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MEASURING MINERAL ABUNDANCE IN SKARN. II. A NEW LINEAR PROGRAMMING
FORMULATION AND COMPARISON WITH PROJECTION AND RIETVELD METHODS
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ABSTRACT

The problem of estimating mineral abundances from whole-rock compositions can be attacked with a fomulation that allows
the incorporation of theoretical and empirical data on the range of composition of the minerals A change of variables allows this
intrinsically nonlinear problem to be solved with standard linear programming techniques Calculations based on bulk composi-
tions of samples previously studied by the Rietveld method show very good agreement for major minerals. The results are
superior to those obtained by a projection method that also uses bulk-composition data. Estimates of mineral abundances based
on bulk-composition data can be obtained rapidly and inexpensively and provide a useful method for reconnaissance studies.

Keywords: modal analysis, linear programming, wollastonite, skam

Sorrlrraerne

On peut r6soudre le problbme que pr6sente la ddtermination de I'abondance des min6raux d partir de compositions globales
de roches avec une formulation qui permet d'incorporer des donn6es th6oriques et empiriques d propos de I'intervalle de com-
position des min6raux Un changement de variables permet de r6soudre ce probldme fondamentalement non lin6aire par des
techniques standard de programmation lin6aire. Des calculs iL propos des min6raux majeurs, fondds sur la composition globale
d'6chantillons pr6alablement 6tudi6s par la m6thode de Rietveld, concordent trds bien. La concordance est sup6rieure d celle
obtenue avec une m6thode de projection fond6e aussi sur les compositions globales. L'estimation d'abondances de min6raux
d partir des compositions globales, qui se fait rapidement et d co0ts modestes, peut s'av6rer utile dans les programmes de
reconnalssance.

(Traduit par la R6daction)

Mots-cld s: analyse modale, prograrnmation lin6aire, wollastonite, skam.

INrnooucrroN

The petrological and economic importance of deter-
mining mineral abundance in skarns has led to a num-
ber of methods of estimation. Because direct visual
observation is in many cases difficult and expensive,
altemative techniques have been developed. In the pre-
vious paper, Raudsepp et al. (1999) compared results
obtained by X-ray-powder diffraction and Rietveld
analysis with the predictions made by projecting bulk-
composition data onto a set of phase and additive com-
ponents. In this paper, we examine an alternative

procedure to estimate mineral abundances in the same
suite of samples given bulk compositions and some in-
formation on the composition of the minerals. The re-
sults of all thee methods are compared at the end of
this paper.

This problem is a subset of the more general prob-
lem concerning mixtures, as reviewed by Renner et al.
(1989) and Weltje (1997), in which the number and
composition of end members of a mixture are inferred
from a suite of bulk compositions alone. In the applica-
tion discussed in this paper, the mixture is a rock, and
the end members are compositions of model minerals.

I E-mail address: tmg@geo.ucalgary.ca
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Unlike the general expression of the problem, the pos-
sible end-members are constrained to be a set of miner-
als of variable composition.

In its simplest form, the problem is as follows: given
a set of compositions of n model minerals and a mea-
sured whole-rock composition, find the proportion of
the minerals that best approximates the bulk composi-
tion. There must be a mass balance for each of the m
constituents (commonly oxides) of the analyses. These
mass balances can be expressed as a set of equations:

x.,2 o, j  =  1 , 2 , ' . . . n

where the constants aij are the amounts of constituent i
in mineral j, the constants b; are the amounts of con-
stituent i in the bulk composition, and the unknowns xy
are the proporlions of the minerals. The equations rep-
resent the mass-balance relationship of any conserva-
tive quantity The inequalities reflect the fact that the
proportions of model minerals in the solution must all
be zero or posit ive quanti t ies.

