PARAGENESIS AND COMPOSITION OF AMPHIBOLE AND BIOTITE IN THE MACLELLAN GOLD DEPOSIT, LYNN LAKE GREENSTONE BELT, MANITOBA, CANADA

IAIN M. SAMSON1, WILLIAM H. BLACKBURN2 AND JOEL E. GAGNON3

Department of Earth Sciences, University of Windsor, Windsor, Ontario N9B 3P4, Canada

ABSTRACT

The Proterozoic MacLellan gold deposit, in the Lynn Lake greenstone belt, Manitoba, developed through a complex sequence of pre-, syn- and postmetamorphic fluid-infiltration events within a series of amphibolite-grade biotite-, chlorite- and amphibole-bearing schists. Amphibole within the deposit is manifested as a wide variety of textural types, including metamorphic porphyroblasts, randomly oriented postmetamorphic porphyroblasts and aggregates, amphiboles related to quartz – chlorite – biotite vugs, and aggregates of massive amphibole in alteration haloes around veins. The amphiboles are all calcic, but represent a wide compositional range, and include the varieties ferrotschermakite, tschermakite, magnesiohornblende and actinolite. Distribution of Fe and Mg among amphibole, biotite and chlorite indicate three amphibole-forming events, which represent 1) metamorphism, 2) the main quartz–amphibole vein-forming and alteration event, and 3) an event that formed the vugs. The randomly oriented porphyroblasts and aggregates appear to be associated with both the main alteration event and the vug-forming event, which is consistent with their formation after the main episode of metamorphism and deformation. The chemical composition of the protolith strongly influenced the composition of alteration amphiboles. Alteration occurred under low water:rock ratios. Biotite, the other main mafic mineral, is generally Mg-rich. The composition of biotite in and around metamorphosed quartz – biotite – sulfide (QBS) veins is more restricted than that of the host-rock biotite, which suggests that these compositions represent a fluid-buffered protolith composition. Titanium contents of the biotite correlate with the nature of the associated Ti-oxide phase, increasing from rutile to ilmenite ± rutile to titanite – ilmenite ± rutile. The QBS-associated biotite typically has a high Ti content and is associated with titanite. This association may well result from premetamorphic metasomatism related to the QBS vein-forming event.

Keywords: amphibole, biotite, mineral composition, gold, MacLellan deposit, paragenesis, hydrothermal, Lynn Lake greenstone belt, Manitoba.

1 E-mail address: ims@uwindsor.ca
2 Present address: Royal Roads University, Victoria, British Columbia V9B 5Y2, Canada
3 Present address: Atwell-Hicks, Inc., 540 Avis Drive, Ann Arbor, Michigan 48108, U.S.A.
INTRODUCTION

The MacLellan gold deposit occurs within a sequence of mineralogically diverse amphibolite-grade schists in a predominantly metavolcanic portion of the Lynn Lake greenstone belt in Manitoba. The deposit contains at least four distinct sets of veins, the timing of which ranges from premetamorphic to postmetamorphic (Samson & Gagnon 1995). Biotite and amphibole are abundant both in the host rocks and in vein and alteration assemblages. In this paper, we focus on the paragenesis of the various types of biotite and amphibole, and use data on the composition of these mafic minerals to examine the genetic relationships among biotite, amphibole and chlorite in this complex deposit, particularly with respect to metamorphism and fluid infiltration.

GEOLOGY

The MacLellan gold deposit is located approximately 8 km northeast of Lynn Lake, Manitoba (Fig. 1), and is hosted by amphibolite-grade schists that form part of the Wasekwan Group of the Paleoproterozoic Lynn Lake greenstone belt (Gilbert et al. 1980, Samson & Gagnon 1995). The deposit is one of three metamorphosed aluminous and picritic metabasalts which range from premetamorphic to postmetamorphic (Samson & Gagnon 1995). Biotite and amphibole are abundant both in the host rocks and in vein and alteration assemblages. In this paper, we focus on the paragenesis of the various types of biotite and amphibole, and use data on the composition of these mafic minerals to examine the genetic relationships among biotite, amphibole and chlorite in this complex deposit, particularly with respect to metamorphism and fluid infiltration.

HOST ROCKS

In order of decreasing abundance, the rocks hosting the mineralization are chlorite—hornblende (CH) schist, biotite—plagioclase (BP) schist, and chlorite—quartz (CQ) schist (Gagnon 1991, Samson & Gagnon 1995). Few primary structures or textures are recognizable. These assemblages and individual samples can be very heterogeneous, with millimeter- to centimeter-scale banding of mineralogically diverse rock-types. CH schists consist of amphibole, chlorite and plagioclase with accessory magnetite, ilmenite and epidote. CQ schists principally consist of quartz, chlorite, plagioclase and biotite with minor amphibole, garnet, magnetite and ilmenite. BP schists are the most heterogeneous host-rocks. In addition to the dominant plagioclase, biotite and chlorite, these rocks may contain minor ilmenite, magnetite, rutile, titanite, alkali feldspar, epidote, kyanite, amphibole, quartz, staurolite, garnet, tourmaline, pyrite and pyrrhotite. Biotite within the host BP schists is light brown and, in general, fine-grained. Staurolite typically occurs as porphyroblasts that grew at the expense of biotite. Titanite occurs as rims around ilmenite and rutile crystals. Quartz—muscovite schist is a rare rock-type in the sequence. The grade of metamorphism in the vicinity of the deposit ranges from lower to middle amphibolite facies (Gilbert et al. 1980), which is consistent with the presence of garnet, staurolite and rare kyanite in the biotite schists (Samson & Gagnon 1995). Most samples of the schists have a single, penetrative foliation. Rare crenulation cleavage is related to narrow, late-kinematic shear zones (Gagnon 1991, Samson and Gagnon 1995).

