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ABSTRACT

The values of the principal indices of refraction determine the properties of the optical indicatrix. The directions of the ray
paths associated with a wave normal ultimately depend on the indices of refraction. The directions of the wave normal and
ray paths need not coincide in anisotropic media. To find a ray path for a given wave normal, two items of information must be
extracted from the properties of the indicatrix: the location of a vector representing a vibration direction or electric displacement
vector, D, and the direction of the vector representing the electric field generated by the electromagnetic radiation, E. The angle
2V and optic sign, obtainable from the indices of refraction, are all the information needed to calculate vectors parallel to
the vibration directions associated with a given wave normal. A second-rank tensor, with principal components inversely
proportional to the squares of the principal indices of refraction of the crystal, relates vectors representing the vibration
direction and the electric field, D and E. E is calculated from this relation. The angle between D and E equals the angle between
the wave normal and the ray path. Maximum values of the angles between ray path and wave normal depend on the largest
index of refraction, v, and the birefringence of the crystal (Y- o). For common rock-forming minerals, the maximum angle is
approximately 0.5° — 2°. In crystals with extreme birefringence, such as aragonite and strontianite, the maximum angle
approaches 6°. Wave normals and ray paths diverge most in sections cut parallel to the ¥ vibration direction and tilted with their
normals between 45° and 50° from the Z vibration direction. The precise angle between the Z vibration direction and the normal
to the section depends on y and (Y- o).

Keywords: optical mineralogy, ray path, wave normal, optical directions, vector algebra, indicatrix, Maxwell's equations,
vibration direction, electric vector.

SOMMAIRE

Les valeurs des principaux indices de réfraction déterminent les propriétés de l'ellipsoide de propagation et de vibration
optique. Les directions de propagation d'ondes associées avec un front d'onde dépendent finalement des indices de réfraction.
11 n'est pas nécessaire que la direction perpendiculaire au front d'onde et les directions de propagation des ondes coincident dans
un milieu anisotrope. Pour trouver une direction de propagation d'onde pour un plan perpendiculaire 2 un front d'onde donné,
il est nécessaire d'extraire deux pidces d'information des propriétés de I'ellipsoide: la localisation du vecteur qui représente la
direction de vibration ou le vecteur de déplacement électrique, D, et la direction du vecteur qui représente le champ électrique
que génére le rayonnement électromagnétique, E. L'angle 2V et le signe optique, qui découlent des indices de réfraction,
suffisent pour calculer les vecteurs paralldles aux directions de vibration associées 2 un plan perpendiculaire 2 un front d'onde
donné. Un tenseur de deuxidme rang, dont les composants principaux sont inversement proportionnels aux carrés des principaux
indices de réfraction du cristal, font le lien entre les vecteurs représentant la direction de vibration et le champ électrique,
D et E. On calcule E 2 partir de cette relation. L'angle entre D et E est égal 2 'angle entre la perpendiculaire au front d'onde et
la direction de propagation d'une onde. Les valeurs maximales de l'angle entre ces deux directions dépendent de la valeur de
I'indice de réfraction le plus élevé, v, et la biréfringence du cristal (Y — o). Dans les cas des minéraux courants dans les roches,
I'angle maximum se situe dans l'intervalle 0.5° — 2°. Dans les cas d'une biréfringence extréme, 'aragonite et la strontianite par
exemple, l'angle maximum peut aiteindre 6°. Les perpendiculaires aux fronts d'onde et les tracés d'ondes sont davantage
divergents dans les sections paralleles 2 la direction de vibration Y et inclinées avec leurs perpendiculaires au front d'onde entre
45° et 50° de la direction de vibration Z. L'angle précis entre cette direction de vibration et 1a perpendiculaire 2 Ia section étudiée
dépendrait de v et de (Y— o).

