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ryAN L'HEUREI.IXI

Departtnent of Physics and Oftawa - Carleton Geoscience.Cente, University of Oxawq Ottawa, Ontario KIN 6Ns

ANTHONY D. FOWLER

Department of Geology and Ottawa - Carleton Geoscience Centre, (Jniversity of Oftnwa. Ottawa, Ontario KIN 6N5

ABSTRACT

We present a recently developed nonlinear model based on the constitutive undercooling mechanism to explain oscillatory
zoning in plagioclase. It uses dilhrsion-controlled growth kinetics coupled with a nonlinear partition relation. Regular
oscillatory zoning, period doubling sequence and chaotic zoning are possible for realistic choices of parameters. This model
captures the essential feafures observed in actual crystals.

Keywords: oscillatory zoning, plagioclase, self-organization, nonlinear dynamics, pattern formation, difft.rsion-controlled
gowth kinetics, constitutive undercooling, period-doubling, chaos.

SotrMan_e

Nous pr6sentons un r6cent moddle non lin6aire de zonation oscillatoire dans les cristaux de plagioclase. k modble esr fond6
sur un m6canisme de sous-refroidissement constitutionnel. Il utilise une cindtique de croissance contr6l6e par la diffirsion, ainsi
qu'une relation de partage non lin6aire. Les zonations oscillatoires r6gulidres, les s6quences de d6doullement de p6riode,
ainsi que les zonations chaotiques, sont possibles pour des valeurs r6alistes des parambtres. Ce modble semble bien reproduire
les caract6ristiques essentielles de la zonation observde dans les cristaux natureli.

Mots'clCs: zonation oscillatoire, plagioclase, auto-organisation, dynamique non lin6aire, formation de motifs, cin6tique de
croissance contrdl6e par difftrsion, sous-reftoidissement constitutionnel, d6doublement de p6riode, chaos.

lvrnooucrroN

Many crystals of geological importance show
oscillatory compositional zoning from core to rim.
Examples may be found in over 70 different minerals
(Shore & Fowler 1996). The classic example is
plagioclase, particularly that of many intermediate
volcanic rocks. Typically, the plagioclase zoning
consists of a more or less regular oscillation in the
anorthite content from core to rim (Pearce et al. 1987,
Pearce & Kolisnik 1990) on a scale of approximately
l0 pm. The amplitude of the zoning is generally of
several mol.7o anorthite (An) superposed on a baseline
of decreasing An content toward the crystal,s

periphery, i.e., "normal" 2ening. Trace elements also
show an osciUatory distribution in the crystal.

The oldest models to explain the oscillatory zoning
of plagioclase, as mentioned by Klein & Hurlbut
(1993), were based on changes in the magma flow's
parameters on a large scale (e.9., inception of mixing of
magma). However, as a typical growth-velocity is
of the order of pm/s, the time needed to form one zone
is very short in comparison to the time-scale of mixing
in the magma system. More appropriate models are
based on modem ideas of self-organizatioh in non-
linear systems.Haase et al. (1980) and Ortoleva (1990)
proposed a model based upon a dilftrsion mechanism
and an ad hoc autocatalytic scheme of reaction,
Brandeis et al. (1984) modeled oscillatory zoning as
due to nucleation-induced oscillations in temperature.
Alldgre et al. (198L) considered a model with diffrrsion
and a retarded growth-rate, They found transient
solutions exhibiting a damped oscillatory character,
but no sustained oscillations. Lasaga (1982) modeledI E-m,ail address.' ilheureux@acadvml.uottawa.ca
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the growth process by coupling diffusion to realistic
expressions of growth velocity, but did not find self-
oscillating solutions. Pearce (1994) offered a review of
these models.