Amphibole within the schists is optically and texturally variable (Table 1, Figs. 2, 3, and 4). In some schists, fine- to medium-grained, subidioblastic to idioblastic crystals of amphibole show a preferred orientation that is conformable with the penetrative foliation defined by matrix chlorite and biotite (referred to as “metamorphic” in Table 1). In most samples, however, many or all of the amphibole crystals are randomly oriented and may be coarse to very coarse grained. The amphibole may occur as disseminated crystals, in small aggregates of several crystals (“random” in Table 1), or in larger

Type	Designation	Typical features	Fig.
Host-rock	disseminated	metamorphic	Optically homogeneous, fine- to medium-grained, subidioblastic to idioblastic crystals with a preferred orientation
random			2b
zoned			2c, 3b
Relict			3b, 3c
Patchy	patchy	Small aggregates of randomly oriented, typically pelidioblastic crystals	2a
Hydrothermal	vein	Aggregates of acicular crystals within quartz veins	4b
alteration		Massive zones of fibrous to prismatic crystals, may or may not be vein-related	3b
vug		Coarse, subidioblastic to idioblastic prismatic crystals interstitial to idioblastic crystals of quartz	4c
vug-related		Coarse, pelidioblastic crystals surrounding chlorite-carbonate in vug	
Fig. 1. Location of the MacLellan deposit, northern Manitoba. The local geology is based on maps GP80–1–1 and GP80–1–2, Manitoba Department of Energy and Mines (Gilbert et al. 1980). Symbols: BL: Burge Lake, EL: Eldon Lake, CL: Cockeram Lake.
aggregates or patches of crystals (typically <1 cm across; “patchy” in Table 1; Fig. 2a). In a few samples, some grains of amphibole are conformable with the penetrative foliation and others cut across it, making textural discrimination difficult. In these cases, we have classified the amphibole as random on the basis of the cross-cutting varieties.

The randomly oriented crystals of amphibole vary considerably in texture, in part as a function of the matrix mineralogy. In quartz-rich lithologies, they are generally poikiloblastic, with inclusions of one or more of the following minerals: quartz, plagioclase, biotite, ilmenite, carbonate or, rarely, rutile (Fig. 2b), whereas in quartz-poor, biotite- or chlorite-rich lithologies, they are typically non-poikiloblastic. The randomly oriented amphibole crystals vary from idioblastic to xenoblastic, and include prismatic and acicular forms. In some samples, pale green prismatic and acicular varieties form radial aggregates. Typically, idioblastic crystals in biotite- and chlorite-rich units are zoned (“zoned” in Table 1). Zoned crystals generally comprise a dark green core and a light green to colorless rim (Fig. 3a). The cores are xenoblastic or mimic the idioblastic shape of the outer zone (Fig. 3a). Typically, only two zones are visible, but in some crystals, oscillatory zoning is developed toward the margin (Fig. 3a). Samples in which zoned crystals were observed also contain either coarse-grained, patchy aggregates of amphibole or pervasive alteration to massive amphibole (Fig. 3b). The amphibole in the aggregates is optically identical to that in the outer zone of the zoned porphyroblasts.

MINERALIZATION

The schists contain six mineralogically and texturally distinct types of veins and alteration: 1) quartz – biotite – sulfide (QBS) veins with biotite-rich alteration haloes, 2) quartz – arsenopyrite veins, 3) quartz – amphibole veins and patches with amphibole-rich alteration haloes, 4) vein and disseminated sulfides, 5) carbonate ± quartz veins and carbonate alteration, and 6) quartz ± sulfide veins (Samson & Gagnon 1995). In addition, rare sulfides of sedimentary origin are present in samples from the Nisku spoil heaps (Samson & Gagnon 1995). The QBS and quartz – arsenopyrite veins are the primary hosts to the gold mineralization, al-
though elevated concentrations of gold also are associated with both the quartz–amphibole and quartz±sulfide veins (Samson & Gagnon 1995). In the quartz–amphibole veins, the gold is probably related to the later sulfide veins and disseminated sulfides that overprint this stage. Textural studies (Samson & Gagnon 1995) indicate that the QBS veins predate metamorphism and the main event of deformation that produced the penetrative fabric; the quartz–arsenopyrite veins are broadly synmetamorphic, and the others are postmetamorphic. The quartz±sulfide veins are related to late-stage brittle faults. Biotite and amphibole are by far the most abundant alteration-induced minerals in the deposit and are only associated with the QBS and quartz–amphibole veins. The other types of veins have little or no associated alteration and shall not be discussed further.

QBS veins are generally narrow (0.1 to 5 cm), highly deformed (folded and boudinaged) and consist of quartz±biotite±gahnite and sulfide minerals (pyrite, pyrrhotite, sphalerite, galena, arsenopyrite, chalcopyrite and boulangerite). These veins are almost exclusively hosted by the BP schists. In some samples, the veins have a narrow (typically <1 cm) halo in which the biotite content is higher than in the surrounding schist (Fig. 4a). In some cases, the halo is 100% biotite. These are particularly obvious in biotite-poor lithologies and less so in biotite-rich hosts. Where a halo is developed, the orange-brown biotite may be either randomly oriented or concordant with the penetrative foliation of the surrounding schist. The light brown biotite from the host rock will be referred to as “metamorphic”, that in the haloes of the QBS veins as “vein-related”, and biotite actually in the vein as “vein-hosted”.