Mot-clés: minéralogie optique, tracé d'une onde, perpendiculaire & un front d'onde, directions optiques, algebre vectorielle,
ellipsoide de propagation et de vibration, équations de' Maxwell, direction de vibration, vecteur électrique.
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INTRODUCTION

Three directions are associated with the trans-
mission of normally incident light through crystals:
two are ray paths, or directions of energy transfer,
and the third is the wave normal, perpendicular to
two directions of vibration of light normally incident
on general sections through anisotropic crystals. The
three directions need not coincide in anisotropic media.
By and large, ray paths do not play a prominent role in
the theory of optical crystallography (e.g., Bloss 1961,
Nesse 1991). It is the vibration directions that are
important, and these are associated with the wave
normal, not the ray path. In spite of the relative
importance of ray paths and wave normals, students of
optical mineralogy do ask about the location of ray
paths. In addition, the location of ray paths is required
for a complete description of interference figures.
A completely rigorous and general mathematical
description of the phenomena leading to interference
figures has not been developed, even though
research into the matter dates back to the late 1800s
(Bethke & Birnie 1980). It is much easier to determine
the wave normals than the ray paths. The latest model
for describing interference figures (Bethke & Birnie
1980) assumes that wave normals are adequate
approximations to the ray paths. This paper describes
a method, using vector algebra, for finding the ray
paths associated with a given wave normal.
Consequently, a quantitative evaluation of the wave
normal approximation follows. Bloss (1961, p. 77-78,
160-161), Wahlstrom (1979, Appendix B), and Nesse
(1991, p. 56-57, 80-81) described graphical
procedures for finding ray paths. Graphical procedures,
however, are not always practical methods for finding
numerical solutions to real problems. The vector-based
method outlined in this paper results in an analytical
expression for the angles between the wave normal and
ray path.

MAXWELL'S EQUATIONS

Light is a form of electromagnetic radiation; there
are two vectors associated with each kind of
phenomenon, electricity and magnetism. The vectors
associated with electricity will be labeled E and D. If a
crystal is placed in an electric field described by the
vector function E, then a current will tend to flow in
the crystal parallel to D (see Bloss 1971, p. 361-371).
If the crystal is isometric or if an anisotropic crystal is
given a particular orjentation with respect to E, then D
will be parallel to E. In general, however, D and E are
not parallel. When light is the source of the electric
field, E, the field oscillates, causing D to oscillate as
well. D is parallel to a vibration direction in the crystal.
Inside the crystal, E presumably still exists, and it is the
normal to E that constitutes the ray path. Energy is
carried by the electric field in a direction of transfer
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normal to E. The wave normal, represented by the
vector w, is normal to D, Even though D is the direction
along which an electric current tends to flow in
response to E, there will be no net current if E is
oscillating; as many electrons will try to flow along
+D as along -D, thereby cancelling the flow of
electricity.

Similar to the vectors describing the electrical
properties of crystals are two vectors associated with
their magnetic properties, B and H. Place a crystal in a
sufficiently strong magnetic field, B, and it will
acquire a magnetic direction parallel to H. The crystals
that transmit light are found by experiment to be
effectively isotropic in their magnetic behavior.
Consequently, B and H are parallel in most rock-form-
ing minerals.

Maxwell's equations relate B, H, D and E. They are
partial differential vector equations and contain a
complete classical description of electromagnetic
phenomena (Schey 1973). The following relationships
between the properties of electromagnetic waves result
from solutions to Maxwell's equations (Nye 1957,
p. 305-309):

H=(wxE)/(1,v) 1
D=-wXxwxE)yv?) =-wxHv ?2)
R=ExH 3

R is a vector parallel to the direction of transmission
of energy or ray path, [, is the permeability of a
vacuum, and v is the speed of light in the substance.
The geometrical relationships between the directions
represented by these vectors are shown on Figure 1.
D, E, w, and R are coplanar, and all are normal to H.
These geometrical relations are a consequence of
Equations (1) — (3) and follow from Maxwell's
equations. The angle 0, shown on Figure 1, is the
deviation between the ray path, R, and the wave
normal, w. It is also the angle between E and D.
Consequently, calculating the angle between D and E
also gives the angle between R and w. Figure 1
shows vectors representing the properties for
only one ray path. In anisotropic crystals, there
are generally two ray paths and two vibration
directions.