Another recent model has been proposed by Wang
& Wu (1995). Assuming that the concentration of a
species in the solid is proportional to its growth
velocity, these authors obtained a nonlinear relation
between concentration of the species in the solid to
concentration in the melt adjacent to the growing
surface, thus defining effectively a partition relation.
They obtained a regime of parameters for which two
stable solution branches coexist. They then related the
phenomenon of oscillatory zoning to the fact that
the growth dynamics may move tlte system from
one branch to the other. No realistic dynamics are
discussed, as they treated only the no-diffusion and the
infinite-diffusion cases. No mechanism for more
complex dynamic behavior was proposed.

Our model (L'Heureux 1993. L'Heureux & Fowler
L994,1996) is based on a diffirsion-controlled process
coupled with realistic growth-kinetics appropriate for
the plagioclase system. It differs from previous
quantitative models in that constitutive undercooling
(Tiller er al. 1953) and nonequilibrium partition
provide the basic mechanism for the generation of
oscillatory zoning. In this paper, we review the features
of this nonlinear growth model, and we complement
the findings of L'Heureux & Fowler (1996).

This mechanism was first applied to plagioclase in
a qualitative manner by Sibley et al. (1976). Generally,
under isothermal conditions in multiply-saturated
systems, the concentration of species at the growing
front of a crystal may be different from the bulk value
owing to diffirsion. This induces an effective under-
cooling near the front.

The potential for the generation of significantly
heterogeneous compositional pattems can be seen from
the following argument. As we will see, the growth
velocity is a rapidly increasing function of the An-
concentration in the melt. When the partition relation
is such that the An-concentration in the crystal at
the growing front is larger than in the liquid (e.9.,
near-equilibrium growth), the crystal grows uniformly
without oscillatory zoning. Indeed, consider a small
random perturbation that increases the melt's
An-concentration at the interface from the steady state.
This will result in enhanced growth and in further
consumption of the An-species in the melt, thus
reducing the effect of the perturbation. The system
exhibits in this case a stabilizing feedback loop. This
instability mechanism is general and can be applied to
other systems as long as 1) the growth velocity
increases with the concentration of the species under
consideration, and 2) the partition relation favors a
higher concentration of a species in the crystal than in
the melt.

In contrast, for a partition relation such that the

An-concentration in the crystal is less than in the melt"
the system exhibits a destabilizing feedback loop that
has the potential to generate nonhivial compositional
zonations. Indeed, as before, a small random
perturbation from the steady state that increases the
melt's An-concentration results in enhanced growth.
However, the crystal now rejects more An in the melt.
This results in a further increase of the perturbation.
This effect self-propagates until the concentration
gradient is sufficiently large for the diffrtsion processes
to stabilize the growth, resulting in the crystallization
of a relatively An-rich layer. The cycle can then repeat
itself.

Our model is consistent with these arguments. Here,
the nonlinearities stem from the coupling between the
An-concentration field and growth velocity, as
well as from the boundary condition through a
nonlinear partition relation, In this paper, we flrst
review the features of the model. A linear stability
analysis for the dynamics of perturbations off the
steady state is then summarized. This analysis allows
for the determination of ranges of parameters for which
the system may develop oscillatory zoning. We uext
present numerical solutions that indeed demonstrate a
regular oscillatory zoning as well as a chaotic zoning
stemming from a period-doubling scenario. Finally, a
discussion ofthe results and possible generalizations of
the model are presented.

Tne Moln

We introduce the model in three stages. We first
discuss the chemical diffrrsion process responsible for
the growth of plagioclase crystals. We then present the
parameters defining the growth velocity. The nonlinear
partition relation is then introduced.

