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ABSTRACT

The values of the principal indices of reftaction determine the properties of the optical indicatrix. The directions of the ray
paths associaGd with a wave normal ultimately alepend on the indices of refraction. The directions of the wave normal and
ray paths need not coincide in anisotropic media. To find a ray path for a given wave normal, two items of information must be
extracted from the properties ofthe indicatrix: the location ofa vector representing a vibration direction or electric displacement
vector, D, and the direction of the vector representing the electric fleld generated by the electromagnetic radiation, E. The angle
2V and optic sign, obainable from the indices of refraction, are all the information needed to calculate vectors parallel to
the vibration directions associated with a given wave normal. A second-rank tensor, with principal components invenely
proportional to the squares of the principal indices of refuaction of the crystal, relales vectors representing the vibration
direction and the electric fie14 D and E. E is calculated from this relation. The angle between D and E equals the angle between
the wave normal and the ray path. Maximum values of the angles between ray path and wave normal depend on the largest
index of refraction, 1, and the birefringence of the crystal (y - o). For common rock-forming minerals, the maximum angle is
approximately 0.5o - 2o. In crystals with extreme birefringence, such as aragonite and strontianit€, the maximum angle
approaches 6o. Wave nomrals and ray paths diverge most in sections cut parallel to the I vibration direction and tilted with their
normals between 45o and 50o from the Z vibration direction. The precise angle between the Z vibration direction and the normal
to the section depends on 1 and (1- cr).

Keywords: optical mineralogy, ray path, wave normal, optical directions, vector algebra indicatrix, Maxwell's qluations,
vibration direction, electric vector.

Sot"nraans

Les valeurs des principaux indices de rdfraction d6terminent les propri6tds de I'ellipsoide de propagation et de vibration
optique. l,e.s directions de propagation d'ondes associ6es avec un front d'onde d6pendent finalement des indices de rdfraction.
Il n'est pas n&essaire que la direction perpendiculaire au front d'onde et les directions de propagation des ondes colncident dans
un milieu anisotrope. Pour trouver une direction de propagation d'onde pow un plan perpendiculaire h un front d'onde donn6,
il est n6cessaire d'extraire deux pibces d'information des propridtds de I'ellipsoide: la localisation du vectew qui repr6sente la
direction de vibration ou le vecteur de ddplacement dlectrique, D, et la direction du vecteur qui repr€sente le champ dlectrique
que g6ndre le rayonnement dlectromagn6tique, E. L'angle 2V etle signe optique, qui d&oulent des indices de r6fraction,
suffisent pour calculer les vecteurs parallbles aux directions de vibration associ6es i un plan perpendiculaire i un front d'onde
donn6. Un tenseur de deuxibme rang, dont les composants principaux sont inversemetrt proportionnels aux can6.s des principaux
indices de r6fraction du cristal, font le lien entre les vecteurs repr6sentant la direction de vibration et le charnp 6lectrique,
D et E. On calcule E i partir de cetle relation. L'angle entre D et E est 6gal l I'angle entre la perpendiculaire au front d'onde et
la direction de propagation d\rne onde. Irs valeurs maximales de I'angle enfie ces deux directions d6pendent de la valeur de
I'indice de rdfraction le plus 6lev6, y, et la bir6ftingence du cristal (y- a). Dans les cas des min6raux courants dans les roches,
I'angle maximum se situe dans I'intervalle 0,5" - 2o. Dans les cas d'une bir6fringence exfi€me, l'aragonite et la strontiardte par
exemple, I'angle maximum peut atteindre 6o. lrs perpendiculaires aux fronts d'onde et les trac6s d'ondes sont davantage
divergents dans les sections paralldles d la direction de vibration Iet inclin6es avec leurs perpendiculaires au front d'onde entre
45o et 50o de la direction de vibration Z. L'angle pr6cis entre cette direction de vibration et la perpendiculaire i la section 6tudi6e
d6pendrait de yet de (1- a).

