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ABSTRACT

The problem of estimating mineral abundances from whole-rock compositions can be attacked with a formulation that allows
the incorporation of theoretical and empirical data on the range of composition of the minerals. A change of variables allows this
intrinsically nonlinear problem to be solved with standard linear programming techniques. Calculations based on bulk composi-
tions of samples previously studied by the Rietveld method show very good agreement for major minerals. The results are
superior to those obtained by a projection method that also uses bulk-composition data. Estimates of mineral abundances based
on bulk-composition data can be obtained rapidly and inexpensively and provide a useful method for reconnaissance studies.

Keywords: modal analysis, linear programming, wollastonite, skarn.
SOMMAIRE

On peut résoudre le problRme que présente la détermination de 1’abondance des minéraux & partir de compositions globales
de roches avec une formulation qui permet d’incorporer des données théoriques et empiriques a propos de I'intervalle de com-
position des minéraux. Un changement de variables permet de résoudre ce probleme fondamentalement non linéaire par des
techniques standard de programmation linéaire. Des calculs & propos des minéraux majeurs, fondés sur la composition globale
d’échantillons préalablement étudiés par la méthode de Rietveld, concordent trés bien. La concordance est supérieure a celle
obtenue avec une méthode de projection fondée aussi sur les compositions globales. L’estimation d’abondances de minéraux
a partir des compositions globales, qui se fait rapidement et 2 colits modestes, peut s avérer utile dans les programmes de
reconnaissance.

(Traduit par la Rédaction)

Mots-clés: analyse modale, programmation linéaire, wollastonite, skarn.

INTRODUCTION

The petrological and economic importance of deter-
mining mineral abundance in skarns has led to a num-
ber of methods of estimation. Because direct visual
observation is in many cases difficult and expensive,
alternative techniques have been developed. In the pre-
vious paper, Raudsepp et al. (1999) compared results
obtained by X-ray-powder diffraction and Rietveld
analysis with the predictions made by projecting bulk-
composition data onto a set of phase and additive com-
ponents. In this paper, we examine an alternative
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procedure to estimate mineral abundances in the same
suite of samples given bulk compositions and some in-
formation on the composition of the minerals. The re-
sults of all three methods are compared at the end of
this paper.

This problem is a subset of the more general prob-
lem concerning mixtures, as reviewed by Renner ef al.
(1989) and Weltje (1997), in which the number and
composition of end members of a mixture are inferred
from a suite of bulk compositions alone. In the applica-
tion discussed in this paper, the mixture is a rock, and
the end members are compositions of model minerals.
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Unlike the general expression of the problem, the pos-
sible end-members are constrained to be a set of miner-
als of variable composition.

In its simplest form, the problem is as follows: given
a set of compositions of » model minerals and a mea-
sured whole-rock composition, find the proportion of
the minerals that best approximates the bulk composi-
tion. There must be a mass balance for each of the m
constituents (commonly oxides) of the analyses. These
mass balances can be expressed as a set of equations:

Za,-jxj=b,- i=1L2...m
— (1)
x; 20, j=12..n

where the constants a;; are the amounts of constituent i
in mineral j, the constants b; are the amounts of con-
stituent { in the bulk composition, and the unknowns x;
are the proportions of the minerals. The equations rep-
resent the mass-balance relationship of any conserva-
tive quantity. The inequalities reflect the fact that the
proportions of model minerals in the solution must all
be zero or positive quantities.

A general approach to constrained linear least-
squares problems was outlined by Ghiorso (1983). Re-
cently, Metzner & Grimmeisen (1990) attacked the
modal abundance problem with an iterative least-
squares method using actual or assumed mineral and
end-member compositions. With this approach, the
number of mineral phases should not exceed about half
of the analyzed elements, and the same end-member
should not be used in more than one mineral. Because
an unconstrained least-squares technique is employed,
it is possible that negative modal abundances will be
calculated. Laube et al. (1996) extended the method by
using a combinatorial approach to find solutions in
which only positive modal abundances occur. Their pro-
cedures include statistical weighting of the input data, a
robust technique for regression, and calculation of maxi-
mum likelihood results. De Caritat et al. (1994) avoided
the negative solution problem by using a linear program-
ming technique to obtain modes of fine-grained sedi-
mentary rocks. Rather than a least-squares minimiz-
ation, their technique permits the minimization of a
variety of linear objective functions.