Dffision

The plagioclase system is a solid-solution series
between a Ca-rich end member (anorthite) and a
Na-rich one (albite). In the model, we use a frame of
reference that moves with the growing front of the
crystal, so that r = 0 corresponds to the interface,
and x > 0 denotes the position in the melt. lat c(x,t)be
the anorthite concentration in the melt at position t and
time r, and D, the diff:sion coefficient of An. The
diffusion process in the melt can be described by
the following relation:

d" = D ts- *y, 3g- (r)
dt dl Dx

Herc, Vr(t) = Vrlc(O,t)) is the velocity of the growing
front at a fixed temperature 7. In general, this velocity
depends on the concentration of species at the growing
front. The corresponding term in Eq. (l) describes an
effective advection of material incoming toward the



crystal and constitutes a source of nonlinearify.
The initial condition for the model is given by

c(.r, 0) = 6r. (2)

Boundary conditions also need to be specified. Very
far from the crystal-liquid interface, we set the
concentration field equal to the given concentration d
in the bulk magma:

c(a,t) = [ (3)

Continuity of the material flux (mass balance) at the
growing front provides another boundary condition:

).
D "" + [c(0,t) - c,(t)]Vr= Q, (4)

dxl"=o

where c,(r) is the species concentration in the crystal at
the interface. We neglect diffrrsion in the solid phase.

Growth velocity

As grofih is typically slow (pnr/s), we can assume
that the growth velocity adjusts instantaneously to a
value close to that described by near-equilibrium
kinetics. In contrast, some previous models (Alldgre
et al. 1981, Brandeis et al. 1984) introduced a
relaxation-time relation between the actual growth-rate
and its kinetic value. Such a feature is not essential for
the generation of self-organized patterns, although it
could be straightforwardly incorporated in our model
(L'Heureux 1993).
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A realistic expression for the growth velocity was
derived (L'Heureux 1993) from the Calvert-Uhlmann
model for the growfh of large crystals (Calvet &
Uhlmann 1972).

vr= U(R"R7)1|3. 15)

Here, the growth is interpreted as a geometric average
of nvo mechanisms, a longitudinal growth R" by sur-
face nucleation and a continuous growth R" along the
surface. U denotes a velocity scale. Expressions for the
partial mechanisms of growth R" and R. are given by:

& = exp(- jL1"*pg 4) (6)
TLT' " T-Tr'

R. = [/ - expl- 4G ;1 exp(- b 
). (i)

RT T_7,

Here. a is related to the surface tension of the critical
nucleus, D is related to the viscosity of the melt, and
LT = Tr - 7 is the undercooling, with 7, the liquidus
temperature. 7", the glass-transition temperature,
relates to the fact that the melt's viscosity follows the
Vogel - Tammann - Fulcher empirical law (Bottinga
& Weill 1972). Fnally, AG is the difference in molar
Gibbs free energy between the crystal and the melt.
This quantity is related to the undercooling, to the
molar enthalpy of fusion A1{ (L'Heureux & Fowler
1994). and to ttre molar enthalpy of mixing A.F1,
(L'Heureux 1993).

The dependence of the growth velocity on An
concentration comes from the dependence of Ty, Tu,

ISOTHERMAL MODEL FOR OSCILLATORY ZONING IN PLAGIOCLASE

H

t r - l

{) -2

o

bo
o

t-{

-4

1400 1600
TK)

Frc. 1. Measurements of
growth velocity in the
synthetic Ab-An system
(from Kirkpatrick et al.
1979) and calculated
growth-velocity as a
function of temperature
for various An-concen-
tradons: 100 mol.7o (cir-
cles), 75 mol.7o (squares),
50 mol.Vo (triangles).
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NIr, NIn, U, a and D on An concentration. The frst
four quantities are known, whereas U, a and b ue
deterrnined by fitting the expression for the gowth
velocity to the experimental measurements on
plagioclase by Kirkpanick et al. (1979). Figure 1
shows the data and the resulting fits. The important
compositional dependence is due to U and Z1 only.
Figure 2 shows the resulting dependence of An-
concentration on the growth velocity for various
temperatures. Note that growth velocity is a rapidly
increasing function of the melt's An-concentration at
the crystal-liquid interface.