Quartz–amphibole veins are generally wider (≤10 cm) than QBS veins and continuous over greater distances (≤5 m). These veins are commonly boudinaged and disconformable to the foliation. The associated amphibole-rich halo overprints the foliation. The
quartz–amphibole veins are therefore interpreted as a post-peak metamorphic, late-kinematic feature (Samson & Gagnon 1995). This stage also is manifested as discontinuous pods and patches of quartz in irregular zones of massive amphibole alteration and as zones of massive amphibole, both independent of obvious veins (referred to as “alteration” amphibole, Table 1). The veins are generally dominated by quartz with lesser
amounts of amphibole, sulfide (pyrrhotite and sphalerite) and carbonate, and rare biotite and chlorite. In most veins, the sulfide and carbonate postdate the other minerals and represent a temporally distinct event. The amphibole within veins and enclosed in quartz is generally a fibrous, pale green to colorless variety (“vein” in Table 1; Fig. 4b). Alteration amphibole is typical of the host rocks to these veins and shows considerable variation in its textural and optical characteristics. Some veins have an amphibole-rich (80-100% by vol.) alteration halo that extend up to about 10 cm away from the vein margins. The amphibole in such haloes is generally pale green to colorless and is xenoblastic, prismatic, acicular or feathery. Such aggregations of massive amphibole are typical of quartz-poor lithologies and are best developed in CH schists, but they also occur in BP schists. Some massive aggregates contain coarse-grained, interstitial plagioclase enclosing fine-grained, acicular crystals of amphibole. In quartz-rich lithologies, the alteration is less pervasive and consists of coarse, poikiloblastic crystals of the same type of amphibole. The coarse alteration-related amphibole replaces and overprints the margins of the quartz veins. In some samples, crystals of massive, pale green alteration-related amphibole contain crystals of dark green xenoblastic, relict amphibole (“relict” in Table 1; Fig. 3b).

The alteration-induced amphibole crystals have been observed to overprint and replace all of the lithologies and mineral assemblages seen in the deposit. Quartz commonly occurs as inclusions, but is invariably corroded and clearly replaced in most cases. Idioblastic ilmenite is consistently preserved within the amphibole grains and is generally coarser than in the protolith. Coarse titanite is present in some amphibole assemblages and seems to be in equilibrium with both amphibole and ilmenite. Some samples also contain small patches or vugs comprising coarse-grained idioblastic quartz surrounded by either coarse, dark green, subidioblastic to idioblastic amphibole (“vein” in Table 1; Fig. 4c), with coarse idioblastic biotite, pyrrhotite, pyrite, chalcopyrite, ilmenite ± titanite or, in one case, coarse biotite, chlorite, carbonate, pyrite, and sphalerite. The chlorite-bearing vug does not contain amphibole, but does occur within a patch of poikiloblastic amphibole, and may represent the patchy amphibole described above (“vug-related” in Table 1). These patches and vugs are distinguished from the veins and alteration described above by the fact that the quartz is commonly subidioblastic to idioblastic, the amphibole is interstitial to the quartz (rather than replacing it), they contain coarse, idioblastic biotite (“vug-related” in text that follows), and the sulfides and carbonate (in the case of the chlorite-bearing vug) occur interstitially to the silicates. These textures all suggest open-space deposition, possibly later than the other amphibole-bearing assemblages.

MINERAL COMPOSITION

Samples were selected to represent all of the optical and textural variants of the amphibole and biotite. A total of 100 amphibole, 65 biotite and 15 chlorite analyses were made on a Cameca MBX electron microprobe at the University of Michigan, operated at a beam current of 20 nA at 15 kV. Reference standards included a range of natural oxide and silicate minerals; ZAF procedures provided by Cameca (Pouchou & Pichoir 1984) were used to correct compositions.

This paper focuses on the chemical composition of amphibole, biotite and chlorite produced during a complex history of deformation, metamorphism and metasomatism. Each of these minerals can contain a significant amount of Fe$^{3+}$, estimates of which are not available from the electron-microprobe data. Petrochemical determinations of Fe2O$_3$ are not useful in this study because of the small-scale variability of the minerals in question. Estimates of Fe$^{3+}$# values, where Fe$^{3+}$# = Fe$^{3+}$/($Fe^{3+} + Fe^{2+}$), based on the stoichiometry of phyllosilicates are generally unsatisfactory (cf. Dynek 1983, Guidotti 1984, Guidotti & Dyar 1991). Stoichiometry-derived estimates of Fe$^{3+}$# values in amphibole are, however, commonly made. Cosca et al. (1991) found that for calcic amphibole, a normalization based on 13 cations, exclusive of Ca, Na and K, gives reasonable estimates of ferric iron. The present International Mineralogical Association guidelines for amphibole classification recommend a procedure that averages normalizations, giving minimum and maximum Fe$^{3+}$ estimates (Schumacher 1997), a technique very similar to that proposed by Spear & Kimball (1984). It remains, however, that estimation of the Fe$^{3+}$ content of amphibole by stoichiometry is unsatisfactory; the scatter diagram comparing measured and calculated Fe$^{3+}$ values given by Hawthorne (1983) is illustrative.