Mot-cl6s: mindralogie optique, trac6 d'une onde, perpendiculaire d un front d'onde, directions optiques, algbbre vectorielle,
ellipsoide de propagation et de vibration, 6quations de Maxwell, direction de vibration, vecteur dlectrique.
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INTRoDUcnoN

Tlree directions are associated with the trans-
mission of normally incident light through crystals:
two are ray paths, or directions of energy transfer,
and the third is the wave normal, perpendicular to
two directions of vibration of light normally incident
on general sections thrcugh anisotropic crystals. The
three directions need not coincide in anisotropic media.
By and large, ray paths do not play a prominent role in
the theory of optical crystallography (e.9., Bloss 1961,
Nesse 1991). It is the vibration directions that are
important, and these are associated with the wave
normal, not the ray path. In spite of the relative
importance of ray paths and wave normals, students of
optical mineralogy do ask about the location of ray
paths. In addition, the location ofray paths is required
for a complete description of interference figures.
A completely rigorous and general mathematical
description of the phenomena leading to interference
figures has not been developed, even though
research into the matter dates back to the late 1800s
(Bethke & Birnie 1980). It is much easier to determine
the wave normals than the ray paths. The latest model
for describing interference figures @etlke & Birnie
1980) assumes that wave normals are adequate
approximations to the ray paths. This paper describes
a metho4 using vector algebr4 for finding the ray
paths associated with a given wave normal.
Consequently, a quantitative evaluation of the wave
normal approximation follows. Bloss (1961, p.77-:78,
160-161), Wahlstrom (1979, Appendix B), and Nesse
(1991., p. 56-57, 80-81) described graphical
procedures for finding ray paths. Graphical procedures,
however, are not always practical methods for finding
numerical solutions to real problems. The vector-based
method outlined in this paper results in an analytical
expression for fts angles between the wave normal and
ray path.

MAxwn['s Equmoxs

Light is a form of elecfomagnetic radiation; there
are two vectors associated with each kind of
phenomenon, elecficity and magnetism. The vectors
associated with electricity will be labeled E and D. If a
crystal is placed in an electric field described by the
vector function E, then a current will tend to flow in
the crystal parallel to D (see Bloss 1971, p.361,17L).
If the crystal is isometric or if an anisotropic crystal is
given a particular orientation with respect to E, then D
will be parallel to E. In general, however, D and E are
not parallel. When light is the source of the electic
field, E, the fi.eld oscillates, causing D to oscillate as
well. D is parallel to a vibration direction in the crystal.
Inside the crystal, E presumably still exists, and it is the
normal to E that constitutes the ray path. Energy is
carried by the electric field in a direction of transfer

normal to E. The wave normal, represented by the
vector rl, is normal to D. Even though D is the direction
along which an electric current tends to flow in
response to E, there will be no net current if E is
oscillating; as many electrons will try to flow along
+D as along -D, thereby cancelling the flow of
electricity.

Similar to the vectors describing the electrical
properties of crystals are two vectors associated with
their magnetic properties, B and H. Place a crystal in a
sufficiently strong magnetic field, B, and it will
acquire a magnetic direction parallel to H. The crystals
that transmit light are found by experiment to be
effectively isotropic in their magnetic behavior.
Consequent$, B and H are parallel in most rock-form-
ing minerals.

Maxwell's equations relate B, H, D and E. They are
partial differential vector equations and contain a
complete classical description of electromagnetic
phenomena (Schey 1973). The following relationships
between the properties of electromagnetic waves result
from solutions to Maxwell's equations (Nye 1957,
p. 305-309):

H = (n x E)/(p"v) (1)

D=-wx (uxE / (pov2 )= - ( r x I I ) / v  (2 )

R = E x H  ( 3 )

R is a vector parallel to the direction of hansmission
of energy or ray path, po is the permeability of a
vacuum, and v is the speed of light in the substance.
The geometrical relationships between the directions
represented by these vectors are shown on Figure 1.
D, E, w, and R are coplanar, and all are normal to H.
These geometrical relations are a consequence of
Equations (1) - (3) and follow from Maxwell's
equations. The angle 0, shown on Figure l, is the
deviation between the ray path, R, and the wave
norrnal, w. It is also the angle between E and D.
Consequently, calculating the angle between D and E
also gives the angle between R and v. Figwe 1
shows vectors representing the properties for
only one ray path. In anisotropic crystals, there
are generally two ray paths and two vibration
directions.