Partition relation

In order to obtain a closed set of equations, we need
a relation (the partition relation) between the species
concentration in the solid and in the melt at the
interface. Lasaga (1982) has obtained a reasonable
partition relation for two-component systems (e.9.,
albite-anorthite):

K^BcQ.t)
c . ( t )=#.  (8)

A+(Ko- 1)c(0, r )

Ifthe superscript'refers to the second solid-solution
component, here Ab, then Kp = c,(t) c'(O,tylc(0,t)
c"'(r)l is an effective exchange-equilibrium constant,
whereas A = c(O,t) + c'(O,t) and B = c"(/) + c'"(l) are
approximately constants. Substituting the pai'tition
relation tEq. (8)l in the boundary condition at the
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Hc. 2. Concentration dependence of the growth velocity for various temperatures:
(a) T = 1200 K; (b) I= 14O0 K; (c) 7= 1600 K; (d) r= 1800 K.
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interface tEq. (4)1, we see that the boundary condition
introduces another source of nonlinearity.

Since the molar volume of albite and that of
anorttrite are approximately equal, we can express the
concentration in units of molar volume so that the
concentration becomes identical to the composition.
We can thus chooseA = B = l.In summary, the model
is defined by Eqs. (1-8). The control parameters
consist of D, T,t and Ko.

LNSAR STABILTTY ANALYSIS

The first step in analyzing the nonlinear model is
to find the possible steady-state solutions. We then
test for the stability of these solutions by examining
the relaxation of a small perturbation about the
corresponding steady-state solution (as described in the
Introduction). This results in a sst of linearized
equations that can be solved, so that the nature of the
stability can be mapped onto 4 phase diagram in
pafttlneter space.

To solve for the steady-state concentration ca at the
growing front in the melt, we set the left-hand side of
the dilfrrsion equation Bq. (1)l equal to 0. The solution
is unique and is given by

co= t l lKo- (KD - 1) a l. (9)

The corresponding steady-state growth velocity is
denoted V6=Vfcs). The linear stability of this steady-
state solution can now be investigated. We lrst obtain



an integral representation of the melt concenmtion at
the interface c(0,r) involving its value at previous
timeS. From Eq. (1), we solve for the spatial Laplace
tiansform of c(x,t), we invert and take the limit as
r + 0. The result generalizes Eq. (4.11) of L'Heureux
(1993) and reads

c(o,t) = 6 - f *,,,,f#r- 2vrl)ld/

+ ff t10,t'1g,,, l!2 ar - 2 ff vr1)c,(t')gr,dt' (10)

+ (c, -d)[l + erfyq)12\/-Dtl].

Here, erf denotes the error function,

ft')= tivrnd{
is the length of the crystal grown between /' and /, and
the propagator is

g tt, = expY Q)2 t 4D(t - t', )l A/ nnO11-7'1.

We now consider the time-dependence of a small
perturbation in concentration qf ampttude e about the
steady sta0e. The system can then be linearized about
the steady state, so that we expect the solution to have
the following exponential behavior:

c(0,r)= co+g/ot th,

Vr(t)=Yo.#d?@rh.

(1 1)

(r2)

Here, T =8 D/Vf, is a characteristic time-scale, and co
represents dimensionless eigenvalges to be found. We
find by straightforward analysis (L'IGurdirx & Fowlel
1996) that rrr is a solution of:

\,6FI =##
where

p =  l A l - K p + ( K p - l ) t
KD- (KD- Dt

o= | -+(KD-(KD- Do)2

tt4l

one, the steady state is stable and overdamped,
corresponding to an unzoned crystal. However, if K, is
less than 1, the situation is more interesting. Figure 3
shows the stability phase-diagram n (9, Kil space for
two sets ofd and 7 values. The dotted lines separate
regions for which the eigenvalues have common
characteristics. In the field labeled S, we find two
complex conjugate eigenvalues with a negative real
part. This means that the steady state is stable, but
supports damped oscillations, corresponding to a
crystal exhipiting a few zones of decreasing amplitude
from the core. In the region U, the eigenvalues are
again complex conjugate, but have positive real parts.
Here, the steady state is unstable, but has the potential
to exhibit nontivial oscillatory behavior. Generally, as
the nonlinear system parameters arc varied, we may
find circ.umstances for which a steady state loses its
stability, in such a way that the eigenvalue with the
largest real part becomes purely imaginary. In this
case, the system is said to undergo a Hopf bifurcation
(Hilborn L994).T\e tansition from region S to U thus
defines a Hopf bifurcation for the plagioclase system.
In the field labeled R, the eigenvalues are real and
positive, corresponding to a linearly unstable steady-
state. Since this region is already surrounded by an
uri.qtable area, this result is not relevant for the behavior
of the actual solution. Finally, the region labeled N
corresponds to a regime where no solution to Eq. (13)
is found.