The principal control on the Fe$^{3+}$# values in the ferromagnesian minerals pertinent to this study, calcic amphibole, biotite and chlorite, is the oxidation potential, represented by the $f(0_2)$, during mineral formation (Spear 1981, Clowe et al. 1988, Guidotti & Dyar 1991, Dyar et al. 1992, Rebbert et al. 1995). Further, reasonable estimates of $f(0_2)$ can be made by considering the oxide and sulfide minerals in equilibrium with the silicate assemblage (Eugster & Skippen 1967, Holdaway et al. 1988, Williams & Grambling 1990).

In the rocks of the MacLellan deposit, amphibole, chlorite and biotite in unmineralized and unaltered host-rocks are typically associated with ilmenite (± rutile). Magnetite is locally observed in these rocks, but hematite is not found. Biotite and amphibole were therefore typically produced during metamorphism with ilmenite as the stable iron oxide phase. Amphibole and chlorite also were deposited by the fluids responsible for amphibole alteration in the presence of ilmenite ± titanite. Sulfide mineralization occurred during the history of the
deposit: with QBS-stage veining, during the peak of metamorphism (quartz – arsenopyrite veins) and after the amphibole alteration. A summary of the dominant and accessory mineralogy for the Maclellan rocks is given in Table 2.

The metamorphic assemblages that include ilmenite or rutile as the only oxide minerals probably formed at an f(O2) close to the QFM buffer (Holdaway et al. 1988, Williams & Grambling 1990). Those metamorphic rocks containing magnetite were formed under conditions more oxidizing than QFM but below HM; conditions approximating the NNO buffer are assumed for the magnetite-bearing rocks. Ilmenite was the only iron oxide stable during the amphibole-stage alteration; these assemblages are considered to have been produced under QFM conditions.

We assume that amphibole formed under NNO and QFM buffers has Fe3+# values of 0.30 and 0.20, respectively (Clowe et al. 1988). Biotite produced at the QFM buffer has an Fe3+# value of 0.12 (Guidotti & Dyar 1991, Dyar 1990, Guidotti & Dyar 1991). Dyar (1990) and Guidotti & Dyar (1991) stated that very little Fe3+ is in the octahedral site. We therefore assume that all Fe3+ is in the octahedral site.

Table 2. Summary of Mineral Assemblages in Samples from the Maclellan Deposit, Manitoba

<table>
<thead>
<tr>
<th>Sample</th>
<th>Main assemblage</th>
<th>MgO</th>
<th>FeO</th>
<th>Al2O3</th>
<th>SiO2</th>
<th>Sample</th>
<th>Main assemblage</th>
<th>MgO</th>
<th>FeO</th>
<th>Al2O3</th>
<th>SiO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALS-3</td>
<td>Pi-Qz-Chl-Amp</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>ALS-5</td>
<td>Pi-Bi-Pl-Amp</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALS-5</td>
<td>Chl-Bi-Pl-Amp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Chl-Bi-Pl-Amp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N7</td>
<td>Qtz-Pi-Amp-St</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>Qtz-Pi-Amp-St</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSL-1</td>
<td>Bi-Qz-Amp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bi-Qz-Amp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Representative Compositions of Amphiboles from the Maclellan Deposit

<table>
<thead>
<tr>
<th>Sample</th>
<th>ALS</th>
<th>ACD</th>
<th>ACD</th>
<th>ACD</th>
<th>ACD</th>
<th>ACD</th>
<th>ACD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* H2O by back-calculation of structural formulas assuming 2 (OH, F, Cl).

** Fe3+ and Fe2+ estimated by assuming a value of Fe3+/Fe2+ = 1/2 for the Fe3+ in the amphibole assemblage (see text). Abbreviations: rand: random, orient.: oriented.
Nelson & Guggenheim (1993) showed that oxidation of Fe$^{2+}$ to Fe$^{3+}$ in chlorite is limited to the M4 "interlayer" position. Thus chlorite should be relatively insensitive to f(O$_2$). Dyar et al. (1992) showed that chlorites from a wide variety of environments and oxide-mineral assemblages all have a small but significant Fe$^{3+}$ content, which they estimate to be 10 \pm 5% of the total Fe. This value is used in our calculation of chlorite formulae, with the proportion of Fe$_2$O$_3$ and FeO being back-calculated from stoichiometry.

Amphibole compositions were first assessed by normalization to 23 atoms of oxygen assuming all Fe as Fe$^{2+}$. Those compositions that did not generate a reasonable formula (three out of 100 datasets) were rejected. Amphibole formulae were then calculated assuming 23 O, 2 (OH, F, Cl) and a Fe$^{3+}$# value appropriate to the mineral assemblage. Amphibole compositions representative of each textural type are given in Table 3.

The composition of biotite in each petrographic assemblage of the Maclellan deposit is given in Table 4. Structural formulae based on 22 atoms of oxygen were calculated using the procedure of Deer et al. (1992) by assuming a value of Fe$^{3+}$# that reflects the assemblage of oxide minerals. The proportion of H$_2$O was back-calculated assuming 4 (OH, F, Cl).

Representative chlorite compositions are given in Table 5. Structural formulae were calculated assuming Fe$^{2+}$.
28 O, 16 (OH, F, Cl) and a value of Fe$^{3+}$# of 0.10 (Dyar et al. 1992).