Expand the triple product in Equation (2), with the
result:

Uv?D + (w-Eyw -E=0 (€)

Equation (4) is a vector equation relating D and E.
It has been derived for the general case, not for a
specific optical symmetry. To find the ray path for
a given wave normal, the location of the vibration
direction parallel to D, and a relationship between D
and E, are required.
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E

D = -w X w X EYuy¥)

H = w X EYQuy)

Fic. 1. Schematic diagram showing the relationships among
electromagnetic vectors. E is the vector representing the
electric field, D is parallel to a vibration direction, w is a
unit vector parallel to the wave normal. H is normal to the
plane defined by E and w. R is parallel to the ray path and
is defined by E x H. E, D and w are coplanar.

LOCATION OF VIBRATION DIRECTIONS

The important directions in the indicatrix are the
directions of principal vibration, X, Y, Z, the optic
axes and, in any given section through the indicatrix,
the two vibration directions of light and their wave
normal. In orthoscopic light, the normal to a thin
section is parallel to the wave normal vector, w. The
law of Biot-Fresnel (see, e.g., Bloss 1961, p. 161)
states that a vibration direction bisects the angle
between the two planes formed by the wave normal
and each of the optic axes. To apply this law, the
locations of the wave normal and the optic axes in
a frame of reference are required. The indicatrix
provides a convenient frame of reference for the
location of vectors representing optical directions. The
direction of the wave normal relative to the indicatrix
axes is given. Consequently, an equation for a unit
vector parallel to this direction is:

w=wji+w,j+wsk )

where I, j, and k are unit vectors parallel to the axes
of the indicatrix, X, Y, and Z, respectively. The w;,
i=1, 2, 3, are the components of w parallel to X, ¥,
and Z, in that order, and are given quantities. Because
the components of a unit vector are the same as the
direction cosines of the vector in the frame of
reference, it is relatively simple to locate the wave

F1G. 2. A. Schematic illustration of a general wave normal in the frame of reference defined by the axes of the indicatrix. The
projections of the unit vector parallel to the wave normal, w, on the axes are the components of w in this frame of reference.
The w; are equal to the cosines of the angles w makes with the axes of the indicatrix. B. Sketch of the optic axial plane
through an indicatrix showing the unit vectors, # and v, parallel to the optic axes. The components of these vectors are uy,
u,, U3 and vy, v,, v3. Constraints on these quantities are: v; = —u;, u, = v, = 0, and v3 = u3. The positive end of the Y axis
projects into the plane of the diagram for a right-hand system of coordinates.
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normal vector by the angles it makes with the axes of
the frame of reference (Fig. 2A).

The directions of the optic axes, relative to the
indicatrix axes, are determined by the sign and 2V of
the substance. A unit vector parallel to the optic axis
that falls between positive X and positive Z is given by:

# =sin Vi + cos V,k 6)
or:

u=ui+uk )
where:

u =sinV,

uz=cos V, 8)

These vectors are illustrated on Figure 2B. The second
optic axis will be parallel to a unit vector:

v =—sin Vi + cos V,k (&)

Note that:

v =~u1i+U3k (10)
The angle between the optic axes, 2V, is a property of
the indices of refraction (see, e.g., Bloss 1961, p. 156).
Consequently, the optic axis vectors, w and v, are
themselves functions of and can be calculated from
the indices of refraction.

A stereographic projection of the relationships
among w, u, v and the sections (planes) normal to
each vector is shown on Figure 3. A vector parallel
to the line of intersection of the circular section
normal to OA+ (CS+, Fig. 3) and the plane of the thin
section will be normal to both OA+ and the wave
normal. Label this vector £. The same situation will
hold for another vector parallel to the intersection of
the second circular section (CS—, Fig. 3) and the plane
of the thin section; label it s. The vector ¢ lies at 90° to
u and w; s lies at 90° to v and w.