FORMULATION OF THE PROBLEM

In many practical problems it is important that the
model allow for the natural variability of mineral com-
positions in the rocks being studied. In other words, the
values of a; in equations (1) are unknowns rather than
constants, hence the m equations are nonlinear and may
have as many as (n + m X n) unknowns. The variability
may be known empirically from results of chemical
analyses of the minerals or theoretically from crystallo-

graphic and thermodynamic considerations. Our ap-
proach features a change of variables that allows the
problem to be solved by linear programming and per-
mits empirical compositions and stoichiometric proper-
ties of the minerals to be used to constrain the unknown
compositions of the minerals.

In our formulation, the unknowns are x;, the n values
of the weight fractions of model minerals and y; I, the
men values of the variables (weight percent of oxide i in
mineral j X weight fraction of mineral j). Weight frac-
tions of the minerals are thus determined directly,
whereas the compositions of individual mineral are de-
termined after the solution is obtained by dividing the
appropriate weight fraction X weight percent by the
computed weight fraction, i.e., the weight percent of
oxide i in mineral j is y; //x;. With this number of un-
knowns, the m mass-balance relationships (1) are insuf-
ficient to provide unique solutions. This problem is
overcome by specifying inequality constraints corre-
sponding to various known properties of the model min-
erals. The numerical technique used to solve such sets
of equations and inequalities is linear programming.

Beginning with the seminal work of Greenwood
(1967), linear programming has been applied in petro-
logical mass-balance problems for a number of years
(e.g., Wright & Doherty 1970, Banks 1979, Gordon et
al. 1991, de Caritat et al. 1994). In this technique, a set
of inequalities, rather than equations, are used to con-
strain the values of the unknowns. Instead of a unique
solution, the method finds the minimum or maximum
value of a linear combination of variables. Mathemati-
cally, the linear programming problem is:

min (max) z": Aj%i
j=1

subject to:

Za,-jxjﬁb,- i=1,2,....n (2)
=]

x, 20, j=12,..n

In this notation, the symbols a; and b; now refer to
arbitrary quantities which constrain the solution. The

n
function Z A;Xj is called the objective function,
j=l
whereas the equations and inequalities are the con-
straints. Such problems may be feasible, in which case
a minimum or maximum value of the objective func-
tion can be obtained, infeasible, in which case the con-
straints admit no solution, or unbounded, in which case
the constraints fail to restrict the objective function to a
finite value. The structure of the problems addressed in
this study and the nature of unknowns x; and quantities
\j, a;;, and b; are discussed below.
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CONSTRAINTS
Mass-balance constraints

In the notation used here, equations (1) become:

> yi=b
J=1
yl>0,

If the measured bulk-compositions b; are not known
exactly, but lie within a known range * 8b;, equations
(3a) can be expanded to:

i=12..m

(3a)
i=12..mj=12..n

Y ¥y <(b+5b) i=12...m

j=1
*;y;’ < "(bi —abi) i= I,Z,....m (3b)

yi20, i=12.mj=12..n

There will be 2em constraints of this type.
Mathematical constraints

The main mathematical constraint is that the sum of
the n weight fractions of model minerals should total 1.
This constraint can be expressed as the equality

n
zxj =1. Alternatively, this constraint can be ex-

J=1 . onq
pressed as two inequalities:

n
ijSI
Jj=1
n
—ijS—l
=1

The latter formulation can then be extended to allow the
sum to vary within the number of significant digits in
the data, for example:

(4a).

D x, <1001
J=1
“ 4b).
=3 5, <0999 o
Jj=1

There will be two constraints of this type.