A general approach to constrained linear least-
squares problems was outlined by Ghiorso (1983). Re-
cently, Metzner & Grimmeisen (1990) attacked the
modal abundance problem with an iterative least-
squares method using actual or assumed mineral and
end-member compositions. With this approach, the
number of mineral phases should not exceed about half
of the analyzed elements, and the same end-member
should not be used in more than one mineral. Because
an unconstrained least-squares technique is employed,
it is possible that negative modal abundances will be
calculated. Latbe et al. (1996) extended the method by
using a combinatorial approach to find solutions in
which only positive modal abundances occur. Their pro-
cedures include statistical weighting of the input data, a
robust technique forregression, and calculation ofmaxi-
mum likelihood results. De Caritat et al. (199q avoided
the negative solution problem by using a linear program-
ming technique to obtain modes of fine-grained sedi-
mentary rocks. Rather than a least-squares minimiz-
ation, their technique permits the minimization of a
variety of linear objective functions.

Fonuur-nrroN oF THE PRoBLEM

In many practical problems it is important that the
model allow for the natural variability of mineral com-
positions in the rocks being studied. In other words, the
values of a; in equations (1) are unknowns rather than
constants, hencelhe m equations are nonlinear and may
have as many as (n + m x n) unknowns. The variability
may be known empirically from results of chemical
analyses of the minerals or theoretically from crystallo-

graphic and thermodynamic considerations. Our ap-
proach features a change of variables that allows the
problem to be solved by linear programming and per-
mits empirical compositions and stoichiometric proper-
ties of the minerals to be used to constrain the unknown
compositions of the minerals.

In our formulation, the unknowns are rj, the n values
of the weight fractions of model minerals and y; r, the
m.nvalues of the variables (weight percent of oxide I in
mineralT x weight fraction of mineral j). Weight frac-
tions of the minerals are thus determined directly,
whereas the compositions of individual mineral are de-
termined after the solution is obtained by dividing the
appropriate weight fraction x weight percent by the
computed weight fraction, i-e., the weight percent of
oxide I in mineral j is yi t/x1. With this number of un-
knowns, the m mass-balance relationships (1) are insuf-
ficient to provide unique solutions. This problem is
overcome by specifying inequality constraints corre-
sponding to various known properties of the model min-
erals. The numerical technique used to solve such sets
of equations and inequalities is linear programming.

Beginning with the seminal work of Greenwood
(1967),linear programming has been applied in petro-
logical mass-balance problems for a number of years
(e.9., Wright & Doherty 1970, Banks 1979, Gordon et
a\.1991, de Caritat et al.1994). In this technique, a set
of inequalities, rather than equations, are used to con-
strain the values of the unknowns. Instead of a unique
solution, the method finds the minimum or maximum
value of a linear combination of variables. Mathemati-
cally, the linear programming problem is:

-!-
min(max) Ll,*t

j=1

subject to:

i  =  1 ,2 , . . - . n  Q)

j  =  1 , 2 , . . . . n

In this notation, the symbols a;i and bi now refer to
arbitrary quantities which constrain the solution. The

n

s r .
function L'Lixi is called the objective function,

j=r
whereas the equations and inequalities are the con-
straints. Such problems may be feasible, in which case
a minimum or maximum value of the objective func-
tion can be obtained, infeasible, in which case the con-
straints admit no solution, or unbounded, in which case
the constraints fail to restrict the objective function to a
finite value. The structure of the problems addressed in
this study and the nature ofunknowns { and quantities
|y, ai1, and b; are discussed below.

h

S

/ a i l x i = b i  i = 1 , 2 , . . . . m
j= t  
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CoNsrnatNrs

M as s -balanc e c onstraint s

In the notation used here, equations (1) become:

E/ ,= r ,  i=1 ,2 , . . . .m

) / t >0 ,  i =  1 ,2 , . . . .m t  j  =  1 ,2 , . . . . n

If the measured bulk-compositions b; are not known
exactly, but lie within a known range 1 6b;, equations
(3a) can be expanded to:

MEASURING MINERAL ABUNDANCE IN SKARN

(3a)

(3b)

@a).

Constraints on mineral compositions I: totals

The composition of each mineral expressed in oxide
weight percent should total exactly 100 in the case of
pure minerals or end-members of solid solutions. If
compositions are known exactly, this condition can be
written

m

) , /  =100x1
i= l

or
- (5a).

tO\x i -LYi=0 i  =7,2,3. . -n
i=l

In the case of minerals with measured compositions, the
total should lie within an acceptable range (100 + e;),
and these constraints may be expressed as:

!
( 1 0 0 - 6 ; ) - * i - L y l < 0

i=l

4 (sb).
-  (100 + 6r) .x j+ Lyi  <0 j  =1,2,3.. .n

i=l

There will a pair of inequalities for each model mineral,
giving a total of 2.n constraints of this type.