Calculate the components of the vectors parallel to
the lines of intersection. The cross-product was
designed to find such a vector, as it produces a new
vector normal to two original ones. A vector parallel to
the first intersection is:

T=uxw amn
and a vector parallel to the second intersection is:
S=wxvy (12)

Unit vectors parallel to the two lines of intersection are
obtained by dividing by the magnitudes of the T and S:

13
(14)

t=uxwi@xw): @ xw)]?
s=w X v/[(wxv) - (wxv)]?2

Substitution of Equations (7) and (10) into
Equations (13) and (14), plus the fact that the sum of
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Fic. 3. Stereographic projection of the optical indicatrix and
a Biot-Fresnel construction showing the relationship
of the unit vector parallel to the wave normal, w, to
unit vectors paralle] to the optic axes, # and v, and to unit
vectors parallel to the intersections of the circular sections
with the plane of the thin section, £ and s. Unit vectors
parallel to the vibration directions in the plane of the thin
section, # and m, bisect the angles between ¢ and s. The
optic axes, OA+ and OA~ emerge from the projection at
the tips of the vectors # and v and are normal to the
circular sections CS+ and CS—.

squares of the components of a unit vector is one,
provides, after algebraic manipulation:

t= [— U3W2i + (U3W1 - u1W3)j + U1W2k]/

[1 - (uywy +ugws)?112 @15)
s = [ugwyi — (ugw; + B wy)j + %wzk]/
[1 ol (ulwl - U3W3)2]1 (16)

Equations (15) and (16) are formulae for calculation.
The w; are given quantities, and the u; can be calculated
from 2V, [Equation (8)].

According to the Law of Biot—Fresnel, one of the
vibration directions in the plane of the thin section
bisects the angle between ¢ and s, labeled 26 on
Figure 3. A unit vector parallel to this vibration
direction is labeled n. Because r bisects the angle
between ¢ and s, and because ¢ and s are of equal
magnitude, being unit vectors, the parallelogram law of
vector addition requires that:

G=t+s an
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where G is a vector parallel to n. It is then a simple
matter to convert G into a unit vector by dividing by
the magnitude of G:

n =G/[G - G]? 18
The second vibration direction, m, is normal to both

w and n. As a result, the three vectors are related by the
cross-product:

m=nXxXw 19)
or, in component form:

my =NyW3 — D3Wy

my = N3W; — W3 (20)

my = Dy Wy — W,

The foregoing contains the information needed to
calculate the vibration directions in any section through
a biaxial mineral, given the wave normal vector, w, and
the principal indices of refraction. An example of these
calculations is given in Table 1.

TABLE 1. EXAMPLE OF THE CALCULATIONS

Given Values W, W, Wy
‘Wave normal vector: w 057735 0.57735 0.57735
a B ¥

Indices of Refraction 1.60 162 1.70
Calenlated Values
V, (see Bloss 1961, p. 156) 27.618

i J k
Optic Axis Vector: & 0.46357 0.0 0.88606
Optic Axis Vector: v -046357 00 0.88606
¢ Eqn. (15) -0.81620 038918 0.42703
s: Eqn. (16) 052750 -0.80348 0.27598
G=t+s:EBqn. (17) -0.28871 -0.41430 0.70301
n: Eqn. (18) -0.33354 047865 0.81219
m: Eqn. (20) -0.74526  0.66149 0.08378
ey,: Eqn. (40) -0.13029 -0.18238 0.28103 e, *e, 0.12922
e -029112 025205 0.02899 ey * ey 0.14912
ry: Bqn(42) 007222  0.07127 0.07974 e, * w, -0.01827
T 0.08440  0.08756 0.08626 e, * wy, —0.00582
rp: Unit Vector: Eqn. (43) 055966  0.55228 0.61788 nee, 035901
m 0.56606  0.58725 0.57855 mee, 038612
cos 0, Eqn. (46) 0.99871
cos B, 0.99989
Oy = 291
O = 0.86