Amphibole

Amphibole compositions representative of each textural type (Table 2) reveal significant variations. If all textural types are considered together, most of the MacLellan material falls within the compositional ranges of typical metamorphic amphiboles, as documented by Robinson et al. (1982). For a given crystallographic site, however, the MacLellan suite typically covers a significant part of the compositional range exhibited by metamorphic amphiboles. This is particularly true for [Al, Al, Fe$^{2+}$, Mg and Na. The Mg# [= Mg/(Mg + Fe)] varies from 0.39 to 0.90, and Na ranges from 0.01 to 0.37 atoms per formula unit (apfu). Ca occupancy in the MacLellan amphiboles, with values of 1.63 to 1.97 apfu, falls within the high-Ca group of metamorphic amphiboles (Robinson et al. 1982). All the MacLellan amphiboles have 6(Ca + Na) in excess of 1.70 and 6Na less than 0.38 apfu. Thus, they are all calcic amphiboles according to the IMA classification (Leake et al. 1997). Although the MacLellan amphiboles exhibit a wide range of 6Al/Fe$^{3+}$ values (0.02–4.21), 6Ti values are all less than 0.08 apfu, and 4(Na + K) values are less than 0.42 apfu. The wide range in composition of the calcic amphiboles is reflected in their classification (Fig. 5). The species identified are ferrotschermakite, tschermakite, magnesiohornblende, and actinolite.

Relative to tremolite (cf. Robinson et al. 1982, Blundy & Holland 1990, Castro & Stephens 1992), the more important substitutions seem to be actinolitic (6Fe$^{2+}$Mg$_{1-}$) (Fig. 5) and pargasitic (4Na6Al6Al$_2$ Mg$_{1-}$Si$_2$) (Fig. 6), the latter being a combination
of edenite and tschermakite substitutions, 4Na$^{[4]}$Al$^{[1]}$Si$_{1}$ and 4Al$^{[6]}$Al$^{[1]}$Si$_{1}$, respectively (Blundy & Holland 1990). Grains of relict amphibole, the cores of zoned crystals and the vug and vug-related amphiboles form a rather tight compositional group from tschermakite to aluminous magnesiohornblende (Figs. 5b, c, d, 6a, b, c). The rims of zoned crystals are more magnesian and less aluminous than the cores (Figs. 5b, 6a) and are similar in composition to grains of patchy amphibole (Figs. 5c, 6b) and to vein and alteration amphiboles (Figs. 5d, 6c). This latter group ranges in composition from aluminum-poor magnesiohornblende to actinolite. In the host rock, the grains of amphibole are classified petrographically as either metamorphic (oriented) or random. It is not possible to perfectly differentiate between these petrographic types by composition (Figs. 5a, 6a), although random crystals tend to be more magnesian, less aluminous and more enriched in the tremolite end-member than the metamorphic amphiboles. The compositions of random amphibole are similar to those for vein, alteration and patchy amphibole.

Biotite

The composition of biotite-series grains in each petrographic assemblage of the MacLellan deposit is presented in Table 4. Compositional data are also presented in the idealized annite – phlogopite – siderophyllite – eastonite plane (Fig. 7), which defines the biotite series (Rieder et al. 1998). The biotite-series minerals are, in general, Mg-rich, with a limited range in X_{Mg} from 0.53...
to 0.77, and can be defined as phlogopite-eastonite. A correlation of X_Mg with $^{[6]}Al$, indicating a Mg-Tschermak exchange, is weak for metamorphic host phlogopite-eastonite and well defined for QBS-stage biotite, which is dominated by eastonite. An Fe$^{2+}$-Tschermak exchange is indicated for phlogopite associated with amphibole vugs. Data for eastonite from the chlorite-carbonate vug, although distinct from the phlogopite associated with the amphibole vug, are too limited to define an exchange mechanism.

The concentrations of F and Cl in the Maclellan biotite are low (<0.26 apfu for F and <0.03 apfu for Cl; Table 4), even compared to biotite from other lode-gold deposits (cf. Taner et al. 1986, Kontak & Smith 1993). No correlations between Fe and Cl versus X_Mg, related to Fe avoidance, are evident (cf. Munoz & Swenson 1981).

The concentration of Ti in biotite correlates with the X_Mg of the biotite as well as the nature of the associated Ti phase (Fig. 8). One group of light to dark brown biotite grains with low Ti has no identified saturating phase or only minor rutile in the assemblage. The correlation of Ti with X_Mg in this category is probably controlled by the bulk composition of the rocks. Biotite grains, typically orange-brown, from assemblages containing rutile, ilmenite or ilmenite plus rutile, form a series with intermediate Ti content. A third group of bright orange-brown biotite grains with high Ti all have titanite in the assemblage along with ilmenite and rutile. Although the number of data is small, there is no obvious correlation between the color of biotite or its Ti content and the presence of magnetite.

Eastonite in and near QBS veins, along with a few occurrences in metamorphic rocks hosting QBS veins, dominate the high-Ti group (Fig. 8). This group has an average Ti content of 0.26 ± 0.03 apfu and an average X_Mg of 0.64 ± 0.02. Titanite, as a reaction rim around ilmenite or rutile (or both), is always part of the Ti-saturating assemblage in the high-Ti group. Metamorphic phlogopite-eastonite is associated with rutile ± ilmenite as the Ti-saturating phase(s). Magnetite, a probable Ti-bearing phase, locally occurs with ilmenite. Phlogopite-eastonite that formed with rutile as the dominant Ti-saturating phase has a lower Ti (0.16 ± 0.03 apfu) and is more magnesian ($X_Mg = 0.70 ± 0.04$) than that associated with ilmenite ($Ti = 0.20 ± 0.03, X_{Mg} = 0.65 ± 0.06$).