Constraints on mineral compositions I: totals

The composition of each mineral expressed in oxide
weight percent should total exactly 100 in the case of
pure minerals or end-members of solid solutions. If
compositions are known exactly, this condition can be
written

>y =100,

i=1

or

100%,~3 /=0

i=l

(5a).
j=123.n

In the case of minerals with measured compositions, the
total should lie within an acceptable range (100 * g)),
and these constraints may be expressed as:

(100~¢))-x;— ) ¥/ <0
i=1

LI (5b).
—(100+g)-x,+> y/<0  j=123.n
i1
There will a pair of inequalities for each model mineral,
giving a total of 2en constraints of this type.

Constraints on mineral compositions II:
individual oxides

The permitted variation in the weight percent of ox-
ide j in model mineral i (a;;) can be specified using in-
equalities analogous to (5b), where the compositional
range is a; * 8ay;.

(a,-j—5aﬁ)~xj—y{SO

. 6

—~(a;+8ay), x;+y <0 ©)
There may be as many as m pairs of such inequalities
for each mineral, hence a maximum of Zemen inequali-
ties of this type for any particular problem.

Explicit crystallographic constraints

Crystallographic or site-occupancy constraints are
specific to individual minerals or mineral groups. If the
compositions of particular minerals can be adequately
modeled by a mixture of theoretical end-members, then
the compositions of these end members can be used in
the formulation of the problem instead of empirical
compositions (e.g., Metzner & Grimmeisen 1990, de
Caritat et al. 1994, Laube et al. 1996). This procedure
essentially collapses inequalities (5) and (6) to equations
for the theoretical end-members chosen. The weight
fraction of the mineral solution is then the sum of the
weight fractions of the individual end-members.
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Cation-ratio constraints

It is not always feasible to express compositions of
natural minerals as mixtures of end members, in par-
ticular where only partial results of chemical analyses
are available. However, in some problems, the model
minerals may have a fixed ratio of particular cations that
should be respected in the calculations. An example
would be the requirement that in a garnet the cation ratio
[Si + Al + Fe** + Til:[Mg + Fe** + Mn + Ca] be 10:6.

In order to apply such a constraint, the variables y;’
must be scaled to cation numbers. The form of such a
constraint would then be:

j Ci . j Ci
Zy,?z_ - k-Zy{E-O

sitel site2

(Ta)

where c¢; is the number of moles of cation per mole of
oxide i, m; is the molecular weight of oxide Z, and & is
the ratio of cations on site 1 to cations on site 2. If the
ratio is allowed te vary between k — 8k and k + dk, the
equation can be replaced with two inequalities.

Zy;‘;- - (k+é‘k)-2y{:1—iiso

sitel site2
i Ci i Ci (7b)
Ny v -5k)-Y ¥ <0
;el m; S;ez mi

-OBIECTIVE FUNCTION

Any linear combination of variables can be used as
the objective function (function to be minimized or
maximized). In the context of this formulation, an obvi-
ous choice is to determine the minimum and maximum
weight fraction oOf particular minerals in the model sys-
tem.

An alternative formulation, mentioned here for com-
pleteness, can be obtained by the inclusion of an addi-
tional set of 2em explicit slack variables that provide
the amount by which each mass-balance equation is vio-
lated (e.g., Gordon et al. 1991, de Caritat et al. 1994).
The objective function to be minimized in this formula-
tion is the sum of these variables. This type of objective
function has the advantage that a mass-balance solution
is guaranteed. The values of the explicit slack variables
show which oxides fail to balance exactly. This infor-
mation can be interpreted in geological terms and used
to identify sources of inconsistency in the model.

APPLICATION OF THE LINEAR PROGRAMMING METHOD

This methodology has been applied to a set of 20
samples of wollastonite skarn from the Isk deposit of
northwestern British Columbia (Jaworski & Dipple
1996a). The samples were crushed and homogenized

two-meter intervals of drill core. The sample size means
that an individual sample may contain several rock
types, and the formulation must then allow for the oc-
currence of any of the minerals observed in the area.

Bulk compositions

Bulk chemical compositions were determined by X-
ray fluorescence spectroscopy on splits of the same
powdered rock material that was used for X-ray powder
diffraction (Raudsepp et al. 1999). The bulk chemical
compositions are shown in Table 1. Relative uncertain-
ties in these analytical results provided by the assay
company are shown in Table 2.

