

The utility of organizing crystal structures into
hierarchical sequences has long been recognized.
Bragg (1930) first classified the silicate structures
according to the geometry of the polymerization of the
(81,A1)O, tetrahedra, and this scheme was generalized
to include structures based on polymerized tetrahedra
by Zoltai (1960) and Liebau (1985). Such hierarchical
classifications serve to order our knowledge and to
facilitate comparison of crystal structures, which is
intrinsically quite difficult. However, much additional
insight can be derived from such structural schemes,
particularly regarding the underlying controls on
bond topology (Hawthorne 1983, 1994) and mineral
paragenesis (Moore 1965, 1973, Hawthorne 1984).
There have been several classifications proposed
specifically for borate structures (Edwards & Ross
1960, Christ 1960, Tennyson 1963, Ross & Edwards
1967, Heller 1970, Christ & Clark 1977). Previous
classifications were reviewed by Christ & Clark
(1977). Their classification has proven very useful over
the past fifteen years, and has been widely used. The
basis of the Christ & Clark (1977) scheme is the degree
of polymerization within the simplest structural unit.
They portrayed this with the descriptor #:iA + jT,
where n is the total number of boron atoms within this
unit, which contains { B¢, and j B¢, polyhedra.
Although this is useful information, it does not give
any indication about the topology of the cluster of
polyhedra nor about the degree to which the cluster is
translated throughout the crystal structure. These two
structural features are the ones we incorporate in the
present scheme of classification, as they are essential
to the understanding of the hierarchy of the borate
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structures and, ultimately, the paragenesis of borate
minerals.

The scheme of Christ & Clark (1977)

In their crystal-chemical classification of borate
structures, Christ & Clark (1977) emphasized the
importance of polymerization of B¢, triangles and B¢,
tetrahedra to form clusters that are compact, insular
groups, referred to as fundamental building blocks
(FBB). The FBBs form the basis of the classification
scheme of Christ & Clark (1977). Their structural
classification is based on three principal criteria: (1) the
number of boron atoms in the FBB, (2) the number of
B¢, triangles and Bo, tetrahedra in the FBB, and (3)
the mode of polymerization between the FBBs, giving
isolated, modified isolated, chains, modified chains,
sheets and modified sheets. Christ & Clark (1977)
proposed a notation (n:iA + jT) for each FBB, which
gives the total number of boron atoms in the FBB, as
well as the number of B¢; triangles (A) and Bo,
tetrahedra (7). For example, the FBB 5:2A+3T has five
boron atoms in the FBB, of which two occur as B,
triangles, and three as B¢, tetrahedra.

The occurrence of large FBBs

In developing their classification, Christ & Clark
(1977) considered the structures of the hydrous borate
minerals available at that time, as well as the structures
of some anhydrous minerals and hydrous and
anhydrous synthetic inorganic compounds. They noted
that the FBBs of borate structures are generally small,
as nearly all structures known at that time were based
upon FBBs with six or less boron atoms. The one
exception was preobrazhenskite, the structure of which
is based on FBBs containing nine boron atoms. Since
the work of Christ & Clark (1977), however, several
borate structures that contain even larger FBBs have
been reported. Grice et al. (1994) solved the structures
of pringleite {Cag[B,y0,3(0H),41[BsO(OH)6l*13H,0}
and ruitenbergite {Cay[B,;0,5(OH) 31[BsO4(OH),]
+13H,01}, both of which contain FBBs with 12 boron
atoms. Several synthetic compounds have 12 or more
boron atoms in the FBB [i.e., Ags[B;,0,3(OH)¢]-3H,0
(Skakibaie-Moghadam et al. 1990), Nag[B,,0,,(OH),]
(Menchetti & Sabelli 1979), Nag[Cu,{B;40,,(0H),,}1
*12H,0 (Behm 1983), K([UO,{B40,4(OH)3}1-12H,0
(Behm 1985), and KsH{Cu,O[B,,04,(0OH)g1}+33H,0
(Heller & Pickardt 1985)]. These more complex
structures present a problem for the Christ & Clark
(1977) scheme of classification, which cannot uniquely
distinguish FBBs with its nomenclature. For example,
the FBBs with twelve boron atoms in pringleite,
ruitenbergite, Nag[B;,0,0(OH),] and Agg[B;,04
(OH)4]3H,0 all contain six B, triangles and six B,
tetrahedra, and the notation for these FBBs is thus
12:6A+6T. However, examination of the FBBs of these
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FiG. 1. Examples of the FBB 12:6A+6T; a) pringleite, b) Nag[B,,0,,(0H),].