Constraints on mineral compositions II:
individual oxides

The permitted variation in the weight percent of ox-
ide j in model mineral i (a1) can be specified using in-
equalities analogous to (5b), where the compositional
range is aij t 6aij.

(a t1 -5a) 'x i -y ' t  <0

- ( a t 1 +  6  a ) , ' x 1 l  y ' ,  < 0  
( 6 )

There may be as many as rn pairs of such inequalities
for each mineral, hence a maximum of 2.m.n inequali-
ties of this type for any particular problem.

Explicit crystallographic constraints

Crystallographic or site-occupancy constraints are
specific to individual minerals or mineral groups. If the
compositions of particular minerals can be adequately
modeled by a mixture of theoretical end-members, then
the compositions of these end members can be used in
the formulation of the problem instead of empirical
compositions (e.9., Metzner & Grimmeisen 1990, de
Critat et al. 1994,Larbe et al. 1996). This procedure
essentially collapses inequalities (5) and (6) to equations
for the theoretical end-members chosen. The weight
fraction of the mineral solution is then the sum of the
weieht fractions of the individual end-members.

19

There will be 2.m constraints of this type.

M athematic al c onstraint s

The main mathematical constraint is that the sum of
the n weight fractions of model minerals should total 1.
This constraint can be expressed as the equali ty
g

Lxi=1' Alternatively. this constraint can be ex-

pressed as two inequalities:

Zv! <16,+6b,) i = 1,2,....m

-4-- Lvi . -16,- 5b) i = 1,2,....m

yt,>0, i= 1,2,. . . .m;j  = 1,2,. . . .n

n

I *  < l
j=r

n

- t -  <- l

The latter formulation can then be extended to allow the
sum to vary within the number of significant digits in
the data, for example:

I x; < 1'oo1
j=l

g (4b).- )  - .< -0 .999
/Lt *l

j=1

There will be two constraints of this type.
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C atio n- ratio c orcstraint s

It is not always feasible to express compositions of
natural minerals as mixtures of end members, in par-
ticular where only partial results of chemical analyses
are available. However, in some problems, the model
minerals may have a hxed ratio of particular cations that
should be respected in the calculations. An example
would be the requirement that in a gamet the cation ratio
[Si + Al + Fe3+ + Ti]:[Mg + Fe2+ + Mn + Ca] be 10:6.

In order to apply such a constraint, the variables y; r

must be scaled to cation numbers. The form of such a
constraint would then be:

two-meter intervals of drill core. The sample size means
that an individual sample may contain several rock
types, and the formulation must then allow for the oc-
currence of any of the minerals observed in the area.

Bulk compositions

Bulk chemical compositions were determined by X-
ray fluorescence spectroscopy on splits of the same
powdered rock material that was used for X-ray powder
diffraction (Raudsepp et al.1999). The bulk chemical
compositions are shown in Table 1. Relative uncertain-
ties in these analytical results provided by the assay
company are shown in Table 2.

Model minerals

On the basis of the work of Jaworski (1996) and
Jaworski & Dipple (1996a, b), the most abundant min-
erals in the samples are wollastonite, quartz, calcite,
hydroxylapatite, K-feldspar, titanite, diopside, augite,
grossular and andradite. Electron-microprobe data exist
for wollastonite, titanite, augite, grossular and andradite
in skarns in the area (M. Raudsepp, unpubl. data).

Total iron was recalculated to FeO. The model com-
positions for quartz, calcite, hydroxylapatite, K-feldspar
and diopside were taken as those of theoretical pure
phases. For model calcite and apatite, LOI was com-
puted as weight Vo COz and H2O, respectively. The
value of weight Va of each oxide and the totalweight Vo
of model wollastonite, titanite, augite, grossular and
andradite were constrained to lie between the maximum
and minimum values obtained in the electron-micro-
probe analyses. The minerals used in the calculations
and the bounds on individual oxide weisht 7o are shown
in Tables 3, 4 and 5.

Objective functions

The objective functions were chosen to maximize
and minimize the weight fraction of wollastonite, the
ore mineral in the skarn deposit.