Chlorite

Except for host-rock metamorphic chlorite in a magnetite-rich assemblage (e.g., chlorite B-11 in ACD-8, Table 5), the chlorite compositions are uniform compared to those for amphibole and biotite. On the basis of $O_{26(OH)16}$, Si averages 5.26 ± 0.11 apfu, the balance of the eight tetrahedral positions being filled by Al. Values of $[1]Al$ and $[6]Al$ are approximately the same in all samples. Occupancy of the octahedral sites is close to 12 cations in all samples. Values of Mg/(Mg + Fe$^{2+}$) average 0.71 ± 0.10 and range from 0.51 to 0.79 for the whole dataset. If chlorite associated with abundant magnetite is removed from the dataset, however, the average Mg/(Mg + Fe$^{2+}$) increases to 0.76 ± 0.03, with a range of 0.70 to 0.79. The chlorite is considered metamorphic, except for two samples from the chlorite-carbonate vug, in which it has a hydrothermal origin.

Mineral pairs

The various mineral associations representative of metamorphosed host-rocks, QBS veins, and amphibole veins and alteration can be evaluated by examining the distribution of iron and magnesium among coexisting ferromagnesian minerals. The distribution coefficient K_D, i.e., $(X_Mg^A/X_{Fe}^A)/(X_Mg^B/X_{Fe}^B)$, where A and B are coexisting phases, depends principally on temperature and pressure. It is also a function of the mineral assemblage and phase composition. In the analysis that follows, K_D is presented by simple Nernst distribution diagrams, where X_Mg^A is plotted against X_{Mg}^B (cf. Kretz 1959, 1978). In some cases, the mineral pairs described are in contact and are most likely cogenetic; for these, an equilibrium distribution is expected. However, in many cases, the two minerals are not in contact.
Fig. 9. $X_{\text{Mg}}/X_{\text{Fe}}$ distribution in biotite–chlorite pairs. The equilibria represented by these pairs can be described by a single K_D.

(although always in the same thin section), or one mineral may be overgrowing and replacing the other, as previously described. For such pairs, an equilibrium distribution can only be expected within the spatial limits of local equilibrium (cf. Blackburn 1968).

Relatively few chlorite–biotite pairs were analyzed, but are representative of both metamorphic assemblages and the chlorite–carbonate vug, and can be approximately described by a single K_D (Fig. 9, Table 6).

Chlorite–amphibole pairs define one of three equilibrium distributions (Fig. 10, Table 6). The first, Group CAA with $K_D = 1.97$, is defined by relict amphiboles, the cores of zoned amphibole crystals and the crystals of metamorphic amphibole. A second group (CAB; $K_D = 0.99$) consists mostly of alteration amphibole paired with metamorphic chlorite. Group CAB also includes two random amphibole grains. The chlorite in the third distribution (Group CAC; $K_D = 1.39$) comprise principally metamorphic chlorite along with the two cases of vug chlorite. The amphibole of this group is represented by rims of zoned crystals, two vug-related amphibole grains and three random amphibole grains. It is possible that the random amphibole grains of Group CAC actually belong to Group CAB.

Biotite–amphibole pairs define three groups (Fig. 11), which are very similar to those observed for chlorite–amphibole pairs (Fig. 10). Group BAA, with $K_D = 1.41$, contains metamorphic biotite with metamorphic and relict amphibole. Group BAB ($K_D = 0.88$) com-

TABLE 6. SUMMARY OF Fe-Mg DISTRIBUTIONS FOR COEXISTING CHLORITE-BIOTITE, CHLORITE-AMPHIBOLE AND BIOTITE-AMPHIBOLE PAIRS, MACLELLAN DEPOSIT

<table>
<thead>
<tr>
<th>Chorite–Biotite</th>
<th>Group</th>
<th>Chlorite types</th>
<th>Biotite types</th>
<th>No. of pairs</th>
<th>$K_D^{\text{new + e}}$ ± e</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CBA</td>
<td>metamorphic, chlorite-carbonate vug</td>
<td>metamorphic, chlorite-carbonate vug</td>
<td>8</td>
<td>0.82 ± 0.06</td>
</tr>
<tr>
<td>Chlorite–Amphibole</td>
<td>Group</td>
<td>Chlorite types</td>
<td>Amphibole types</td>
<td>No. of pairs</td>
<td>$K_D^{\text{new + e}}$ ± e</td>
</tr>
<tr>
<td></td>
<td>CAA</td>
<td>metamorphic</td>
<td>relict, zoned (core), metamorphic</td>
<td>9</td>
<td>1.97 ± 0.14</td>
</tr>
<tr>
<td></td>
<td>CAB</td>
<td>metamorphic</td>
<td>alteration, random</td>
<td>10</td>
<td>0.99 ± 0.06</td>
</tr>
<tr>
<td></td>
<td>CAC</td>
<td>metamorphic, chlorite-carbonate vug</td>
<td>random, zoned (rim), vug-related</td>
<td>10</td>
<td>1.39 ± 0.11</td>
</tr>
<tr>
<td>Biotite–Amphibole</td>
<td>Group</td>
<td>Biotite types</td>
<td>Amphibole types</td>
<td>No. of pairs</td>
<td>$K_D^{\text{new + e}}$ ± e</td>
</tr>
<tr>
<td></td>
<td>BAA</td>
<td>metamorphic</td>
<td>relict, metamorphic</td>
<td>8</td>
<td>1.41 ± 0.12</td>
</tr>
<tr>
<td></td>
<td>BAB</td>
<td>metamorphic</td>
<td>random, alteration, patchy</td>
<td>8</td>
<td>0.88 ± 0.03</td>
</tr>
<tr>
<td></td>
<td>BAC</td>
<td>chlorite-carbonate vug, amphibole vug</td>
<td>random, amphibole vug, vug-related</td>
<td>10</td>
<td>1.07 ± 0.07</td>
</tr>
</tbody>
</table>
Fig. 11. X_{Mg}/X_{Fe} distribution in biotite and coexisting amphibole. As with chlorite–amphibole pairs, the K_0 values of biotite–amphibole pairs indicate three different equilibria. Group BAA is defined by metamorphic biotite and metamorphic and relict amphibole. Group BAB comprises metamorphic biotite with alteration, random and patchy amphibole. Group BAC is defined by vug-related biotite and vug, vug-related and random amphibole.