Expand the triple product in Equation (2), with the
result:

pov2D+(w .E )w-E=0  (4 )

Equation (4) is a vector equation relating D and E.
It has been derived for the general case, not for a
specific optical symmetry. To find the ray path for
a given wave normal, the location of the vibration
direction parallel to D, and a relationship befween D
and E, are required.



'wx (n ,xD /01 ,O

H = ( w x E / ( p " v )

LOCATION OF RAY PATTIS IN BIAXIAL CRYSTALS r63

f ) =

Ftc. 1. Schematic diagram showing the relationships among
electromagnetic vectors. E is the vector representing the
electric fiel4 D is parallel to a vibration direction, w is a
unit vector parallel to the wave normal. H is normal to the
plane defined by E and w. R is parallel to the ray path and
is defined by E x II. E, D and p are coplanar.

Loceuon oF VTBRATIoN DIREC'I'IoNS

The imFortant directions in the indicatrix are the
directions of principal vibration, X, Yo Z, the optic
axes and, in any given section through the indicatrix,
the two vibration directions of light and their wave
normal. In orthoscopic light, the norrnal to a thin
section is parallel to the wave nonnal vector, u. The
law of Biot-Fresnel (see, e.g., Bloss 1961, p. 161)
states that a vibration direction bisects the angle
between the two planes formed by the wave normal
and each of the optic axes. To apply this law, the
locations of the wave normal and the optic axes in
a frame of reference are required. The indicatrix
provides a convenient frame of reference for the
location of vectors representing optical directions. The
direction of the wave normal relative to the indicatrix
axes is given. Consequently, an equation for a unit
vector parallel to this direction is:

tr = wti + wri + wrk (5)

where i,j, and /r are unit vectors parallel to the axes
of the indicatrix, X, Y, arrd Z, respectively. The wu
i = 1,2,3, are the components of u parallel to X, Y,
ard Z, in that order, and are given quantities. Because
the components of a unit vector are the same as the
direction cosines of the vector in the frame of
reference, it is relatively simple to locate the wave

(0,0)

FIc. 2. A. Schematic illustration of a general wave normal in the frame of reference defined by the axes of the indicatrix. The
projections ofthe unit vector parallel to the wave normal,w, on the axes are the components ofu in this frame ofreference.
The wi are equal to the cosines of the angles rl makes with the axes of the indicatrix. B. Sketch of the optic axial plane
tlrough au indicatrix showing the unit vectors, u aadv, parallel to the optic axes. The components ofthese vectors are u1,
u2, u3 and yy y2; y3. Constraints on these quantities arer v1 = - ur, !2 = y2 = 0, and v3 = ul. The positive end of the Z axis
projects into the plane of the diagram for a right-hand system of coordinates.
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nonnal vector by the angles it makes with the axes of
the frame of reference (Frg. 2A).

The directions of the optic axes, relative to the
indicatrix ru(es, are determined by the sign and 2V of
the substance. A unit vector parallel to the optic axis
that falls between positive X and positive Z is grven by:

a = sin Vj + cos lk (6)
or:

u=nr i+u3k A)
where:

u t = s i n V
u :=cosY  (8 )

These vectors are illustrated on Figure 28. The second
optic axis will be parallel to a unit vector:

v = - sin Vl + cos V,/r (9)

Note that:
v = - u l i + u 3 r (10)

The angle between the optic axes,2V, is a properfy of
the indices of refraction (see, e.9., Bloss 1961, p. 156).
Consequently, the optic axis vectors, u aod v, are
themselves functions of and can be calculated from
the indices of refraction.