Algorithm

Computations were carried out with the linear pro-
gramming function LP of the Optimization Toolbox,
part of the Matlab system distributed by The Math-
Works. Inc. of Natick. Massachusetts.

Resulrs

The calculated weight Vo and mole 7o mineral abun-
dances for 16 samples are shown in Tables 6 and7.
Molecular weights were computed on the basis of two
atoms of oxygen per mole in quartz, three per mole in
wollastonite and calcite, five per mole in titanite, six per
mole in diopside and augite, eight per mole in K-feld-

I r Z l i  _  k . t  t ! = 0
?^ ' '  m,  ? r " '  m, (7a)

where c; is the number of moles of cation per mole of
oxide i, z; is the molecular weight of oxide i, and ft is
the ratio of cations on site I to cations on site 2. If the
ratio is allowed to vary between ft - 6ft and k + 6/r, the
equation can be replaced with two inequalities.

I  y,: i  -  f t+1k\.I rZl i< o
#r" m, #r-' m'

- l t l i  +  G-r r ) . t  i9-<0 
(7b)

*7r" m, -o*- '  m,

:OBJECTTvE FuNcrroN

Any linear combination of variables can be used as
the objective function (function to be minimized or
maximized). In the context of this formulation, an obvi-
ous choice is to determine the minimum and maximum
weight fraction of particular minerals in the model sys-
tem.

An alternative formulation, mentioned here for com-
pleteness, can be obtained by the inclusion of an addi-
tional set of 2.m explicit slack variables that provide
the amount by which each mass-balance equation is vio-
lated (e.9., Gordon et al.1991, de Caritat et aL.1994).
The objective function to be minimized in this formula-
tion is the sum of these variables. This type of objective
function has the advantage that a mass-balance solution
is guaranteed. The values of the explicit slack variables
show which oxides fail to balance exactly. This infor-
mation can be interpreted in geological terms and used
to identify sources of inconsistency in the model.

ApplrcarroN op rnp Lrnsen PnocnaNrN4n'rc MBruoo

This methodology has been applied to a set of 20
samples of wollastonite skarn from the Isk deposit of
northwestern British Columbia (Jaworski & Dipple
1996a). The sarnples were crushed and homogenized
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TABLE 1 WHOLE.ROCK CHEMICAL COMPOSITIONS, WOLLASTOMTE SKARN,
ISK DEPOSIT. BRITISH COLUMBIA

2 l

Smple SiO, TiO, Alp, Fe2O3 Ivfno MgO CaO Na"O Kp PrO' LOI

38 l0
2760
420
26tO
4820
1270
3395
5795
?  5 0 5

6360
3600
360
5195
2795
4995
2995
34't0
4400
5000
5270

0 0 9
007
o o 7
0 1 0
0 l l

0,07
o t 4
0 1 1
o l 7
00E
0 1 9
0.1t
0 3 5
0 1 6
o46
0 1 6
0 1 3
0 1 3
o l l
0 1 1

0 7 r
o79
0 9 9

45 94
44 96
44 t7
43 65
4224
42 03
40 52
38 4 l
35 86
4297
33 41
3227
26 8',7
24 58
23.41
u . t 0
35 29
20 90
1 9  0 l
4429

5 0 9 1  0 0 3
5 0 3 3  0 0 7
4963 012
4924 0 15
4892 032
47 79  0 ,16
4617 t57
5 0 0 0  0 2 0
4'1 79 0 6E
3255 0  13
46 31, 0 73
4'1 45 094
4446 027
4936 042
4930 075
4 9 2 7  0 5 1
49 58 034
53 03 0,43
54 00  0 .14
4 9 5 8  0 1 4

0 5 5  0 8 0
1 6 4  0 9 3
236 149
2 08 208
1 7 7  3  1 0
4 6 7  2 1 9
1 7 7  4 7 ' l
203 3 09
276 662
235 202
s 0 4  6 4 7
2 88 8,04
203 9 ,18
236 7  t4
2 8 1  1 1 6 5
256 7  04
492 3 65
9 E5 4.40