If we use a realistic expression for growth velocity,
the path in (e, K,D) space is grven by the solid line in
Figure 3. Note that for higher lemperatures, the Hopf
bifircation is sffied to higher values of Ko, thus
enlarging the range of parameter values for which
oscillatory behavior is possible. Moreover, as d
increases, the Hopf bifurcation point is shifted upward,
so that there exists a maximum value of d (e.g.,0.4 for
a ? of 1400 f) fo1 

ltre 
onset of oscillations.

Nuumrcar ANALYSTS

The model has been solved numerically using a
ssmi-implicit method on staggered grrds in position
and time. The nonlinearities were treated by an
iteration scheme over successive approximations until
convergence to a given tolerance was obtained. The
numerical scheme was successfully tested for conver-
gence and stability. The resulting time-series were then
transformed to a dimensionless space variable I by
using the relation

L=volivr()atn. Q7)

This format conesponds to that typical of a traverse
across the crystal during chemical analysis.

Figure 4a shows a typical solution of Eq. (1) for
a point corresponding to region S in the stability
diagram. As expecled from the linear stability analysis,
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+ 2 0

with

|  -  Ko+ (KD- l )  e
K D - ( K D - L ) t

(13)

(14)

(ls)

(16),=+*
being the dimensionless slope of the growth-velocity
curve at the steady state.

We find from Eq. (13) that if K, is larger than
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FIc. 3. Stabilify phase-diagrm
in (0{a) for d = 0.3. See
text for an explanation of
the stability fields bounded
by dashed lines. The
continuous curve gives the
path obtained with a
realistic expression for
growth velocity: (a) Z =
1400 K; O) I= 1600 K.

the solution exhibits da-Fed oscillations to a steady
state. Numerical analysis also indicated that the
steady state is stable in the region N of the phase
diagram and does not support oscillations. The
behavior of the steady state thus connects smoothly

0.4 0.6 0.8

0.2 0.4 0.6 0.8

with the one for KD > 1. Figure 4b uses a smaller value
of Kp and corresponds to a point in the region U of the
phase diagram that is close to the Hopf bifurcation
boundary. As expected from our discussion, a regular
oscillatory solution is obtained. Figure 5 shows the
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(a)

0 10 20 30 40 50 Frc.4. Numerical solution for

L 
the An concentration in
the crystal c"(l) at the
growing front as a func-
tion of the dimensionless
distance from the core.
t = voli vr() dt'tD,
t = c , J 0 . 3 , a n d Z =
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1400 K. (a) Ko = 9.26
(Vo = 1.3979 LLm/s);
b) Kn=0.23 (V"= 1.7755
pdo.
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results when K, takes a sequence of smaller values at a Dlscusslotr
higher temperature. This corresponds to points further
inside the region U of the phase diagram. Note the With an appropriate diffirsion-coefficient (D =
sequence of period-doubling leading to chaos with 10-7 cm2ls), the zone thicknesses obtained from the
decreasing Kp. numerical solutions (e.5., 2L.4 pm for Fig. 4b)
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correspond to those observed in natural oscillatory
zoned plagioclase. Also, the amplitude of the concen-
nation variations (e.9., Ll.6 mol%o An for Fig. 4b) is
consistent with the observations. The parameter regime
for which oscillatorv zonins is obtained also is

(a)