The components of the unit vectors, w, u, v, 5, m, and », are equal to the direction
cosines of the angles between the vector and the axes of the frame of reference,
the indicatrix. The wave nommal vector, w, was chosen to make equal angles with
the axes of the indicatrix, The m and n subscripts refer to values calculated for the
two vibration directions,
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RELATIONSHIP BETWEEN D AND E

The relationship between D and E is most simple in
isotropic media, where D and E are parallel. In that
case, E is normal to w, and the dot product in Eqation
(4) vanishes, to give:

E =y, v?D Q@1
The terms before D constitute a scalar, hence, Equation
(21) states that the two vectors, E and D, are parallel,
as they must be in isotropic media.

In anisotropic substances, E and D are not parallel,
and a second-rank tensor is needed to describe the rela-
tionship between D and E (Bloss 1971, p. 361-372;
Nye 1957, Ch. 1). The indicatrix is the geometrical
representation of a tensor property, the reciprocal of the
square of the index of refraction. In other words,
the optical property, 1/N?, associated with a known
vibration direction, », is a tensor property of the crystal
that relates two vectors. A modification of the
indicatrix tensor relates D and E. In an arbitrary
frame of reference, the tensor equation that relates D
and E is:

Xyy Kpp K3 | Ex D,
K1 Ko K3 | (o =Dy
K3 K Kg3| |Es| D

(22)

where D; and E; are the components of D and E in the
arbitrary frame of reference, and the 1; are the compo-
nents, in this frame of reference, of the second-rank
tensor that relates D and E.

An even simpler notation for the same set of equa-
tions is:

kE=D 23)
where x is short-hand for:
K11 K2 K13
Kot Ko Koz 2]
K31 K3z Ka3

Second-rank tensors can be referred to a special set
of axes such that Equation (22) can be written:

%0 0] [E] |D,
0 K2 0 E2 = D2
0 0 %] JE;s D,

O

where the 1; are nonzero components of K in this new
frame of reference. The details of obtaining the «; from
the «; are given in Nye (1957). K is equally well repre-
sented by the form of the tensor in either Equation (22)
or Equation (25). The differences are solely due to a
change in the system of coordinates. Equation (25) can
be written as:
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KEi+ B, j + Bk =D (26)

In order for Equation (26) to reduce to the isotropic
case, Equation (21), the values for the «; would all have
to be equal, say to k:

xE=D @7
Comparing Equations (22) and (28) gives:
K = U(u,v?) (28)

for isotropic substances. Optically isotropic substances
are characterized by a uniform index of refraction,
regardless of vibration direction. Because the index of
refraction is inversely proportional to the speed of light
in a substance, one expects the components of ¥ to be
functions of the indices of refraction.

An index of refraction is the ratio of the speed of
light in a vacuum to the speed in a substance. To relate
speeds and indices of refraction, an expression for the
speed of light in a vacuum is needed. Presumably,
a vacuum is isotropic and uniform throughout the
universe. Consequently, in a vacuum, D and E should
be related by:

D=xE

where 1, the permittivity of free space, is a universal
scalar constant. Maxwell's achievement was to relate
k, and p,, to the speed of light, c:

(29)

VZE =y k,0°E/ot> (30)
Equation (30) has the form of the classic wave equation
if:
c? = /(oK) C2Y)

The two constants, u, and ¥, can be experimentally
determined. The reciprocal of their product equals the
square of the measured speed of light in a vacuum.