Model minerals

On the basis of the work of Jaworski (1996) and
Jaworski & Dipple (19964, b), the most abundant min-
erals in the samples are wollastonite, quartz, calcite,
hydroxylapatite, K-feldspar, titanite, diopside, augite,
grossular and andradite. Electron-microprobe data exist
for wollastonite, titanite, augite, grossular and andradite
in skarns in the area (M. Raudsepp, unpubl. data).

Total iron was recalculated to FeO. The model com-
positions for quartz, calcite, hydroxylapatite, K-feldspar
and diopside were taken as those of theoretical pure
phases. For model calcite and apatite, LOI was com-
puted as weight % CO, and H,O, respectively. The
value of weight % of each oxide and the total weight %
of model wollastonite, titanite, augite, grossular and
andradite were constrained to lie between the maximum
and minimum values obtained in the electron-micro-
probe analyses. The minerals used in the calculations
and the bounds on individual oxide weight % are shown
in Tables 3, 4 and 5.

Objective functions

The objective functions were chosen to maximize
and minimize the weight fraction of wollastonite, the
ore mineral in the skarn deposit.

Algorithm

Computations were carried out with the linear pro-
gramming function LP of the Optimization Toolbox,
part of the Matlab system distributed by The Math-
Works, Inc. of Natick, Massachusetts.

REsuLTS

The calculated weight % and mole % mineral abun-
dances for 16 samples are shown in Tables 6 and 7.
Molecular weights were computed on the basis of two
atoms of oxygen per mole in quartz, three per mole in
wollastonite and calcite, five per mole in titanite, six per
mole in diopside and augite, eight per mole in K-feld-
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TABLE 1. WHOLE-ROCK CHEMICAL COMPOSITIONS, WOLLASTONITE SKARN,
ISK DEPOSIT, BRITISH COLUMBIA

Sample  8i0, TiO, ALO, Fe0, MnO MgO Ca0 Na 0O KO P,0, LOI Total

3810 5091 003 055 080 009 071 4594 023 012 001 057 9996
2760 5033 007 164 093 007 079 4496 022 032 001 047 99.81
420 4963 012 236 149 007 099 4417 016 016 003 075 99.93
2610 4928 015 208 208 010 119 4365 027 023 002 084 9989
4820 4892 032 177 310 011 195 4224 016 012 006 101 9976
1270 4779 016 467 219 007 159 4203 031 022 005 065 9973
3395 4617 157 177 471 014 187 4052 049 029 049 176 9978
5795 5000 020 203 309 011 436 3841 020 025 003 099 99.67
2595 4779 068 276 662 017 383 358 042 040 015 044 9912
6360 3255 013 235 202 008 320 4297 041 046 001 1574 99.92
3600 4631 073 504 647 019 248 3341 041 141 018 279 9942
360 4745 094 288 804 018 576 3227 038 056 056 075 99.77
5195 4446 027 203 918 035 794 2687 034 024 035 773 9976
2795 4936 042 236 714 016 1125 2458 079 071 158 128 9963
4995 4930 075 281 1165 046 872 2341 056 088 042 032 9928
2995 4927 051 256 704 016 1084 2410 099 090 177 147 99.61
3470 4958 034 492 365 013 113 3529 052 256 005 143 99.60
4400 5303 043 985 440 013 255 2090 166 446 031 142 9914
5000 5400 014 1276 222 01F 066 1901 249 512 006 257 9914
5270 4958 014 119 178 011 097 44290 041 025 003 104 99.79

The bulk compositions are reported in weight %, LOI: loss on ignition.