structures (Fig. 1) shows that the FBBs in pringleite
and ruitenbergite are twelve-membered rings of poly-
hedra with alternating B¢, triangles and B¢, tetrahedra,
whereas the FBBs in Nag[B;,0,,(0OH),] and
AgelB,0,3(OH)6l*3H,0 each contain six three-
membered rings of polyhedra containing B¢,
tetrahedra and one B¢, triangle, and these rings form a
larger ring by sharing B¢, tetrahedra (Fig. 1). In the
classification of Christ & Clark (1977), structures
based on FBBs with identical numbers of B, triangles
and B¢, tetrahedra always have identical descriptors,
even where the structural arrangements are very
different; their notation does not indicate the topo-
logical characteristics of their linkage. This is of
general significance; Burdett (1986) has shown that the
energy difference between two structures can be
expressed in terms of the first few disparate moments
of the electronic energy density-of-states of the two
structures. In structural terms (Hawthorne 1994), the
important terms in the formulation of energy involve
differences in coordination number [which are
described in the notation scheme of Christ & Clark
(1977)] and differences in local linkage of the poly-
hedra [which are nof]. Thus it is desirable to incor-
porate information on local linkage of polyhedra into
a description of FBBs.

A PROPOSED DESCRIPTOR FOR
FUNDAMENTAL BUILDING BLOCKS IN BORATES

In this series of papers, we intend to develop a
hierarchy of borate structures based on a FBB that we
define as a strongly bonded cluster of borate polyhedra
that is repeated by the translational symmetry operators
to give the structural unit (Hawthorne 1983, 1985). As
a part of the development of the hierarchy of borate

structures, a descriptor for borate FBBs that includes
information on connectivity of the polyhedra is
required. In developing such a descriptor, it is
necessary to strike a balance between the amount of
information conveyed and the complexity of the
descriptor. Although our method does not always result
in a unique descriptor for the FBB, considerably more
information is included than in previous schemes.

B-B graphs

The representation of large polyhedral clusters is
considerably simplified by omitting the anions, as
is common in topological considerations of crystal
structures (Smith 1977, 1988, Hawthorne 1983, 1990).
Such graphs are used to show B-B connectivity
relationships; B—¢—B bonds are shown as a single line
connecting the boron atoms, and nonbridging anions
are omitted completely. Information on the coordina-
tion number of the boron atoms is retained by using
different symbols (A and []) for the nodes of the graph.
B-B graphs are used extemsively in this paper;
examples are shown in Figure 2, where they may be
compared with the conventional representations
involving all the atoms of the cluster.

FBB descriptor

Borate FBBs must contain either B; triangles or
B¢, tetrahedra, or both. Examination of borate
structures shows that many FBBs also contain rings of
Bo, polybedra. The importance of three-membered
rings is striking; almost all large FBBs contain these
rings. Thus, it is necessary that the descriptor also
denotes the occurrence of rings in the FBBs.

The FBB descriptor proposed here is based on: (1)
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Fic. 2. Examples of borate clusters, including B-B connec-

tivity diagrams and descriptor. For each cluster, two sets
of symbols are given; the first is as proposed here, the
second is as proposed by Christ & Clark (1977).
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the number of borate polyhedra in the FBB, (2) the
number of B¢, triangles and B, tetrahedra in the FBB,
(3) the connectivity of the polyhedral groups in the
FBB, (4) the presence of rings in the FBB, and
(5) the connectivity of the rings within the FBB. The
descriptor has the general form A:B, where A is
the number of B¢, triangles and B¢, tetrahedra in the
FBB, and B is a character string that contains the infor-
mation for points (3) to (5) above.

Numbers of borate polyhedra in the FBB

In many cases, the numbers of B, triangles and Bo,
tetrahedra in the FBB are uniquely defined by the
character string B. However, for some of the larger
FBBs, the character string only uniquely defines the
total number of borate polyhedra in the FBB and not
the numbers of B, triangles and B¢, tetrahedra.
Symbol A of the descriptor gives the numbers of B¢
triangles (A) and Bo, tetrabedra ((J) in the form A jT],
where i and j are integers representing the number of
B¢, triangles and B¢, tetrahedra, respectively.

Linkage between borate polyhedra in the FBB

Simple linkage: The simplest FBBs contain only one
B0, triangle or Bg, tetrahedron, and A:B is written as
1A:A or 171 (Figs. 2a,b). Many FBBs contain more
than one borate polyhedron, and polymerization of
adjacent polyhedra involves corner-sharing only.
Borate polyhedra (symbolized by A and []) that share
corners within the FBB occur adjacent to each other in
the FBB descriptor. Thus, a FBB written as 1A1J:AC]
contains one B¢, triangle and one B¢, tetrahedron that
share one anion (Fig. 2c). Where more than two
polyhedra occur in the FBB, the order in which the
symbols are written should be consistent with the
linkage in the FBB. Compare 1A2[:[JA] and
1A2[ :ACIC] (Figs. 2d,e); in the first case, the central
B¢, triangle shares an anion with each of two B¢, tetra-
hedra; in the second case, the central B¢, tetrahedron
shares a ligand with a B, triangle on one side, and a
B¢, tetrahedron on the other. The new descriptor
distinguishes between these two cases (Figs. 2d,e).