Equation (31) suggests that the velocity of light
vibrating in a particular direction parallel to D would
have as its components in the frame of reference
defined by Equation (25):

v} = 1/(ugky)

V3 = 1) (32)
V3 = (11 ks)

The nonzero components of x can be written as:
K = K ,cHv]
X, = K03 (33)
Ky = K ,c2v3

The set of Equations (33) relate the components of
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the tensor x to three velocities of light through the
crystal. There is one component that is the largest
possible and one that is the smallest possible. If the X
axis is the direction along which D, lies, then ¥, is
the tensor component of interest. If k; is assigned the
smallest value, then v; must be the fastest. But in that
case, ¢*/v? is equal to the square of the smallest index
of refraction, o, and ¥, is equal to k02 In a like
manner, K, is equal to k3% and ; is equal to ¥,Y2,
where § and 7 are the intermediate and largest indices
of refraction. Consequently, the equation relating D
and E becomes:

K020 0 E,| D,
0 x,B3%0 E,|=|D, (34)
0 0 x| [B] [Ds

The relationship between n and D can be expressed:
n =D/[D - D]? (35)

If a new vector e is defined in the following fashion:
e=xE/[D D)7 (36)

Equation (25) becomes:
Kn=e 37

where K is the tensor:

V20 0

0 1?0
0 0 1n?

(3%

Notice, in particular, that e and E are parallel vectors
because of Equation (36).

Nye (1957) showed that a tensor with positive
principal components, such as K, can be geometrically
represented by the triaxial ellipsoid:

X%o? + YHR? + Z4y2 =1 (39)
which is the equation for the indicatrix. Hence,
Maxwell's Equations and the tensor relationship
between D and E lead to an expression for the
indicatrix.

THE INDICATRIX AND RAY PATHS

In order to calculate the ray path, first calculate e
from the Equation (37):

e =K n =n,/0% + n,/PY + n,/v%k (40)
the ray path is then parallel to a vector:
r=ex(wxe) 41
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The location of the ray path with respect to the axes of
the indicatrix is most easily calculated if a unit vector
parallel to r is first calculated. To do this, expand the
triple product in Equation (41) into a form that is easier
to express in a numerical format:

r=(e-e)w—(e*w)e (42)
then calculate the unit vector from:
r=r/[r-r}'2 43)

Explicitly, the two dot products in Equation (42) are
given by:

e e=ny/o’* + n3/B* + ng/y* (44)

e w = wn,/02 + wyn,/B? + wyngfy? (45)

Equation (43) has the components of the wave
normal vector and the principal indices of refraction as
its primary variables; the n; are functions of the w; and
the indices of refraction [see Equations (6), (10), (15),
(16), and (18)]. It is the analytical expression for
calculating the ray path. An example of the calculations
is shown in Table 1.

In summary, to find the ray paths associated with
the wave normal w, first calculate the two vibration
vectors, m and n. Next calculate the two e vectors, K
and K m. Finally, calculate the two ray paths with
Equation (43).

MAGNITUDE OF THE ANGLE BETWEEN r AND w

Optical crystallography texts state that the angle
between the ray path and wave normal is small. We
now have the capability of calculating this angle and
determining how small it is. The angle between w
and r will equal the angle between n and e because of
the cross-product relationship shown on Figure 1. The
angle between e and n is most easily obtained with
the dot product:

cos 0 =n - elle - e]'? (46)
Explicitly, the dot product, » - e, is given by:
n - e = n?/o? + n3/B? + n/y? @7

Equation (43) can be obtained by a second method,
from which some additional results follow. Consider
the equation for the indicatrix written in the following
fashion:

f(X,Y,Z) = X*/0? + Y*IB? + 222 = 1 (48)
where f(X,Y¥,Z) is a scalar function of position. The
gradient of such a function is normal to surfaces on
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which the function f(X,Y,Z) is constant (Schey 1973,
p. 138). Hence a vector normal to the indicatrix is
given by:

Vi = 2X/02)i + QYIPA) + 2ZWHk (49)
A vector parallel to the vibration vector that stretches
from the center of the indicatrix to a point (X,Y,Z) on
the indicatrix is given by:

N=Nn (50)
where N is a scalar that multiplies » and gives the
magnitude of N. From the definition of the indicatrix,
one concludes that value of N is equal to the index of

refraction of the light vibrating parallel to ». In
component form, Equation (50) becomes:

Xi+Yj+Zk=Nni+Nnj+Nnk (51)
from which it follows that:
n = XN + (YIN)j + (ZIN)k (52)

where N is the index of refraction of light vibrating
parallel to n. Substitution for X, ¥ and Z in Equation
(48) gives:

V£ =2N [(n,/02)i + (n/BAj + (na/yHk]  (53)
Thus, the gradient, V{, is parallel to the electric vector
e

Vi=2Ne (54
Consequently, this parallelism means that the angle
between » and e can be calculated from:

cos 8 =n - VI/IVAl (55)
Note that because Vf is normal to the indicatrix
surface, the electric vector, E, is also.

These relationships are illustrated in Figure 4. The
evenly shaded, inclined plane is the plane of the thin
section and contains the vibration vector n. In this
particular example, the thin section is parallel to the X
axis. Consequently, the wave normal, w, the vibration
vector, n, and the electric vector lie in the Y-Z plane, as
does the ray path, parallel to r. Because V{ is normal to
the indicatrix surface, the ray path will be parallel to its
tangent. As a result, the vibration vector, 1, and the ray
path vector, r, are parallel to conjugate radii of the
indicatrix, a fact that was described by Bloss (1961).

The factors that control the size of the angle between
the vibration and electric vectors, 6, are the indices of
refraction associated with the two vibration directions.

Any central section through the indicatrix is an ellipse,

including the section that contains the vibration,
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X

FiG. 4. Diagram showing the relationship among the gradient
to the indicatrix, VI, a vibration direction, r, and its
associated wave normal, w. The angle between the ray
path, r, and the wave normal equals the angle between
r and VT (see text).
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electric, and wave normal vectors, n, VI, and w
(Fig. 5A). This ellipse is not the plane of the thin
section; rather, the plane of the thin section, the plane
normal to w, is perpendicular to the ellipse under
discussion (Fig. 5A). Label the major and minor axes
of the ellipse containing w, r, and V{ as P and Q with
unit vectors, p and g, along these axes:

f(P,Q) = P/b? + Q¥a’ =1 (56)
where a and b are the lengths of the minor and major
axes of the ellipse. The gradient to f(P,Q) is:

Vi=(2P/b%) p + (2Q/a2) q (67))
In the plane containing r and Vf, n can be written in
the form:

rn=n,p+n,q (58)

Fic. 5. A. Diagram of an arbitrary section through the
indicatrix. Major and minor axes of the elliptical section
are P and Q, with lengths a and b. Vf is the gradient of the
equation of the ellipse, p and g are unit vectors parallel to
the P and Q axes, w is a unit vector parallel to the wave
normal, z is a unit vector parallel to the vibration direction
in the plane of the ellipse, and r is parallel to the ray path.
B. Stereographic projection of the wave normal vector, w,
the vibration vectors, r and m, and the two ray path
vectors, r,, and r,, associated with w. The projection of w
is shown with a cross between the two small open circles.
Filled circles mark the projections of the vibration direc-
tions, and open circles mark the projections of the ray
paths.
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P cos ¢ = V1 — n:
A% 4
P - Q Section
formandr,

9, 4

'
Trace of the plane
of thin section




LOCATION OF RAY PATHS

=PH(P? + Q%)
E’; = QNE* + Q)

Next calculate the cosine of the angle between n and
VT with the dot product. After some algebraic mani-

pulations, the result is:

where

cos 0=
[b% — nX(b? — a?)V[b* — ni(b* — ahH"?  (59)
The substitution of trigonometric identities into the
equation for uniaxial ray paths (Wahlstrom 1979):

tan y = @’tan ¢/e? (60)
will transform it into Equation (59) with @ replacing a
and € replacing b; v is the angle between the ray path
and the major axis of the ellipse (Fig. 5A). The results
of the calculations listed in Table 1 are plotted on
Figure 5B. The wave normal vector, w, is coplanar with
the vibration vectors, n and m, and with the two ray
paths, r, and r,,,.