A stereographic projection of the relationships
among l/, uo v and the sections (planes) normal to
each vector is shown on Figure 3. A vector parallel
to the line of intersection of the circular section
normal to OA+ (CS+, Fig. 3) and the plane of the rhin
section will be normal to both OA+ and the wave
normal. Label this vector f. The sarne situation will
hold for another vector parallel to the intersection of
the second circular section (CS-, Fig. 3) and the plane
of the thin section; label it s. The vector / lies at 90o to
a ardw;' s lies at 90o to y and u.

Calculate the components of the vectors parallel to
the lines of intersection. The cross-product was
designed to find such a vectot as it produces a new
vector normal to two original ones. A vector parallel to
the fint intersection is:

T  = a X w

and a vector parallel to the second intersection is:

S = u X v

( l  l )

(12)

Unit vectors parallel to the two lines ofintersection are
obtained by dividing by the magnitudes of the T and S:
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(13)

(r4)

\Z
z1

Frc. 3. Stereographic projection of the optical indicatrix and
a Biot-Fresnel construction showing the relationship
of the unit vector parallel to the wave normal, u, to
unit vectors parallel to the optic axes, z and v, and to unit
vectors parallel to the intersections ofthe circulm sections
with the plane of the thin section, I and f,. Unit vec[ors
parallel to the vibration directions in the plane ofthe thin
section, n and rz, bisect the angles between I and s. The
optic axes, OA+ and OA- emerge from ttre projection at
the tips of the vecEors u and v and are normal to the
circular sections CS+ and CS-.

square$ of the components of a unit vector is one,
provides, after algebraic manipulation:

1 = l- n w2i + (u3wl - urwrf + urwrkll
[1 - (u1w1 + u.wr)2]rz (15)

s - [u3w2i - (urwt + ulwtj + urwrk]l
n - (u1w1 -\zwt)zfiz (16)

Equations (15) and (16) are formulae for calculation.
The w1 are given quantities, and the q can be calculated
from2V,lEquation (8)1.

According to the Law of Biot-Fresnel, one of the
vibration directions in the plane ef fi1s thin section
bisects the angle between f and s, labeled 20 on
Figure 3. A unit vector parallel to this vibration
direction is labeled z. Because z bisects the angle
between I and s, atrd because / and s are of equal
magnitrde, being unit vectors, the parallelogram law of
vector addition requires that:

t=uxwl l(uxw). (axw)fn

s =w xvlf(w x rr) . (r xDlrD

Substirution of Equations (7) and (10) into
Equations (13) and (14), plus the fact that the sum of G = f * s (17)
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where G is a vector parallel to n. It is then a simple
matter to convert G into a unit vector by dividing by
the magnitude of G:

z = G/ [G'GI12 (18)

The second vibration direction, ne, is normal to both
w andn. As a result, the tlree vectors are related by the
cross-product:

t n = n x w

or, in component form:

l l11 =O2W3-O3W2

m2=O3W1 - t r 1W3

1tr3=tr1W2-tr2W1

(te)

The foregoing contains the information needed to
calculate the vibration dircctions in any section through
a biaxial mineral, given the wave normal vector, r, and
the principal indices of refraction. An example of these
calculations is given in Table 1.

RnanoNsrm BrrwsEN D eNp E

The relationship between D and E is most simple in
isotropic mediq where D and E are parallel. In that
case, E is norrnal to tr, and the dot product in Eq0ation
(4) vanishes, to give:

B = pov2D Qr)

The terms before D constitute a scalar, hence, Equation
(21) states that the two vectors, E and D, are parallel,
as they must be in isotropic media.

In anisotropic substances, E and D are not parallel,
and a second-rank tensor is needed to describe the rela-
tionship between D and E (Bloss 1971, p.361-372;
Nye 1957, Ch. 1). The indicatrix is the geomerical
representation of a tensor property, the reciprocal ofthe
square of the index of refraction. In other words,
the optical properfy, l/112, associated with a known
vibration direction, R, is a tensor property of the crystal
that relates two vectors. A modification of the
indicatrix tensor relates D and E. In an arbitrary
frarne of reference, the tensor equation that relates D
and E is:

(20)

TABLE 1. E)(AMPLE oFTHECAIfUn-IIONS

K11 K12 K13
K2LK,2K23
K31 K32 K33

where D, and Q are the components of D and E in the
arbitrary frame of reference, and the Q1 are the compo-
nents, in this frame of reference, of ihe second-rank
tensor that relates D and E.