1 2 ' t 6  2 2 2
1 1 9  1 7 8

0 2 3  0 1 2  0 0 1
022 032 0  0 i
0 1 6  0 1 6  0 0 3
0 2 1  o 2 3  0 0 2
0 1 6  0 1 2  0 0 6
0 3 1  0 2 2  0 0 5
049 029 049
0 20 0 25 0,03
o 42 0 40 0.15
0 4 1  0 4 6  0 0 1
0 41  1  4 t  0 .1E
0 38  0 ,56  0  56
0 34 0 24 0,35
0 '19  0 '11  I  58
0 56 0,88 0.42
0 9 9  0 9 0  1 7 7
o 5 2  2 5 6  0 0 5
1 6 6  4 4 6  0 3 1
2 49 5 12 0,06
0 4 i  o 2 5  0 0 3

o57 99
0 4 7  9 9 E l
075 999t .
0 8 4  9 9 8 9
l 0 l  9 9 7 6
o65 9919
1.76 99 78
099 996t1
o44 9912

t574 9992
279 9942
075 9977
773 9976
| 2E 99 63,
o32 9924
1 47 9967
1 4 3  9 9 6 0
142 9914
2 5 7  9 9  t 4
r04 997v

19
95
59
a7

4 3 6
3,83
3 2 0
2.48
5 7 6
't 94

11.25
8.72

l0 84
1 1 3
2 5 5
0 6 6
o97

The bulk compositions ue reported in reiglrt % LOI: los on ignition

TABLE 2 RELATIVE ERRORS (%) ASSOCIATED WITH
WHOLE-ROCK COMPOSITIONS

TABLE 4 MINIMUM WEIGIIT % LINflTS FOR

MODEL MINERALS WITH VARIABLE COMPOSITIONS*

Siq TiO, Alp3 FeO MnO MgO CaO Na2O KrO PrOr LOI

0 0038 0 0203 0 0153 0 0087 0 0588 0 0081 0 0t4 0 032'7 0 0253 0 0734 0 05

TABLE 3 WEIGIIT % O)SDES IN MODEL MINERALS
WTTHFTXED COMPOSMONS

Aug Adr

sio,
Tio,
Alro3
FeO
lvtuO
Mso
CaO
Naro
KrO
Prot
LOI
Total

Apatz

51 09
0
0
0 0 3
0
0 0 3

47 33
0
0
0
0

9 8 9

30 15
37 t2
0 4 2
l 1 9
0
0

28 03
0 0 5
0
0
022

97 4'l

50  39
0
0 0 3
5 8 r
0

10 42
20 34
0 1 6
0
0
0

9 7 3

6476 3321
0  1 0 8

1832 I 13
o l 7
0  0 0 1
0  0 1 1
o 3252
0 0

1692 0
0 0
0 0

96 5 9665

Aug

sio, 100 0 0
T i o , o 0 0
A L O , o 0 0
F e O o 0 0
M n O o 0 0
M S O 0 0 0
CaO 0 56 03 55 82
N a r O o 0 0
& o 0 0 0
PrO, 0 0 4239
LOI 0 4397 179

64 76
0

l8  32

1.692
0
0

55 49
0
0
0
0

t E  6 l
25 90

0
0
0
0

* Col|rus do not @n6potrd to actual re$rlts of malyss

TABLE 5 MA)fiMIJMWEIGI T % FORMODEL MINERALS
WTTH VARIABLE COMPOSMONS*

spa"r, twelve per mole in grossular and andradite, and
twelve per mole in apatite on an anhydrous basis.

Feasible solutions were obtained for all but four of
the samples previously studied (Raudsepp et al.1999).
Three of these (3470, 4400 and 5000) had anomalously
high contents of K-feldspar (> 14 wt%), possibly reflect-
ing the presence of minerals not included in the model.
The lack of a solution-for sample 5270 is enigmatic.

sio,
Tio,
ALo.
FeO
MtrO
Mgo
CaO
Nqo
KrO
P'o'
LOI
Total

s2 73
0 0 6
0 0 6
0 5 3
o 2
0 3 1

48 3s
0 1 1
0
0
0

l0 l  3

30 32
38 02
o76
1 5 1
0
o02

2A 37
9
0 0 1
0
029

100 0l

52 42
0 3 1

t2 69
0 4 7

14 95
25 02
2 1 2
0
0
0

100 0l

387 35  58
0 0 6  5 4 6

2303 665
0 5  2 5 4 4
005 0  14
002 0 49

3't_23 33 6l
o  0 2 2
0 0
0 0
0 0

100 01 100 0l

* Colum do npt onespond to actusl rNlts of ualyres:



22 THE CANADIAN MINERALOGIST

TABLB 6 COMPUTED WEIG+IT % MINERALS ]N SAMPLES OF WOLLASTONITE ORE

Smole 3810 2760 420 2610 4820 1270 339s 5795 2595 6360 3600 360 5195 2795 4995 2995

IvfinimM wollstonite

wo l lGto t r i t€  8626807273077073 63045703 503448103327218121591458 000 000 000 000
Q u u t z  1 3 5  0 7 2  1 O Z  0 5 7  0 3 1  0 0 0  0 6 3  0 8 5  0 0 0  0 t 4  3 6 0  l 3 1  5 4 8  0 5 8  0 0 0  1 2 2
Calc i t€  1 -36  I12  179 2OO 241 155 414 236 1043759 664 1731667 262 076 3Ol
A p a t i t e  0 0 3  0 0 3  0 0 8  0 0 5  0 1 5  0 1 3  1 2 4  0 0 8  0 3 E  0 0 3  0 4 6  1 4 2  0 7 7  3 5 8  0 8 5  3 9 4
K-feldspa 069 184 092 132 069 121 1.6'1 144 23O 265 812 323 145 430 494 545
T i t i l i te  000 000 000 000 000 000 t58  000 000 000 000 000 0 ,00  087 000 l l0
D i o p s i d e  0 0 0  0 0 0  0 0 0  0 0 0  0 0 0  0 3 3  0 0 0 1 0 5 3  2 1 4  6 2 A  0 0 0 1 5 1 4  0 0 0 1 9 5 2  0 . 0 0 1 7 6 4
Aug i ie  66 '1  739 933 1125 1861 1457 177523t8 f295 196423112a386821 6349A3rc6294
G r o s s u l a r  1 8 7  5 9 1  9 8 9  8 1 7  7 l 7 2 O l 3  3 9 4  7 8 3  9 8 1  8 4 1  1 5 3 5  9 2 2  l O 4  4 5 7  0 0 0  4 1 4
At rdrad i te  138 183 345 545 7 lA  507 1858 5391794 32020472544 592 O0O1074 012

Muim wollastonite

wo l las ton i te  9 t62a713 8321 E l  0976296841600961 595281 359439303908 587 1221 680 l l20
Qut r tz  000 000 000 000 047 000 000 005 0 ,00  000 3 .2 '7  038 560 080 000 313
ca lc i te  123 101 162 tE1 217 140 375 214 0933532 601 156166 '1  262 065 301
Apat i0e  0o2 002 0 ,07  004 013 011 1o7 o0 ' l  033  002 0 .39  t22  077 345 085 387
K- fe ldspa 069 184 097 132 073 127 167 \51  242 265 854 339 145 430 494 545
T i tan i te  000 000 014 011 043 025 1 t9  0 l t  124 013 100 165 013 045 120 071
Diops ide  000 000 000 0 ,00  000 000 000 000 ON 292 000 000 000 000 000 000
Aug i te  574 5s2 s22 795 1206 1051 17 .782760 2885 1684 192841.01  6 '131 743883277r69
Grosnr lu  115 492 852 662 5001782 090 531 544 663 976 456 265 126 184 139
Andrad i te  000 000 071 150 314 06913-31 00O 754 0001200 6 '14  000 000 000 000

Rrnrvelo MBrHoo

Raudsepp et al. (1999) applied the Rietveld method
and a projection method to determine mineral abun-
dances in these samples of wollastonite skarn. The
Rietveld method uses X-ray powder-diffraction to char-
acterize a sample. The structural parameters of each
constituent mineral, together with experimental param-
eters, are refined by least-squares procedures to mini-
mize the difference between observed and calculated
powder-diffraction patterns. The result is a single esti-
mate of mineral abundance for each of the skam samples
studied here. Raudsepp et al. (1999) evaluated the ac-
curacy ofthe method by analyzing synthetic skarn that
consisted of pre-weighed mixtures of skarn minerals.
They concluded that the Rietveld method provides the
best estimate of mineral abundance in natural skarn
samples for minerals present in moderate to large abun-
dance (>5%) but that it does not accurately measure the
abundance of minerals present at lower concentrations.