10080604020

0.6

reasonable. For instance, oscillatory zoning in
plagioclase is commonly found in intermediate rocks,
which corresponds well with the fact that oscillatory
and chaotic solutions are found for d < 40Vo An at
Z= 1400 K.
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In the chaotic region, the zone thickness varies
inegularly. Figure 6 shows a return map corresponding
to the chaotic solution of Figure 5c. Here, we plot the
thickness of the nth zone (defined as the dimen-
sionalized distance between successive maxima) as a
function of the thickness of the previous one. The
points are distributed on a pattern with a well-defined
single maximum. This pattern is reminiscent of the
logistic map, a well-studied model in nonlinear
dynamics that exhibits period-doubling sequences to
chaos (Hilborn 1994). The similarity between the first
return map in our model and the logistic map suggests
that both these models belong to the same universality
class, thus explaining the presence of the period-
doubling sequence. Moreover, the pattern obtained is
strikingly similar to that found by Higman & Pearce
(1993) in real crystals ofplagioclase. In addition, they
showed evidence of the existence of a Hopf bifurcation
in the plagioclase data.

In the model proposed by Wang & Wu (1995),
oscillatory zoning was linked to the possibility of
motion between the two coexisting branches
of their partition relation. This is not necessary for
oscillatory zoning. Indeed, in contrast to their model,
our partition relation defines uniquely the concen-
tration of An in the solid as a function of its
concentration in the melt. In our model, oscillatory
zoning stems from the diffrrsion-controlled growth
dynamics.

tt45

The concentration profiles obtained from the
numerical solutions are basically symmetrical, as
opposed to the sawtooth pattern characteristically
observed in natural crystals (Pearce & Kolisnik 1990,
Pearce 1994). Generalizations of our simple model that
could lead to a closer match to natural profiles are
currently under investigation. For instance, coupling of
the concentration field to a temperature field could be
achieved through consideration of the heat diffrrsion
with the production of latent heat, together with a
temperature-dependent diffusion coefficient. An
explicit cooling rato can also easily be considered.
However, consideration of the temperature variations
shows that the corrections on the large-scale features of
the An-concentration profile are small (of the order
of l%o) because the thermal diffirsivity of the melt is
fypically much larger than the diffrrsion coefficient.
The isothermal assumption is therefore a reasonable
one.

Another possible generalization is to consider a lag
between the actual growth-velocity and its kinetic
value (Alldgre et al. L98L, Brandeis et al.1984).T\is
lag represents the possible sluggishness in the response
of the system and may have an effect on the shape of
the profile.

The one-dimensional model used here imFlies that
the calculated pattems ef 2ening consist of growth
planes of varying composition. Sufficiently far from
the crystal's core, this is the type of pattern observed.

ISOTHERMAL MODEL FOR OSCILLATORY ZONING IN PLAGIOCTASE

(c)

120 160 2N804A0
L

Fto. 5. Numerical solution for the An concentration in the crystal c"(r) at the.growing front
as a function of the rlimensionless dislance from the 

"o*. 
i = V" S-Vr1t1-atn,

t =0.3,7 = 1600 K, and c; = 0.5. (a) Kr=0.34 (v"=2.4i21 pnr/s); (b) Ko=o.324
(Vo=2.826 pm/s); (c) Ko=0.37 (%=3.1816 pm/s).
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However, an interesting but difficult generalization
of the model would consist in an extension to 2 and
3-dimensional patterns. Such a model could be applied
to a non-equilibrium growtl regime intermediate
between oscillatory zoning and dendrites.

Finally, the natural system is submitted to random
environmental fluctuations. The effect of such noise on
values of the parameters can be investigated. In many
instances, this noise may lead to nontrivial behavior,
such as creation of noise-induced pattems without
deterministic counterpart (Horsthemke & Lefever
1984). In conclusion, our simple model seems to
capture the essential dynamics of oscillatory zoning in
the plagioclase system in a way that has not been
possible with estabtshed models.
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