An even simpler notation for the same set of equa-
tions is:

(n)lel llil

GlYon valB w!
Wee nomal vedon w OSTB'

Itrdi€ofReftactlm 1.60 r E  = D

where K is short-hand for:

I r,t rt, rt, I
lKx KzzKztl
I K31 K32 K33 |

w2 v9
05185 0sTB5

P v
LA LM

Cihdatrd Vahs
Vz (s BIN 1961, p. 15q n.618

I
OpticAdsv€clonr 0.46357
opdcAdsvclocv 4.46357

aEq&(lt -0.81620
s Eqn (1Q 05n5o
G=l+cBqr(1a 42la71
r: Eqr (18) 433354
wE4r(m) 434526

eo: F4n (4O) 4.73029
en 4,9172
rotF4nd42) O.gfn
tm 0.m440
rn:UtritVectocEqo.(43) 055966
rm 0.56606
c 0o: Bqr (46) 0.9871
60n 0.99989
0n = 297
Om- 0.86

o389t8 0.42703
-o.8m,$ 027598
-0.41430 0.70301
-o.4ru65 0.81219
0.66149 0.08378

-0.1838 018103 er ' en O.l2g2'
025205 0.028w smcem o.14912
0.tr1727 0.97974 en.wn 4.07827
0.0$756 0.08626 en.wm4.Wsy2
0l.522a 0.6\78 n.en 035901
058 057855 u. or,r 09612

J k
0.0 0.88606
0.0 048606

(23)

(24)

The omponenb of the unft v€dorg p, 14 v, r, ,4 and t, re €qual to th€ dtlwilon
6lns of the angl6 betwetr the vector and the sx of the ftme of refeBre,
tho lndlqhix. lte vwe rcmd v€dor, r, ed chM to make €qual sngl€ wtlh
the us of lhe ildi€tli& the a md r sbaclpls reftt !o valu6 @lqrld€d for the
two vlbmtion dlrc{doB

Second-rank tensors can be referred to a special set
of axes such that Equation (22) can be written:

(2s)

where the lq are nonzero components of r in this new
frame of reference. The details of obtaining the q from
the q; are given in Nye (1957). r is equally well reprg-
sented by the form ofthe tensor in either Equation (22)
or Equation (25). The differences are solely due to a
change in the system of coordinates. Equation (25) can
be written as:

lr$ il lal lli



166 THE CANADIAN MINERALOGIST

KrEr i+K2W+r3E3f t=D (26)

In order for Equation (26) to reduce to the isotropic
case, Equation (21), the values for the & would all have
to be equal, say to K:

K E  = D

Comparing Equations (22) and (28) gives:

r = 1(!rov2)

(2x)

(28)

for isotropic substances. Optically isotropic substances
are characterized, by a uniform index of refraction,
regardless ofvibration direction. Because the index of
refraction is inversely proportional to the speed oflight
in a substance, one expects the components of r to be
functions of the indices of refraction.

An index of refraction is the ratio of the speed of
light in a vacuum to the speed in a substance. To relate
speeds and indices ofrefraction, an expression for tle
speed of light in a vacuum is needed. Presumably,
a vacuum is isotropic and uniform throughout the
universe. Consequently, in a vacuum, D and E should
be related by:

D=rqE Q9)

where tg, the permittivity of free space, is a universal
scalar constant. Maxwell's achievement was to relate
h and p" to the speed oflight, c:

Yzp = p,qd2E/dt2 (30)

Equation (30) has the form ofthe classic wave equation
if:

c2 = l(por$) (31)

The two constants, po and Ko, can be experimentally
determined. The reciprocal of their product equals the
square of the measured speed of light in a vacuum.