To find the maximum value of 0 for the given
ellipse, calculate the derivative of 6 with respect to n,,
in Equation (59) and set the result to zero. After some
more algebraic manipulation, the result is:

IN BIAXIAL CRYSTALS 169

where 6, is the maximum value of 6 for the particular
ellipse, and n,,, is the value of n, for which 6 is a
maximum. One can check that 8, is a maximum rather
than a minimum by substituting one and zero for n, in
Equation (59). In both cases, 0 will be zero. Because
0,, is greater than zero for positive values of a and b in
Equation (62), 8, must be a maximum. If p represents
the ratio of b to a with p greater than one, Equation (62)

becomes:

0, = Arccos [2p/(1 + pH)], p=bla>1 (63)

One can show by several techniques that 6
increases with increasing values of p. For any given
crystal, p is largest if a is equal to o, and b is equal
to v. Hence, the maximum value for the angle between
the ray path and wave normal for any given crystal is:

8,, = Arccos [20:7/(02 + ¥2)] (64)

DIRECTION OF THE WAVE NORMAL FARTHEST
FROM THE RAY PATH

Because the largest angle between the ray path and
the wave normal lies in the optic axial plane where the
largest and smallest indices of refraction are ¥ and o,
the thin section that shows this largest divergence will

By = b/ + B2]12 (61)
be normal to the optic axial plane and parallel to the ¥
8,, = Arccos [2ab/(a® + b?)] (62) vibration direction. In the optic axial plane, the unit
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HIG. 6. A. Contours of the maximum angle, 6, between ray paths and wave normals as functions of the birefringence (Y — o)
and the refringence, v. B. Contours of the angle, ¢,,, between the wave normal associated with 8, and the Z vibration
direction of the indicatrix. Also plotted are values expected for common end-members and minerals. Symbols: Ttn: titanite,
Fa: fayalite, Fo: forsterite, Fs: ferrosilite, En: enstatite, Hd: hedenbergite, Di: diopside, Act: actinolite, Tr: tremolite,

An: anorthite, Ab: albite, Arg: aragonite, Sr: strontianite.
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vectors corresponding to p and g are k and i. The angle
0., between the Z vibration direction and the wave
normal associated with the ray path most divergent
from the wave normal can be calculated with the dot
product, with the result:

€08 O = V(1 - 1) = aN(0? + ) (65)

EXAMPLES AND APPLICATIONS

A plot of 0, as a function of y and birefringence
(y — a) is shown in Figure 6A. The common rock-
forming minerals, olivine, pyroxene, amphibole, and
plagioclase, have small angles between ray paths
and wave normals (approximately 0.5° to 2°). Minerals
with higher birefringences have larger angles (3° — 6°,
titanite; 5.5°, strontianite and aragonite). Except for the
calcium-bearing chain silicates, Fe-end members of
solid-solution series have larger values of 6,, than do
the Mg-end members. This relationship is reversed for
the calcium-bearing chain silicates because of the
lower birefringences of the Fe-end members.

A plot of y,,, the angle between the Z vibration
direction and the wave normal that diverges most
from its associated ray path, as a function of y and
birefringence (y— ) is shown on Figure 6B. The wave
normal and ray path will diverge most in thin sections
cut parallel to the Y vibration direction and with wave
normals between 45° and 50° of the Z vibration
direction. Crystals with larger birefringences show
maximum divergence between wave normals and ray
paths in sections closer to the Y-Z plane of the
indicatrix.

For most rock-forming minerals, the ray path and
wave normal will diverge by less than 2°.
Consequently, the approximation that the wave normal
and ray path are parallel is a good one. Vector algebra
provides a convenient way to calculate optical
directions in crystals.
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