Rings of polyhedra: Rings of either or both [] and A
occur in most FBBs that contain three or more borate
polyhedra. Where the polyhedra share vertices to form
a ring, the ring is enclosed in the delimiters < >. For
example, the FBB 1A2[ ]:<A2[ > contains one B@,
triangle and two B¢, tetrahedra that share anions to
form a three-membered ring (Fig. 2f). Some clusters
contain a number of polyhedral rings of various sizes,
which generates some ambiguity in developing the
descriptor of the cluster. Such clusters will be
described using the smallest possible rings that permit
a full description of the cluster; in most cases, these
will contain only three or four polyhedra. Such rings as
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<A2[ 1> commonly link to one or more A or [] or to
other rings. The FBB 2A2[:<A2[]>A has such a
linkage (Fig. 2g). Compare the FBB 2A2[ :<AL 1Al 1>,
a four-membered ring of alternating A and [] (Fig. 2h);
the proposed descriptor distinguishes these clusters.

Linkage of rings of polyhedra: Where two rings are
linked together, the number of borate polyhedra that
the two rings have in common is indicated by —, =, =,
etc. for one, two, three or more polyhedra, respectively.
The FBB 2A2[J:<A2[1>=<A2[ 1> contains two
<A2[ ]> rings, and the rings have two borate polyhedra
in common (Fig. 2i). This particular linkage shows
why the A part of the descriptor is required. It can be
shown (Appendix Al) that there are nine possible
arrangements of four borate polyhedra that consist of
two three-membered rings with two polyhedra in
common, as illustrated in Figure 3. Clusters 3a and 3i
are obviously distinct in all aspects of their topology
and descriptor. Clusters 3d, 3e and 3f have the same A
symbol (2A2[]) and hence the same stoichiometry, yet
they have a different topology. Cluster 3d consists of
two <2A[I> rings that have two B¢, triangles in
common, cluster 3e consists of two <A2[I> rings that
have two B¢, tetrahedra in common, and cluster 3f has
both a <2A[I> and a <A2[ > ring, which have a B¢,
triangle and B¢, tetrahedron in common; the B symbol
distinguishes clusters 3d, 3e and 3f. Clusters 3b
and 3d have the same B symbol but have different
stoichiometry and topology; cluster 3b consists of two
<2A[ 1> rings with a B¢, triangle and a B¢, tetrahedron
in common, whereas cluster 3d consists of two <2A[ 1>
rings with two B, triangles in common. The A symbol
distinguishes clusters 3b and 3d. Only a combination of
the A and B symbols can distinguish all possible
topological linkages involving four polyhedra with two
three-membered rings and two shared polyhedra.

[n]-connected anions, polyhedra and rings: In borate
structures, most oxygen atoms are not bonded to more
than two boron atoms. However, in some cases, an
oxygen atom is bonded to three boron atoms (e.g.,
tunellite: Burns & Hawthorne 1994a) or four boron
atoms (e.g., the high-temperature form of boracite,
Sueno et al. 1973). Also, borate polyhedra may be
connected to more than two other polyhedra, and rings
of polyhedra may be connected to many other poly-
hedra or rings of polyhedra. The descriptor developed
above does not permit the descriptions of these
possibilities, as any one symbol in the linear character
string (B) cannot be more than [2]-connected. It is
necessary to introduce further descriptors for such
clusters.

Any anion (¢), polyhedron, or ring of polyhedra that
is more than [2]-connected in the character string B
may be enclosed in the delimiters [ ]. For example, an
anion connected to three borate polyhedra is [¢],
whereas a ring of three corner-sharing B¢, tetrahedra



4A:<BA>=<3A>

3A0: 2AO0>=<2A0>

3A0:<3A>=<2A0>

2A20: QA0>=<2A0>

2A20:<A20>=<A200>

2A20: 2A0>=<A20>

A30;<A20>=<A200>

A30: <BO>=<A20>

40:<30>=<30>

FiG. 3. Possible clusters of four borate polyhedra that contain
two three-membered rings with two polyhedra in
common.
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that is [3]-connected is [<3[]>]. A list of the polyhedra
or clusters that are connected to the central unit follows
the [ ] delimiters; each cluster that is separately
connected to the central unit is terminated by the
symbol I; note that the order of the listing of these
clusters is not important.