Amphibole type
- relict
- vug-related
- metamorphic
- amphibole vug
- random
- alteration

Group
- BAA
- BAB
- BAC

K_0 Values
- Group BAA: $K_0 = 1.41$
- Group BAB: $K_0 = 1.07$
- Group BAC: $K_0 = 0.88$

Discussion

QBS stage

The petrographic evidence indicates that the formation of QBS veins predates metamorphism and deformation. Vein-related alteration is now manifested as a biotite-rich halo along many of the veins. Whether or not the premetamorphic alteration assemblage, at the expense of which the biotite crystallized, included biotite cannot be determined with certainty. However, the fact that biotite seems to be the only Fe–Mg silicate produced during metamorphism strongly suggests that the haloes represent recrystallization of an original biotite-bearing alteration. The alternative, that the biotite crystallized from an assemblage of minerals that may or may not have included biotite, would have resulted in a metamorphic assemblage with greater mineralogical variability than the one seen. Whether or not any of the biotite present in the schists away from the veins also reflects a potassic alteration event is impossible to assess from petrography alone, but is plausible, if not likely.

In terms of X_{Mg} and 41Al, biotite in and related to QBS veins has a more restricted compositional range than metamorphic biotite (Fig. 7). It is possible that the compositional range of metamorphic biotite reflects growth in rocks with a wide range of bulk compositions. Because the distribution of vein-related biotite was controlled by earlier hydrothermal effects, however, it is likely that the restricted range of vein and vein-related eastonite reflects fluid-buffered compositions. This claim is supported by the presence, in this population, of eastonite from haloes in rocks that otherwise contain very little biotite. Further, host-rock phlogopite–eastonite from near QBS veins defines an equally restricted range in X_{Mg}, but shows a somewhat higher variation in 41Al content. This variability may indicate that host-rock biotite in the vicinity of QBS veins has also been influenced by hydrothermal activity, especially with respect to Fe and Mg, and that some of the biotite in the BP schists represents a potassic alteration event. Finally, the QBS veins represent a major sulfide mineralization event. The ubiquitous presence of pyrite or pyrrhotite would buffer $f(S_2)$ to low, but significant, values and limit Fe incorporation into ferromagnesian silicates in the veins and alteration haloes.

Concentrations of F and Cl in the eastonite of the QBS veins and vein haloes and in the later metamorphic phlogopite–eastonite are low. The X_p ranges from 0.012 to 0.033 in QBS vein-hosted eastonite and 0.004 to 0.026 in vein-related eastonite. Assuming the exchange relationship $\text{Mica(OH)}_2 + 2\text{HF} = \text{Mica(F)}_2 + 2\text{H}_2\text{O}$ and a temperature of 400°C, the $f(\text{HF})/f(\text{H}_2\text{O})$ for QBS-stage deposition of eastonite is $10^{-5.2}$ to $10^{-4.8}$ (Zhu & Sverjensky 1991). A similar range of $f(\text{HF})/f(\text{H}_2\text{O})$ is found for the metamorphic phlogopite–eastonite.

The Ti content of biotite is controlled by temperature, Fe/Mg and 41Al in biotite and the nature of the Ti-saturating phase (Guidotti et al. 1977, Dymek 1983, Labotka 1983, Guidotti 1984). Weak relationships between Ti and X_{Mg} (Fig. 8) and Ti and 41Al are observed. Although kyanite is observed in some metamorphic assemblages, a phase with fixed Al is not found in most QBS-stage veins. Gahnite is present in some assemblages, but there is no correlation between 41Al in biotite and the presence of gahnite. Thus, the Al and Ti contents of the QBS eastonite probably depend on the bulk composition and the nature of the Ti-saturating phase, respectively.

Titanite rims are most commonly seen in rocks in which the QBS veins occur; these also have the high-Ti eastonite. Thus, titanite formation appears to be linked to these veins in some way. The formation of titanite from ilmenite or rutile requires the addition of Ca and Si. We suggest that titanite growth occurred during metamorphism in the altered rocks around the QBS veins owing to elevated Ca and Si (now manifested as
calcic plagioclase and quartz) that originally resulted from hydrothermal activity.

Amphibole

Amphibole with a preferred orientation, the metamorphic amphibole, is typically finer grained than most of the other varieties of amphibole and exhibits a wide range of composition (Fig. 5a), which is taken to reflect protolithic composition. That the metamorphic amphibole is genetically distinct from most of the other amphibole varieties is supported by the amphibole–chlorite and amphibole–biotite relationships (Figs. 10, 11), as well as their textures. In both cases, all metamorphic pairs can be described by a single K_D value, CAA for chlorite–amphibole and BAA for biotite–amphibole (Table 6), indicating a consistent relationship among chlorite, biotite, and amphibole.