Equation (31) suggests that the velocity of light
vibrating in a particular direction parallel to D would
have as its components in the frame of reference
defined by Equation (25):

v? = l/(porr)

rt= l/(v"r.)
v3 = 1(ror:)

\32)

The nonzero components oftr can be written as:

rr=ro&lfi
'6"= r"&l$ (33)
rr=roc2lfi

The set of Equations (33) relate the components of

the t€nsor E to three velocities of light through the
crystal. There is one component that is the largest
possible and one that is the smallest possible. If the X
axis is the direction along which D1 lies, then 11 is
the tensor component of interest. If r, is assigned the
smallest value, then vr must be the fastest. But in that
case, c2lvl is equal to the square of the smallest index
of refraction, o,2, and 11 is equal to qu,2. ln a like
manner, 1(2 is equal to rcop' and r, is equal to q12,
where B and y are the intermediate and largest indices
of refraction. Consequently, the equation relating D
and E becomes:

(34)

The relationship between n and D can be expressed:

n =DIID.D)\n (3s)

lf a new vector e is defined in the followins fashion:

lr.$-hl lal=liil

s = qE/[(D.D)12]

Equation (25) becomes:

K n = e

where K is the tensor:

I r tu2o o  I
lo  1 /B2o I
f 0 0 rtyzl

e = K n = \l&i + \y'pzj + ryly2k

the ray path is then parallel to a vector:

r = e x ( r r y x e )

Notice, in particular, that e and E are parallel vectors
because of Equation (36).

Nye (1957) showed that a tensor with positive
principal components, such as K, can be geometrically
represented by the triaxial ellipsoid:

* l&+Y2/82+Ayz=L Q9)

which is the equation for the indicatrix. Hence,
Maxwell's Equations and the tensor relationship
between D and E lead to an expression for the
indicatrix.

Trn Imrcarnx,qND RAy Perns

In order to calculate the ray path, fust calculate e
from the Equation (37):

(36)

(37)

(38)

(40)

(4r)
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r - ( e . e ) t l - ( e . r ) e

then calculate the unit vector from:

r= r l l r . r f l z

The location of the ray path with respect to the axes of
the indicatrix is most easily calculated if a unit vector
parallel to r is first calculated. To do this, expand the
triple product in Equation (41) into a form that is easier
to express in a numerical format:

which the function f(X,Y,A is constant (Schey 1973,
p.138). Hence a vector norrnal to the indicatrix is
given by:

Vt = (2xl*)i + (zY/p\j + (2zyz)k (49)

A vector parallel to the vibration vector that stretches
from the center of the indicatrix to a point (X,Y,Q on
the indicatrix is given by:

N=Nn  (50 )

where N is a scalar that multiplies n and gives the
magnitude of N. From the definition of the indicatrix,
one concludes that value of N is equal to the index of
refraction of the light vibrating parallel to n. ln
component form, Equation (50) becomes:

X i + Y j  + Z k = N n r i + N n y ' + N n r f t  ( 5 1 )

from which it follows that:

2 = (XA[)i + (v/Nt + (ztN)k (s2)

where N is the index of refraction of light vibrating
parallel to n. Substitution for X Y and Z in Equation
(48) gives:

vf = 2N I@/&)i + (n/p\j + (\tyz)kl (s3)

Thus, the gradient, Vf, is parallel to the elecfic vector
e:

Vf= 2N e

Consequently, this parallelism means that the
between n and e can be calculated ftom:

cos 0 = n'YfAYfl

(s4)

angle

Note that because Vf is normal to the indicatrix
surface, the electric vector, E, is also.

These relationships are illustrated in Figure 4. The
evenly shaded, inclined plane is the plane 6f ths thin
section and contains the vibration vector n. In this
particular example, fts thin section is parallel to the X
axis. Consequently, the wave normal, w, the vibration
v?'ctor,n, and the electric vector lie in the Y-Zplane, a's
does the ray path, parallel to r. Because Vf is nolmal to
the indicatrix surfaceo the ray path will be parallel to its
tangent. As a resull the vibration yeclor, n, and the ray
path vector, r, are parallel to conjugate radii of the
indicatrix, a fact that was described by Bloss (1961).