Consider an oxygen atom that is shared among three
B, tetrahedra (Fig. 2j). The descriptor for this cluster
is 3[1[¢1C1 1 LI, indicating that it contains three Bd,
tetrahedra, each of which is connected to a central
anion. The cluster given in Figure 2k also contains an
oxygen atom that is shared among three B¢, tetrahedra.
In this case, the cluster also contains two <A2[ > rings
that have one B¢, tetrahedron in common. The
descriptor is 2A3[1:[6]<A2[1>I<A2[]>l; note that
the sharing of one B¢, tetrahedron between the <A2[ 1>
rings is not explicitly indicated in the descriptor, but as
the cluster only contains three B, tetrahedra, the rings
must share one B¢, tetrahedron. For the cluster given
in Figure 21, the descriptor is 2A3[ 1:<A2[I>—<A2[ 1>,
and there are two rings of polyhedra that have one
B¢, tetrahedron in common, but with no [¢] anion
present.

Two clusters that contain six borate polyhedra are
shown in Figures 2m and 2n, but the connectivity of
these clusters is quite different. In Figure 2m, the
cluster contains three <A2[]> rings, of which each is
connected to a central oxygen atom. The descriptor
is 3A3[L:[¢]<A2lI>I<A2[1>I<A2[1>], which indicates
that three <A2[J> rings share a central anion; as the
cluster contains 3A3[], each ring must have two B¢,
tetrahedra in common with other rings. The cluster in
Figure 2n also contains 3A3[], but in this case there are
four three-membered rings of polyhedra, one <3[ 1>
and three <A2[1>. The central <3[ > ring connects to
the three <A2[ 1> rings by sharing two borate poly-
hedra, and thus the descriptor is 3A3[:[<3[>]=
<A l=<A2[ I>=<A2[1>1.

Large FBBs

The new descriptor effectively distinguishes
between the larger FBBs in phases such as pringleite,
*3H,0 (Fig. 1). The FBBs in pringleite and ruitenber-
gite are 6A6[1:<[JALJATJALIALCJACIA>, indicating
that they are twelve-membered rings of polyhedra
made of an alternation of B¢, tetrahedra and B¢,
triangles. The FBBs in Nag[B;,0,,(OH),] and
Agg[B1,013(OH)¢'3H,0 are 6A6[[: <<A2[]>-
<A2[>—<A2[ [>—<A2[ >—<A2[I><A2[]>>, indi-
cating that the FBB contains six three-membered rings
of polyhedra, each of which contain one B¢, triangle
and two B¢, tetrahedra; these six rings link to form a
larger ring of <A2[ > units (Fig. 1). The B strings are
rather cumbersome in this form; they may be
condensed in a very simple fashion by noting that the
symbol has translational symmetry. It is common in
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mathematics to represent a repeating string of figures
by the symbol e (e.g., ¥4 = 0.333e). We can use a
similar symbolism here. The unique sequence is
written, followed by the symbol e to show that it
repeats to the length of the B string as indicated by
the A term. Thus 6A6:<TIACJACIACIACIALIA>
becomes 6A6[1:<[ JAe>, and 6A6[1:<<A2[ 1>~
<A I>—< A2 I>—<A2[ ><A2[]>—<A2[I>> be-
comes 6A6[ 1:<<A2[ 1>—e>.

HYDROGEN BONDING

The majority of borate minerals are hydrous, and
hydrogen bonding is ubiquitous in these structures
(e.g., Burns & Hawthorne 1993a, b, 1994a, b, c, d,
1995). In some cases (e.g., Grice er al. 1994), it is
desirable to include information on the identities of the
anions in the FBB. In general, borate triangles and
tetrabedra are BO, ,(OH), and BO, (OH),, respec-
tively, and the symbols for borate triangles and tetra-
hedra in the descriptor may be modified by adding » as
a superscript, giving the symbols A* and [T,

TABULATION OF POLYHEDRAL CLUSTERS TO # = 6

Most FBBs contain six or less borate polyhedra,
although there are exceptions. Upon examination of
possible clusters of polyhedra, it is apparent that there
are many topologically possible clusters of six or less
borate polyhedra that have not yet been observed as
FBBs in a mineral or an inorganic compound. This may
be due to the relatively small size of the sample (the
structures of 102 minerals are known); for example,
the 4[1:<4[ 1> FBB has only been identified in
borcarite (Burns & Hawthorne 1995). In other cases,
the postulated arrangement of borate polyhedra may be
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energetically unfavorable. One of the goals of this
work is to identify all topologically possible clusters
(within certain imposed boundary-constraints) without
specific emphasis placed upon those clusters (i.e.,
FBB:s) that have already been observed in minerals.

Enumeration of possible clusters

In deriving possible borate clusters, we consider
only B¢, and B¢, polyhedra. As edge- or face-sharing
borate polyhedra have not been observed, we consider
only corner-sharing between borate polyhedra. We
omit clusters with any [1]-connected polyhedra; thus
chains (there are seventy-one chains for 3 < n < 6) and
decorated clusters are not included. Here, we limit
tabulation to clusters in which all borate polyhedra are
at least [2]-connected. Thus we include the clusters
31:<3[ > and 1A2[1:<A2[]>, but exclude
4:<3 1> and 1A3[1:<A2[>[], considering the
[1]-connected polyhedra as decorations on the cluster
to which they link.