TABLE 2. RELATIVE ERRORS (%) ASSOCIATED WITH TABLE 4. MINIMUM WEIGHT % LIVATS FOR
WHOLE-ROCK COMPOSITIONS MODEL MINERALS WITH VARIABLE COMPOSITIONS*
Si0, TiO, ALO, FeO MnO MgO CaO Na0O K,0 P,0, LOI Wo Tin Aug G Adr
0.0038 0.0203 0.0153 0.0087 0.0588 0.0081 0.014 0.0327 0.0253 0.0734 0.05
= - Si0, 5109 30.15 5039 64.76 33.21
TiO, 0 37.12 0 0 108
ALO, 0 042 0.03 1832 113
FeO 0.03 1.19 581 0 17
MnO 0 0 0 0 0,01
TABLE 3 WEIGHT % OXIDES IN MODEL MINERALS MgO 0.03 0 1042 0 0.11
WITH FIXED COMPOSITIONS Ca0 4733 28,03 2034 0 3252
Na,0 0 0.05 0.16 0 0
K,0 0 0 0 16.92 0
Quz Cal Ap Kfs Di PO, 0 0 0 0 0
LOK 0 022 0 0 0
i Total 989 9747 973 %5 96.65
S0, 100 0 0 64.76 55.49
TiO, 0 0 0 0 0
ALO, 0 0 0 1832 0 * Columns do not correspond to actual results of analyses.
FeO 0 0 0 0 0
MnO 0 0 0 o 0
MgO 0 0 0 0 18.61
Ca0 0 56.03 55.82 0 25.90 TABLE 5. MAXIMUM WEIGHT % FOR MODEL MINERALS
Na,0 0 0 0 o 0 WITH VARIABLE COMPOSITIONS*
K,0 0 0 0 16.92 0 o
P,0, 0 0 4239 0 0
LOI 0 43.97 179 0 0 Wa Tt Aug Grs Adr
Si0, 5273 3032 5242 38.7 35.58
TiO, 0.06 38,02 031 0.06 546
ALO, 006 076 1.66 23.03 665
. FeO 053 1.51 12.69 0.5 25.44
spar, twelve per mole in grossular and andradite, and  MnO 02 0 0.47 0.05 014
: : - 0 031 0.02 1495 0.02 049
twelve per mole in apatite on an anhydrous basis. gfo e e i 1723 aats1
Feasible solutions were obtained for all but four of N0 011 9 212 0 022
the samples previously studied (Raudsepp et al. 1999). gag g 3-01 g g g
Three of these (3470, 4400 and 5000) had anomalously  tpr 0 0.29 0 0 0
high contents of K-feldspar (> 14 wt%), possibly reflect-  Total 1013 100.01 100.01 100.01 100.01

ing the presence of minerals not included in the model.
The lack of a solution. for sample 5270 is enigmatic. * Columns do not correspond to actual results of analyses:
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TABLE 6. COMPUTED WEIGHT % MINERALS IN SAMPLES OF WOLLASTONITE ORE

Sample 3810 2760 420 2610 4820 1270 3395 5795 2595 6360 3600 360 5195 2795 4995 2995
Minimum wollastonite
Wollastonite 86.26 80.72 73.07 70.73 63.04 57.03 50.34 48.10 33.27 21.81 21.59 14.58 0.00 0.00 0.00 0.00
Quartz 135 072 102 057 031 000 063 085 000 084 360 131 548 058 000 122
Calcite 136 112 179 200 241 155 414 236 1043759 664 1731667 262 076 301
Apatite 003 003 008 005 015 013 124 008 038 003 046 142 077 358 085 394
K-feldspar 069 184 092 132 069 127 1.67 144 230 265 812 323 145 430 494 545
Titanite 000 000 000 000 000 000 158 000 000 000 000 0.00 000 087 000 110
Diopside 000 000 000 000 000 033 0001053 214 628 0001514 0001952 0.00 1764
Augite 661 739 93311251861 1457 17.75 23.18 32,95 19.64 23,71 28.38 68.21 63.49 83.16 6294
Grossular 187 591 989 817 7172013 394 783 981 8411535 922 104 457 0.00 414
Andradite 138 183 345 545 7.18 507 1858 5391794 32020472544 592 0001074 012
Maximum wollastonite
Wollastonite 91.62 87.13 83,21 81.09 76.29 6841 60,09 63.59 52.81 35.94 3930 39.08 5.87 1227 6.80 11.20
Quartz 000 000 000 000 047 000 000 0.05 000 000 327 038 560 080 0.00 3.13
Calcite 123 101 162 1.81 217 140 375 214 093 3532 601 1561667 262 0.65 3.01
Apatite 002 002 007 004 013 011 107 007 033 002 039 122 077 345 085 387
K-feldspar 069 184 097 132 073 127 167 151 242 265 854 339 145 430 494 545
Titanite 000 000 0.14 0.11 043 025 189 018 1.24 0.13 1.00 165 0.13 045 1.20 0.71
Diopside 0.00 000 0.00 000 000 000 0.00 000 000 292 0.00 000 000 000 000 0.00
Augite 574 552 522 7951206 10.51 17.78 27.60 28 85 16,84 19.28 41.01 67.31 7438 8327 71.69
Grossular 115 492 852 662 5001782 090 531 544 663 976 456 265 126 1.84 139
Andradite 000 000 071 150 314 0691331 000 7.54 0001200 674 000 000 000 0.00