The dark green cores of zoned crystals and the dark green relict crystals (magnesiohornblende and tschermakite; Figs. 5b, c) within massive alteration-induced amphibole are defined by the same K_D values as the metamorphic amphibole crystals. This is true for both chlorite–amphibole and biotite–amphibole pairs (Groups CAA and BAA, Figs. 10 and 11, Table 6) and indicates that metamorphic and relict amphibole and the cores of zoned crystals all formed under similar conditions, and probably during, or soon after, deformation. Such a conclusion is consistent with the textural evidence that these types formed prior to the alteration amphiboles.

The randomly oriented porphyroblasts are generally coarser grained than the metamorphic amphibole and must have postdated the formation of the penetrative fabric. They form a compositionally bimodal population (Fig. 5a). One group contains magnesiohornblende and actinolite, and is similar to vein, alteration and patchy amphibole (Figs. 5c, d). The second group contains ferrotschermakite similar to the more iron- and aluminium-rich metamorphic amphibole. The magnesiohornblende–actinolite group of random amphibole is characterized by $K_D^{chil/amp}$ and $K_D^{bl/amp}$ values that place it in Groups CAB and BAB (Figs. 10 and 11, Table 6) along with alteration and patchy amphibole. Although it may belong to Groups CAB and BAB, the random ferrotschermakite group has K_D values with chlorite and biotite that are closer to those for the rims of zoned amphibole crystals and the vug and vug-related amphibole (Groups CAC and BAC, Figs. 10 and 11, Table 6). The split of the random amphibole into two populations predominately indicates that these porphyroblasts are related to two different events, one associated with the formation of the vugs and the other with the patchy and alteration amphibole.

Most vein and alteration amphiboles have a more restricted compositional range than the other types (Fig. 5d), and both define the same population of K_D values with respect to chlorite and biotite (CAB and BAB; Figs. 10, 11). The patchy amphiboles have similar compositions to the alteration amphiboles (Figs. 5c, d) and are defined by the same K_D with respect to biotite, indicating that they were formed during the same event. It would be reasonable to propose that the composition of these amphibole types was controlled by fluid rather than rock chemistry, a proposal that is supported by the more restricted compositions and distinctive K_D values. However, it is clear that there is a consistent relationship between the composition of the amphibole and the minerals being replaced, namely chlorite and biotite (Figs. 10, 11). This leads to the inference that host-rock composition played a role in controlling the composition of the alteration amphiboles. The random amphiboles that fall within the BAB group were presumably formed by the same alteration event that formed the more massive alteration.

Vug and vug-related amphiboles define intermediate populations with respect to both chlorite (CAC) and biotite (BAC). In the case of chlorite, this group also includes rims on zoned crystals. These relationships suggest that the vug amphiboles represent an event different from that which formed the alteration and patchy amphibole. Of all the groups, the composition of vug amphibole shows the least scatter (Fig. 11), which may reflect higher water:rock ratios and less influence from host-rock composition. Nevertheless, there is still a relationship to the composition of precursor biotite (Fig. 11), and the distinct K_D values (groups CAC and BAC) indicate a distinct event. Further, it would appear that some of the random amphiboles formed during this event.

Conclusions

1. Amphiboles in the MacLellan deposit are represented by a wide variety of textural types. These include metamorphic porphyroblasts, randomly oriented, postmetamorphic porphyroblasts and aggregates, amphiboles related to quartz–chlorite–biotite, and aggregates of massive amphibole in alteration haloes around veins.

2. These amphiboles are all calcic, but represent a wide compositional range, including ferrotschermakite, tschermakite, magnesiohornblende and actinolite.

3. Distribution of Fe and Mg among amphibole, biotite and chlorite (K_D values) indicate three amphibole-forming events. These represent 1) metamorphism, 2) the main episode of quartz–amphibole vein formation and alteration, and 3) an event that formed the vugs. The randomly oriented porphyroblasts and aggregates appear to be associated with both the main alteration event and the vug-forming event, which is consistent with their formation after the main episode of metamorphism and deformation.

4. A correlation between the composition of alteration-induced amphiboles associated with veins and the composition of protolith chlorite and biotite indicates
that the protolith's composition has strongly influenced the composition of the fluid–rock system, and that alteration occurred under low fluid:rock ratios.

5. Metamorphic biotite is Mg-rich, with X_M ranging from 0.53 to 0.77.

6. The composition of biotite in and around metamorphosed quartz–biotite–sulfide (QBS) veins is more restricted than that of the host-rock biotite, and may represent that of a fluid-buffered protolith.

7. Ti contents in biotite correlate with the nature of the associated Ti-oxide phase, increasing from rutile to ilmenite ± rutile to titanite ± rutile. The QBS-associated biotite typically has a high Ti content and is associated with titanite. This trend is attributed to premetamorphic metasomatism related to the QBS vein-forming event.

ACKNOWLEDGEMENTS

The authors thank LynnGold (formerly Sherrgold) Resources for access to the Maclellan mine and to drill core, and for financial assistance. We also thank the Manitoba Department of Energy and Mines for logistical and financial support, and in particular to Dr. M. Fedikow. Thanks go to Carl Henderson for his assistance with the electron-microprobe analyses. The manuscript was improved by comments made by A.E. Williams-Jones, Robert F. Martin, Charles Guidotti and David Lentz. This research was supported in part by an NSERC operating grant to I.M.S.

REFERENCES

KREITZ, R. (1959): Chemical study of garnet, biotite, and hornblende from gneisses of southwestern Quebec, with emphasis on the distribution of elements in coexisting minerals. J. Geol. 67, 371-402.

Received January 28, 1998, revised manuscript accepted October 10, 1999.