Initially, all geometrically possible clusters (with the
exceptions listed above) were derived as shown in
Appendix A2, with the (temporary) restriction that
these clusters contain only [J; the complete set of
clusters can then be derived by permuting [] and A.
These thirty-nine clusters are given in Figures 4 and 5,
along with the corresponding B-B graphs and their
descriptors.

Some of the clusters permit considerable flexibility
in selecting a suitable descriptor. In these cases, the
symbols of the descriptor are organized so as to
emphasize the presence of the smallest rings within the
larger cluster, while still giving a complete description
of the cluster. We recommend that the form of the
descriptor in Figures 4 and 5 be adopted in general,
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suitably modified for the presence of A and decorations  The graphs of the clusters for 3 < n < 5 are given in
where necessary. Figure 6. In a later paper, we will examine possible

Other possible clusters were obtained by permuting  factors that control the existence (or otherwise) of these
A for [ in the thirty-nine clusters of Figures 4 and 5.  clusters as FBBs in borate structures.
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THE OCCURRENCE OF FBBS IN THE STRUCTURES
OF BORATE MINERALS

In the second paper of this series, we intend to
arrange all borate minerals within a hierarchy of
structures. In this paper, we restrict our discussion
to the FBBs that occur in the structures of borate
minerals, and ignore the overall connectivity of the
structure. The purpose of what follows is the identifi-
cation of FBBs that occur in mineral structures.

Graphical representation of all sterically possible
3 < n < 6 clusters fall into thirty-nine sets if the coor-
dination of the boron is ignored; these are given in
Figures 4 and 5. We have identified fifty-one borate
mineral structures with FBBs of 3 < < 6, and the fre-
quency of occurrence of the eleven sets with 3 <n <5
is shown in Figure 7. In the case of n = 6, observed
FBBs fall into two sets: 6B:[¢]<3B>|<3B>|<3B>|
(11 occurrences) and 6B:<3B>=<4B>=<3B> (1 occur-
rence). The observed FBBs with 3 < n <5 fall into only
four of the eleven sets, and only three of the sets have
multiple examples. Borcarite is the only mineral that
contains a FBB in the set 4B:<4B>. Inspection of
Figure 7 shows that <3B> rings of polyhedra are
dominant in FBBs; the 4[_]:<4[ 1> FBB in borcarite is
the only FBB that is not based on three-membered
rings of polyhedra.

Within each set of clusters (Figs. 4, 5), there are
several different possible FBBs with different numbers
of A and []. The frequency of occurrence of each
specific FBB within the three sets corresponding to
3B:<3B>, 4B:<3B>=<3B> and 5B:<3B>-<3B> is
given in Figure 8. For n = 6, FBBs in the set
6B:[(]<3B>I<3B>|<3B>| are of two kinds: ten are
3A3[1:[91<A2[>I<A2[>I<A2[ 1>, and one is
6L 1:[¢p1<3[I>I<3[I>I<3[I>I. First, consider only those
FBBs within the set 3B:<3B>. There are fourteen
examples in minerals: nine are <A2[ >, two are <3[ 1>,
two are <3A>, and one is <2A[}>. Thus, for FBBs
containing only one three-membered ring of polyhedra,
the combination <A2[]> seems favored relative to the
other possible combinations.

Examination of larger FBBs shows that the <A2[ >
ring is a major component of these large clusters. In the
FBB set 4B:<3B>=<3B>, all seven occurrences of
the three-membered rings are <A2[ 1>, In the FBB set
5B:<3B>—<3B>, there is more variability; of the
nineteen examples, both of the three-membered rings
are <A2[ > in nine structures, one ring is <A2[ 1>
and the other is <2AI> in five structures, and in
five structures npeither of the rings is <A2[]>.
There are eleven examples in the FBB set
6B:[¢]<3B>I<3B>I<3B>l; in ten of these, all three of
the rings of polyhedra are <A2[ T>, and only one does
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FiG. 6. All possible 2- or higher connected clusters for n = 3, 4, 5.

not contain a <A2[ > ring.

The frequency of three-membered rings of poly-
hedra in borate structures is remarkable. Of the
fifty-one borate minerals with 3 < n < 6, only one FBB
in one mineral is not based solely upon three-
membered rings. In addition, thirty-five structures
contain FBBs based only on the <A2[1> three-
membered ring, five contain FBBs based on
three-membered rings of the form <A2{ 1> and a ring
of the form <2A[l>, and only eleven (excluding
borcarite) contain no <A2[ > ring. We must conclude
that <A2[ 1> rings are strongly favored (energetically)
in FBBs with 3 < n £ 6, and that the three-membered
rings occur in the following order of preference:
<A2[> 5> QAP > <B[> > <3A>,

The origin of this preference is not readily apparent.
Possible factors affecting the observed frequency of
ring topologies are: (1) local bonding effects within the
ring may make the <A2[]> ring more stable than other
three-membered or n-membered rings, (2) long-range
structural effects may favor the inclusion of <A2[ 1>
rings rather than the other possibilities, and (3) the
<A2[ > ring may be favored in the precursor fluid
medium (under certain pH, Eh conditions), thereby
making it more readily available for incorporation
into a growing crystal. We are currently investigating
local bonding effects in borate clusters using
molecular-orbital calculations.