The factors that control the size of the angle between
the vibration and electric vectors, 0, are the indices of
refraction associated with the two vibration directions.
.Any central section through the indicatrix is an ellipse,
including the section that contains the vibration,

(42)

(43)

Explicitly, the two dot products in Equation (42)
given by:

e .  e=* ld  +nyp4 +&yo

e, w = w Ftl& + wprlff + wrn lyz

are

(M)

(4s)

Equation (43) has the components of the wave
normal vector and the principal indices ofrefraction as
its primary variables; the q are functions of the wi and
the indices ofrefraction [see Equations (6), (10), (15),
(16), and (18)1. It is the analytical expression for
calculating the ray path. An example of the calculations
is shown in Table 1.

In summary, to find the ray paths associated with
the wave normal u, frst calculate the two vibration
vectors, tn a\dn. Next calculate the two e vectors, K z
and K m. Finally, calculate the two ray paths with
Equation (43).

Mect.rm:pB oF Tm ANGLE Brrwmxranp w

Optical crystallography texts state that the angle
between the ray path and wave normal is small. We
now have the capability of calculating this angle and
detennining how small it is. The angle between w
and r will equal the angle between n and e because of
the cross-product relationship shown on Figure 1. The
angle between e and z is most easily obtained with
the dot product:

cos0=n ,e l f e ,e l l t 2

Explicitly, the dot product, z 'e, is given by:

n .e=*Ja?+&p2+4 ty2

(46)

(47)

Equation (43) can be obtained by a second method,
from which some additional results follow. Consider
the equation for the indicatrix written in the followirs
fashion:

f(X,Y,D = X2l& + Y2192 + Z2ly2 = | (48)

where f(X,Y,D is a scalar function of position. The
gradient of such a function is normal to surfaces on
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Ftc. 4. Diagram showing the relationship among the gradient
io the indicahix, Vf, a vibration dfuection, n, and its
associated wave normal, r. The aagle between the ray
path, r, and the wave normal equals the angle between
r and Vf (see text).

Traceof ftoplanc

electric, and wave norrnal vectors, n, Yf, al;d w
(Fig. 5A). This ellipse is not the plane of the thin
$ection; rather, the plane ofthe thin sesfi6a, the plane
normal to r, is perpendicular to the ellipse under
discussion (Fig. 5A). Label the major and minor axes
of the ellipse containing w, n, and Vf as P and Q with
unit vectors, p and 4, along these axes:

f (P,Q)=P/b2+Q2l*=l  (56)

where a and b are the lengths ef fts min6r and major
axes of the ellipse. The gradient to f(P,Q) is:

Vf=(2Ptbrp+(2Qt*)q (57)

In the plane containing z and Vf, n canbe wriuen in
the form:

n = D e p  + n q q

FIc. 5. A. Diagram of an arbitrary section tbror'gh the
indicatrix. Major and minor axes of the elliptical section
are P and Q, with lengths a and b. Vf is the gradient of the
equation of the ellipse,p and q are unit vectors parallel to
the P and Q axes, r is a unit vector parallel to the wave
normal, n is a unit vector parallel to the vibration direction
in the plane of the ellipse, and r is parallel to the ray path.
B. Stereographic projection ofthe wave normal vector, rr,
the vibration vectors, n and rz, and the two ray path
vectors, r, and r, associated witl p. The projection of r
is shown with a cross befween the two small open circles.
Filled circles mark the projections of the vibration direc-
tions, and open circles mark the projections of the ray
paths.

Iv
Y

F- Q Section
forn andr,

(58)

IT

ofthin sectio

m tndr,.
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where

Next calculate the cosine of the angle between z and
Vf with the dot product. After some algebraic mani-
pulations, the result is:

c o s 0 =
hz -qbz - *11tp+ - t$@4 - a4)lu2 (s9)

The substitution of tigonometric identities into the
equation for uniaxial ray paths (Wahlstrom 1979):

tanY= of'tanOl* (60)

will transform it into Equation (59) with ro replacing a
and e replacing b; r;r is the angle between the ray path
and the major axis of the ellipse (Frg. 5A).The results
of the calculations listed in Table 1 are plotted on
Figure 5B. The wave normal vector, u, is coplanar with
the vibration vectors, n and m, and with the two ray
paths,r, ardrm.