RIETVELD METHOD

Raudsepp et al. (1999) applied the Rietveld method
and a projection method to determine mineral abun-
dances in these samples of wollastonite skarn. The
Rietveld method uses X-ray powder-diffraction to char-
acterize a sample. The structural parameters of each
constituent mineral, together with experimental param-
eters, are refined by least-squares procedures to mini-
mize the difference between observed and calculated
powder-diffraction patterns. The result is a single esti-
mate of mineral abundance for each of the skarn samples
studied here. Raudsepp ez al. (1999) evaluated the ac-
curacy of the method by analyzing synthetic skarn that
consisted of pre-weighed mixtures of skarn minerals.
They concluded that the Rietveld method provides the
best estimate of mineral abundance in natural skarn
samples for minerals present in moderate to large abun-
dance (25%) but that it does not accurately measure the
abundance of minerals present at lower concentrations.

PROJECTION METHOD

The projection method employs a basis transforma-
tion to convert whole-rock compositions in terms of
oxides to molar abundances of additive and exchange
components (Thompson 1982, Raudsepp et al. 1999).
The whole-rock chemical compositions used by
Raudsepp et al. (1999) are the same as in this study.
The projection method determines mineral abundance
but not mineral composition. This analysis for the Isk

wollastonite skarn is underdetermined: the abundances
of calcite, K-feldspar, apatite and titanite are determined
uniquely; abundances of wollastonite, quartz, pyroxene
and garnet are constrained to lie between minimum and
maximum values. An added complication for samples
of the Isk skarn is that the number of substitution mecha-
nisms must be reduced in order to obtain a feasible so-
lution by the projection method. These simplifications
introduce errors into the estimates of mineral abundance,
although generally on the order of only a few mole per-
cent. For example, although garnet contains Ti and py-
roxene contains Na and K, the formulation of the
projection technique employed by Raudsepp et al.
(1999) restricted Ti to titanite, and Na and K to feld-
spar. As a result, the projection method overestimates
the abundance of both titanite and feldspar in the skarn
samples. Sensitivity analysis has confirmed that these
simplifications do not adversely affect estimates of
wollastonite abundance. The main source of inaccuracy
in the projection method stems from the inability of the
method to limit the range of compositional variability
of individual mineral species.

DiscussioN

Mineral abundances determined by linear program-
ming, Rietveld analysis and projection techniques are
compared in Figures 1, 2 and 3. The data are presented
in Table 7. The linear programming results for wollas-
tonite, total garnet, total pyroxene, quartz, calcite and
feldspar are consistent with and bracket the Rietveld
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TABLE 7, MINERAL ABUNDANCES IN MOLE %, WOLLASTONITE SKARN

3810 2760 420 2610 4820 1270 3395 5795 2595 6360 3600 360 5195 2795 4995 2995

93.73 89.75 87.67 86.01 81.81 79.03 73 42 69.88 63.49 42.18 47.75 4098 110 078 076 076
93.89 92.75 8676 86.64 78.08 80.87 73.13 60.27 54.45 29.45 3982 2427 000 000 000 000
94.59 93.08 88.80 88.05 82.48 82.26 75.49 70.58 63.83 33.89 50.12 42.01 000 000 0.00 000
90.83 89.74 8533 84.37 79.00 77.73 69.23 65.08 55.22 25.83 3568 2826 000 000 0.00 000
94.87 93 52 91.84 90 19 8623 8467 76.16 77.05 71.91 39.89 5471 57.56 814 2089 12.75 1822