Many clusters with 3 < n < 6 (Figs. 4, 5) include
rings other than the favored three-membered rings, and
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Fic. 7. The frequency of occurrence of each of the eleven classes of clusters (3 £ n £ 5) in

borate mineral structures.

with the exception of the FBB 4[1:<4[I> in borcarite,
none of these have been observed in mineral structures.
However, there are also several sets of clusters with
3 < n £ 6 that contain only three-membered rings
(Figs. 4, 5) that have not yet been found in any borate
mineral structure.

SUMMARY

(1) We have developed a new representation and
descriptor for borate clusters that includes information
on the total number of boron atoms, the coordination of
the boron atoms (A: triangular, []: tetrabedral), the
cormectivity of A and [, the presence of rings, and
the connectivity within and between the rings.

(2) We have derived all clusters that are at least
[2]-connected, but not more than [4]-connected, which
have three to six polyhedra.

(3) In the structures of borate minerals containing
borate FBBs with 3 < n < 6, FBBs incorporating only
three-membered rings of polyhedra are almost domi-
nant. One FBB that is a four-membered ring of poly-
hedra is known (in borcarite).

(4) Three-membered rings of polyhedra occur in borate
mineral structures in the following order of preference:
<A > >> QA > > <3[> > <3A>.
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APPENDIX I

Consider the B-B graph shown in Figure A1; let us
call this graph G. This is a labeled graph in which
vertices represent borate polyhedra of unspecified type,
and edges represent linkage between these polyhedra
such that the polyhedral cluster represented consists of
two three-membered rings with two polyhedra in
common. The problem is to determine how many
distinct clusters of borate triangles and tetrahedra are
possible; this reduces to determining how many
distinct black (tetrabedron, [J) and white (triangle, A)
colorings of the graph in Figure A1l are distinct.

The automorphism group, P, of a graph is the
collection of all permutations of the vertex labelings
that preserve isomorphism. The collection of all
possible permutations of the vertex labelings is the
symmetric group S, (where n = 4 in Fig. Al). Pis a
subgroup of §,, and the complementary disjoint
subgroup of S, defines all labelings of the graph G that
are distinct. The disjoint cycle decomposition and
cycle structure of P for G of Figure Al is given in
Table Al. The corresponding cycle index of G,
denoted Z(P) is given by

1

20 = p%p
following standard nomenclature in combinatorial
theory (Brualdi 1991, Cohen 1978). From the
unweighted version of Pélya's theorem, the number of
distinct schemes, 181, is given by Z(P:m), that is, by
substitution of the number of different colors (i.e., [] or
A: m = 2) for the dummy variable s{%?);

N
kl;lf‘};(m = % [s+2s1+53] (AD)

4

Fic. Al. A labeled B-B graph, G, in which the vertices
represent polyhedra and the edges denote linkage between
polyhedra.
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TABLE Al. DISJOINT CYCLE
DECOMPOSITION AND CYCLE STRUCTURE
OF THE AUTOMORPHISM GROUP P OF
THE GRAPH G IN FIGURE Al

Disjoint cycle Cycle structurc*®

decomposition

HAaG@® st
@Q@as3 5 5
m3es st s
1324 5

* s are dummy variables that carry the cycle
structure of the disjoint cycle decomposition.

191 =L 242222421 = 9 (A2)
There are thus nine distinct possible arrangements of
four borate polyhedra that consist of two three-
membered rings with two polyhedra in common.

APPENDIX IT

We wish to derive all geometrically possible clusters
of » tetrahedra (specifically for n = 4 to n = 6) subject
to the condition that tetrahedra link by sharing corners
only and that each oxygen is not bonded to more than
two boron atoms. We will begin by deriving all
topologically possible clusters, and then will discard
those clusters in which the tetrahedra are inter-
penetrant, deformed beyond chemical feasibility, are
not at least two-connected, are greater than four-
connected, or which form disconnected rings. The
linkage between polyhedra is defined by the edge set of
the corresponding graph, and hence we are concerned
with the combinatorial characteristics of the edge set of
the graph, First, it is necessary to emphasize that this
is a topological problem rather than a geometrical
problem (as was the case in Appendix I). Hence the
relevant automorphism group for the vertex set is
the symmetric group S,. This has a corresponding
permutation group, Py [N = n(n—1)/2], that permutes
the edge set, and it is the cycle structure of Py, that can
be used, together with the weighted version of Pélya's
theorem, to calculate the inventory of topologically
distinct arrangements. A convenient way to deal with
the structure of the edge set is to allow the operations
of §, to permute the elements of the vertex set, and
to derive the corresponding operations of P by exam-
ining the resulting structure of the adjacency matrix.
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Fi1G. A2. A graph with n = 4 (left), the adjacency matrix for the
graph (middle), and the corresponding general adjacency
matrix (right).