To find the maximum value of 0 for the given
ellipse, calculate the derivative of 0 with respect to no
in Equation (59) and set the result to zero. After some
more algebraic manipulation, the result is:

r5^=blla2 +b2l1r2

where 0. is the maximum value of 0 for the particular
ellipse, and n,- is the value of no for which 0 is a
maximum. One can check that 0- iS a maximum rather
than a minimum by substituting one and zero for no in
Equation (59). In both cases, 0 qrill be zero. Becairse
0. is greater than zero for positive values of a and b in
Equation (62),Q^must be a maximum. If p represents
the ratio of b to a with p greater than one, Equation (62)
becomes:

0. = Arccos I2pl(l + p2)), p =bla> | (63)

One can show by several bshniques that 0-
increases with increasing values of p. For any given
crystal, p is largest if a is equal to o, and b is equal
to y. Hence, the maximum value for the angle befween
the ray path and wave normal for any given crystal is:

O^=Arccos lzayl(& +y2)l (64)

DnrcrroN oF Tm WAvE NoRMAL FARn{Esr
FROM TIIE RAY PANT

Because the largest angle between the ray path and
the wave normal lies in the optic axial plane where the
largest and smallest indices of refraction are y and cto
the thin section that shows this largest divergence will
be nonnal to the optic axial plane and parallel to the I
vibration direction. In the optic arial plane, the unit

n"=PdG2+Q2)
q= qd@2 + Q2)

(61)

0- = Arccos l2abl(* +bz)) (62)

t9
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Ftc. 6. A. Contours of the maximum angle, 0., between ray paths and wave normals as functions of the birefringence (Y - c[)

and the refringence, y. B. Contours of the angle, S-, between the wave normal associated vrith en and the Z vibration
direction of the indicatrix. Also plotted are values expected for common end-members and minerals. Symbols: Ttn: titanite,
Fa: fayalite, Fo: forsterite, Fs: ferrosilite, En: enstatite, Hd: hedenbergite, Di: diopside, Acl actinolite, Tr: fremolits,
An: anorthits, Ab: albite, Arg: aragonite, Sr: strontianite.
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vectors conesponding to p aad q are k and,i. The angle
Q- between the Z vibration direction and the wave
normal associated with the ray path most divergent
from the wave nonnal can be calculated with the dot
product with the result:

cos Q- = {(1 - 4-) = at"'l(& + f) (6s)

ExallplBs am AlpLtcarroxs

A plot of 0. as a firnction of y and birefringence
(y - ct) is shown in Figure 64. The common rock-
forming mins1als, olivine, plToxene, amphibole, and
plagioclase, have small angles between ray paths
and wave normals (approximately 0.5o to 2o). Minerals
v7ift highff birefringences have larger angles (3o - 6o,
titanite; 5.5o, strontianite and aragonite). Except for the
calcium-bearing chain silicates, Fe-end members of
solid-solution series have larger values of 0. than do
the Mg-end memben. This relationship is reversed for
the calcium-bearing chain silicates because of the
lower birefringences of the Fe-end members.

A plot of f., the angle between the Z vibration
direction and the wave normal that diverges most
from its associated ray path, as a firnction of y and
birefringence (y- a) is shown on Figure 68. The wave
normal and ray path will diverge most in thin sections
cut parallel to the Y vibration direction and with wave
normals between 45o and 50o of the Z vibration
direction. Crystals with larger birefringences show
maximum divergence between wave normals and ray
paths in sections closer to the Y-Z plane of the
indicarix.

For most rock-forming minerals, the ray path and
wave normal will diverge by less than 2".
Consequently, the approximation that the wave normal
and ray path are parallel is a good one. Vector algebra
provides a convenient way to calculate optical
directions in crystals.
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