567 850 749 8712043 24.68 10.48 1323 36.82 47.61 8649 85.69 83 13
000 0.00 000 000 000 0.00 0.00 0.00 0.0049.44 7551 76.75 71.87
282 879 278 4722063 18.75 B8.88 2059 3549 49.44 7551 76.75 71 .87
6.95 12.05 10,52 12.63 23 .83 3022 16.01 20.30 44 12 52.05 83.53 88.30 7948
450 696 661 11.52 1728 19.97 1133 13 62 30.80 47.77 65.86 7933 59.93

303 284 734 495 275 748 308 1180 1083 4.12 0.19 628 049
437 380 999 694 316 99 446 8061117 0.00 604 969 582
578 8201138 9.30 1348 1934 890 18352892 000 604 9.69 582
393 431 855 724 4331083 34014051559 238 227 516 207
226 224 583 418 164 417 188 720 393 095 055 089 058

202 261 250 340 269 13t 226 990 3361956 3.59 3.13 339
0.00 000 000 0.00 000 000 0.00 0.00 0001743 0.00 0.00 000
282 879 278 4722063 1875 88820593549 1743 000 0.00 000
130 074 000 167 222 000 1921148 4901572 219 0.00 448
000 1.04 000 000 011 000 000 881 109 1505 265 0.00 981

232 296 241 462 3.03 1.0640.15 1058 2882491 029 006 0.17
262 323 231 605 343 17749361152 3322956 606 161 699
277 349 244 660 370 19951.521272 3892869 591 184 665
234 286 201 552 300 1474557 973 2672690 518 143 566

093 078 070 037 099 063 1.56 533 222 082 283 222 417
187 109 231 340 180 402 318 789 502 272 944 9.13 11.90
066 036 072 096 081 160 131 559 260 090 349 429 434
062 034 066 088 076 1.38 123 498 209 084 306 3.89 368

003 013 005 044 011 028 0.14 021 078 040 238 078 251
001 004 004 036 002 013 001 015 055 028 173 049 194
001 004 004 039 002 015 001 017 063 026 161 041 174
001 003 003 031 002 010 001 013 042 025 136 037 145

002 039 046 411 012 108 015 120 216 148 173 108 265
026 057 031 304 038 1.55 022 167 244 057 122 233 149
0.00 000 000 128 000 000 000 000 000 000 100 000 124

Sample
‘Wollastonite
Rietveld
Proj. min'
Proj. max’
LP? min
LP max
Pyroxene

Rietveld 341 357 471
Proj. min 0.00 0.00 0.00
Proj. max 140 066 408
LP min 361 426 565
LP max 304 303 294

Garmnet
Rietveld 033 202 291
Proj. min 113 295 347
Proj. max 1.83 328 551
LP min 083 214 334
LP max 031 136 2.59

Quartz
Rietveld 160 226 119
Proj. min 000 0.00 000
Proj. max 140 066 408
LP min 276 155 230
LP max 0.00 000 000

Calcite
Rietveld 054 058 211
Projection 160 138 228
LP min 166 145 242
LP max 148 127 207

Feldspar
Rietveld 026 162 121
Projection 123 1.81 115
LP min 030 086 045
LP max 030 083 045

Apatite
Rietveld 0.13 019 0.18
Projection 001 001 002
LP min 0.01 001 002
LP max 001 001 0.02

Titanite
Rietveld 0.00 001 003
Projection 005 011 020
LP min 000 000 000
LP max 0.00 0.00 0.09

007 029 018 142 013 100 009 083 144 011 046 134 068

! Min denotes caleulation that minimizes wollastonite content, projection method. * Max denotes calculation that maximizes
wollastonite content, projection method. * LP is the linear programming method
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results (Fig. 1). Maximum and minimum abundances
generally have a 5-10% range. This range decreases as
mineral content increases, reflecting the fact that at high
abundance, the bulk composition provides a major con-
straint on mineral abundances. The linear programming
method systematically underestimates the abundances

of the minor minerals titanite and apatite relative to their
concentration as determined by the Rietveld method
(Figs. 1e, g).