Figure A2 shows a specific graph with n = 4, the
adjacency matrix of that graph, and the corresponding
general adjacency matrix that we use here.

Consider first the case for n = 4. The disjoint cycle
decomposition and elements of the cycle structure
for §, are shown in Table A2, together with the
corresponding elements for Py. The resulting cycle
structure for Pg is thus

Z(Pg) =5y (554953534855 +6s}sl] (A3)
The number of distinct arrangements, IS, can now be
derived from the unweighted version of Pdélya's
theorem by substituting the number of possible values,
m, of the matrix elements for s, in the cycle structure:

IS1 = Z(P:m) = 2L4 [+ +14m?] (Ad)

TABLE A2. DISJOINT CYCLE DECOMPOSITIONS AND CYCLE
STRUCTURES OF S, AND P,

Disjoint cycle Cycle Disjoint cycle Cycle
position of S, it position of Py

MA@ Bt @® @ @DE©N s
a2E@ S @®ode st
a13)@ EL [CRXONCH RO B
a4H@ A s @e) (b ()@ EE
me3n e S5 @b © @ En sts
meae s @d)®)chH @ s
mAEH sts @D 55
a3 3 @@®e)cd® 55
13249 % @f) ¥ (cd) @ L
aHeEsy E @HGe) @ stst
a123y@® st @boy@dfe 2
(13)@® st s} (@cd)(dep 2
(124)(3) s @ade)fc) 2
(142)(3) sis @edybep 5
(134 55 @ecybdp 2
1432 s} s (ace)bfd A
(1234 stsi (@db)cep 2
mE43) st s} (abd)(cfeo %
(1234) s (@adfoy(be 588
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The elements of the adjacency matrix, {a, b ....f}, can
be chosen from the set {0,1}, indicating no linkage or
linkage, respectively, between tetrabedra. Thus m = 2
and

ISl = 2% [2649:24+14:22] = 11 (A5)
Thus there are 11 topologically distinct clusters for
n =4. We may derive information on their structure by
using the weighted version of Pélya's theorem. The
matrix elements {a, b ....f} are chosen from the set
{0,1}; let us assign weights {u,v} to the set {0,1}. We
can then derive the inventory of arrangements, invlSl,
by substituting the weight functions

k
we= 2, wrf =ut+F k=ln (A6)
r=1

for the dummy variables s{*?) in the cycle index. The
resulting inventory of arrangements is

inviS] = L [(4v) 549222+ 8 (P12

% +6(2+1) ()]
= WS 2tV 313V 2P S8 (A7)
Each term in the inventory corresponds to a certain
number of edges, and the coefficient of each term
denotes how many topologically distinct arrangements
occur with that number of edges; thus the term 2u*/?
indicates that there are two distinct arrangements with
two (v = 2) edges. Now we require that all vertices be
at least two-connected; a necessary-but-not-sufficient
condition for this is that there be at least four edges in
the graphs, and this means that we are only concerned
with inventory terms for which the exponent of v is
greater than or equal to 4 (i.e., n, the number of vertices
in the vertex set of the graph): 2u?v*, wv’ and v. These
graphs are shown in Figure A3. Note that one of the
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Fic. A3. Graphs for possible borate clusters with » = 4 that
contain at least four vertices. Boxes are drawn around
the graphs of interest, i.e., those that are at least two-
connected and are not greater than four-connected.
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arrangements has a one-connected vertex, and hence is
not needed; the other three graphs are relevant, and the
resulting clusters are shown in Figure 4.

Having illustrated the method, we can now take a
short cut in the calculations for » = 5 and » = 6. The
different permutations of S, can be divided up into
conjugacy classes, the structure of which is denoted by
the symbol

kﬁl s;‘c(k.g) (A8)

TABLE A3. CYCLE STRUCTURES AND
NUMBER OF ELEMENTS IN §, AND
Pppis FOR n=5 AND 6

Cycle structure Cycle struciure

S N* Py
5 1 5
5 53 10 st s
515 15 5153
£ 20 5 83
58 20 s} s} st
sisl 30 s 52
st 24 5
S N* Py
s 1 5y
stsl 15 558
5185 45 51 51
s 15 s 88
S 40 53 s
s\ sy s 120 5] 53 5 5,
5 40 53
s 90 5] 83 83
s s} 90 5] 83 54
st st 144 53
St 120 53 52

*N = number of elements of S, (and P,,.,,»)
with the cycle structure indicated
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Fic. A4. Graphs for possible borate clusters with » = 5 that
contain at least five vertices. Boxes are drawn around
the graphs of interest, i.e., those that are at least two-
connected and are not greater than four-connected. Where
the graphs meet these criteria but are deformed beyond
chemical feasibility, or contain interpenetrant tetrahedra
or disjoint rings, the boxes are drawn using broken lines.

4uv’

in which s{*#) are the dummy variables used above,
and j(k,g) denotes j cycles of length & in the permuta-
tion g € S,. The number of conjugacy classes in S, is
p(n), the number of partitions of the integer n. Thus we
can derive the conjugacy-class structure of S, from
p(n); the corresponding cycle index of S, is thus the
sum of the elements of the conjugacy class of S,, each
multiplied by an appropriate coefficient that denotes
the number of disjoint cycle decompositions of S, with
that specific cycle-structure. The conjugacy classes of
S5 and Sg are shown in Table A3. How do we derive the
appropriate coefficients? For a specific cycle structure
[e.g., s s for S5: a specific example is (1 2 3)(4 5)], we
calculate the number of distinct arrangements [for s s
{e.g., (12 3)(4 5)}: in this case, the number of distinct
arrangements is 5 X 4 x 3/3 for s and 2 x 1/2 for s, and
the total number is therefore 5 x4 x 3 X 2/3 X2 =20].
The resultant values for S5 and Sq are given in
Table A3. Now although the conjugacy classes of Py
are different from those of S, corresponding conjugacy
classes in the cycle indices of each group must have the
same coefficient, and each operation in S, has a
corresponding operation in Py. Thus, to derive the
complete cycle index for Py, we need only to derive
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the cycle structure for one operation within each
conjugacy class. The corresponding conjugacy classes
and associated coefficients for P, (associated with Ss)
and P;5 (associated with Sg) are given in Table A3.
From Table A3, we can write down the cycle structures
for Py and P5, and proceed with calculating the
pattern inventory as was done above for n = 4.
For n = 5, the resulting cycle structure for Py, is

Z(P) = L [5104105453+15525%+20s153

1200 0sislsbi30sie24s2]  (A9)

The total number of distinct arrangements is given by
Z(P:2):

ZPp2)= 1710 [2104+10-2%23+15:2224420:2:23
+202:2:2+30:2:22424:2%] = 34 (A10)
The corresponding pattern inventory is given by

inviS) = 12—10 [(4v) O+ 10vYA U223
+15uAv)2 (122 4 20(u4v) (1P +3)?
+20@uAv) @3+ Y (ub+v0)

+30(2 4+ (v 2245+

= w041+ 2uv 2+ 4V +6ubv 615V
FOuUO 413V 4 20 B+ 10

(A1lD)

Requiring that all vertices be two-connected is a
necessary-but-not-sufficient condition that restricts our
interest to arrangements with the exponent of v equal
to or greater than 5; these 20 graphs are shown in
Figure A4. Nine of the 20 graphs have a zero- or one-
connected vertex; five graphs require very highly
distorted or interpenetrant tetrahedra. The remaining
six graphs are geometrically possible, and are repre-
sented in Figure 4.
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For n = 6, the cycle structure for P;5 is
ZPp) = 7%0 [s13+155753+60s353+40s3s%

+180sisés2+120s}s§s§sé+40s§
+14453+120sks3] (A12)
The total number of distinct arrangements is given by
Z(P:2):

Z(P:2) = 12—10 [2154+15211460-2°+40:27+120-2°

+40:25+144-23+41202%] = 156 (A13)

The corresponding pattern inventory is given by

inviSl = % [@4)5 +15 (u+v)” @224
+60 u4v)? (1240 +40 (u+v)® WP+~)*
+180 (u+v) W2+v2) (Wi+vh)3
+120 (u+v) @2 @43 (ub+v5)
+40 (P75 +144 (P+v°)?
+120 (B3+v3) (ub+v0)?]
= BS54 4201324 54121349y 1 14
+15u1%542149v5424uBvT424u"V8
+21u5%+1 555104952y 145,312
+2u2v B yyldyls

(A14)

Requiring that all vertices are two-connected is a
necessary-but-not-sufficient condition that restricts our
attention to arrangements with the exponent of v equal
to or greater than 6. Exponents of v greater than 12
must involve arrangements with at least one five-
connected vertex and can be discounted. As can be
read from the above pattern inventory, there are
119 relevant arrangements; these are shown in
Figure AS. Geometrically possible clusters are shown
in Figure 5.
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FiG. A5. Graphs for possible borate clusters with » = 6 that contain at least six vertices.
Boxes are drawn around the graphs of interest, i.e., those that are at least two-con-
nected and are not greater than four-connected. Where the graphs meet these criteria
but are deformed beyond chemical feasibility, or contain interpenetrant tetrabedra or
disjoint rings, the boxes are drawn using broken lines.
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