Estimates of mineral abundance by the projection
method also compare favorably with those of the
Rietveld method (Fig. 2). Wollastonite, titanite and cal-
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FiG. 1. Mineral abundance in mole % determined by linear programming versus mineral abundance determined by the Rietveld
method. The length of the horizontal bars corresponds to the range of wollastonite contents obtained in the linear program-
ming solution.

cite contents as determined by the two techniques are  methods compare favorably. Quartz abundances as de-
consistent; the projection method, however, tends to  termined by the two methods are consistent, largely
overestimate garnet and feldspar contents, and underes-  because of the extreme range in quartz content allowed
timate pyroxene and apatite abundance relative to the by the projection method.

Rietveld method. The projection method results for The linear programming method provides better es-
quartz are consistent with the Rietveld results but with  timates of pyroxene, garnet, quartz and feldspar content
large brackets (Fig. 2d). than the projection method because the linear program-

A comparison of the linear programming results with  ming technique incorporates a more accurate represen-
those of the projection method is instructive because tation of mineral chemistry. The linear programming
both techniques use the same set of whole-rock chemi-  technique allows for all observed mechanisms of sub-
cal data (Table 1). This comparison (Fig. 3) shows stitution within each mineral but limits their abundance
excellent correlation for maximum and minimum abun-  to lie within the observed range of mineral composi-
dances of wollastonite, calcite and apatite, and a clear  tions. This additional set of constraints is not included
tendency for the linear programming technique to esti-  in the projection method. The projection method does
mate lower contents of garnet, titanite and feldspar with  not solve for the compositions of the minerals. Rather,
respect to the projection method. it determines the extent of each substitution (exchange

The linear programming test was run to maximize component) for the whole rock. This approach results
and minimize wollastonite content, hence the range of  in poor estimates of pyroxene and garnet abundance in
wollastonite values is larger than the equivalent deter-  the Isk skarn. For some solutions of the projection for-
mination by the projection method. Calcite abundances  mulation, the total Mg content of the rock is accommo-
estimated by the linear programming and projection dated by garnet through the Fe—Mg exchange vector
techniques are very similar because both are constrained  (Figs. 2b,c). These solutions have zero pyroxene con-
by the value of loss on ignition in the whole-tock analy-  tent. Garnet in the Isk skarn does not contain sufficient
sis. This is sufficient to estimate the calcite content of Mg to accommodate all of the Mg in the rock (Table 3).
the skarn samples (Figs. 1f, 2f), although direct mea- The linear programming solution for these samples re-
surement of CO;, content of skarn would likely provide  quires non-zero pyroxene contents (Fig. 1c).
more accurate constraints on calcite content. The linear The projection and linear programming methods pro-
programming method systematically estimates higher duce similar estimates of apatite abundance, both of
abundances of pyroxene than the projection method, which are determined by the P,Os content of the rock.
although the maximum pyroxene contents of the two  The discrepancy between Rietveld estimates of apatite
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content and those determined by linear programming
and projection can be attributed to the inaccuracy of the
Rietveld method for low-abundance minerals. Methods
of estimation based on data on whole-rock composition
provide more accurate determination of mineral abun-
dance than the Rietveld method for minor phases that
accumulate incompatible elements.

The results of this study show that the linear pro-
gramming technique produces results in good agreement
with the Rietveld method for the skarn samples in the
reference dataset. The linear programming method is
superior to the projection method for estimating min-
eral abundance in the complex calc-silicate skarn. Data
required for the projection method are similar to those
required for the linear programming method: bulk com-
positions and the nature of substitutions in the constitu-
ent minerals. The linear programming technique
incorporates additional constraints, namely the range of
substitutions. As a result, mineral abundances deter-
mined by linear programming are in general more accu-
rate than those determined by projection. However, this
does not translate into smaller computed ranges of wol-
lastonite content. The extremes thus represent the most
conservative and most optimistic grades of wollastonite
ore. Bulk-composition methods, if augmented by min-
eralogical constraints, can provide rapid and inexpen-
sive estimates of mineral abundances in skarns. The
level of accuracy is sufficient for reconnaissance and
exploration purposes.
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