PnorscrroN Mntuoo

The projection method employs a basis transforma-
tion to convert whole-rock compositions in terms of
oxides to molar abundances of additive and exchange
components (Thompson 1982, Raudsepp et al.1999).
The whole-rock chemical composit ions used by
Raudsepp et al. (1999) are the same as in this study.
The projection method determines mineral abundance
but not mineral composition. This analysis for the Isk

wollastonite skarn is underdetermined: the abundances
ofcalcite, K-feldspar, apatite and titanite are determined
uniquely; abundances of wollastonite, quafiz, pyroxene
and garnet are constrained to lie between minimum and
maximum values. An added complication for samples
of the Isk skarn is that the number of substitution mecha-
nisms must be reduced in order to obtain a feasible so-
lution by the projection method. These simplifications
introduce errors into the estimates ofmineral abundance,
although generally on the order of only a few mole per-
cent. For example, although garnet contains Ti and py-
roxene contains Na and K, the formulation of the
projection technique employed by Raudsepp er al.
(1999) restricted Ti to titanite, and Na and K to feld-
spar. As a result, the prdection method overestimates
the abundance of both titanite and feldspar in the skarn
samples. Sensitivity analysis has confirmed that these
simplifications do not adversely affect estimates of
wollastonite abundance. The main source ofinaccuracy
in the projection method stems from the inability of the
method to limit the range of compositional variability
of individual mineral species.

DrscussroN

Mineral abundances determined by linear program-
ming, Rietveld analysis and projection techniques are
compared in Figures 1,2 and 3. The data are presented
in Table 7. The linear programming results for wollas-
tonite, total gamet, total pyroxene, quartz, calcite and
feldspar are consistent with and bracket the Rietveld
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TABLE 7 MINERAL ABUNDANCES IN MOLE %, WOLLASTONITE SKARN

Smole 3810 2760 42O 2610 4820 I2'lO 3395 5795 2595 6360 3600 360 5195 2795 4995 2995

Wolldtonite

Rieh€ ld  9373 A975 8767 8601 8 l81  7903 73426988 6349 4218 4775 4098 1  10  078 076 076
P.q . in '  nAg927586768664 780880E77313602 '1  5445294539822427 000 000 000 000
Proj mat' 94 59 93 08 88 80 8E 05 82 48 8226 75 49 70 58 63 83 33 89 50 t2 42Ot 000 000 0 00 0 00
LP min 90 83 89 74 85 33 84 37 79 OO 77 73 69 23 65 08 55 22 25 a3 15 68 2A26 000 000 0 00 0 00
LPJ:M 9487 935291 E490 198621 846776167705 '119139A95471 5756 8142089 12 '15  1822

Pyroxene

Rie tve ld  341 357 411 56 '7  850 749 871,20432468 104A132336424761 8649 8569 83  13
P r c j  m i n  0 0 0  0 0 0  0 0 0  0 0 0  0 0 0  0 0 0  0 0 0  0 0 0  0 0 0  0 0 0  0 0 0  0 0 0 4 9 4 4 7 5 5 1 7 6 7 5 7 1 8 7
Prc j  ru  140 066 4O8 282 A79 278 4722063 1875 888205935494944 '1551 7675 '1187
LPmh 361 426 565 695 1205 lO52 12 .6323833022 16012O3O44125205835388307948
LPf f i  304 303 294 450 6 .96  661 1152 1728 199 ' l l l 33  136230804777658679335993

Gmet

Rie tve ld  033 202 291 303 2A4 734 495 275 748 30E11801083 412 019 628 049
Prc j  - i "  l . l3  295 147 43J  3 t0  999 694 316 996 446 806 l l l7  000 604 969 582
Prc j  ro  183 3-28  55 i  5 ,78  t20  1138 930 1348 1934 am18352892 000 604 969 582
lPmin  083 214 3E4 3 .93  431 t55  '724 433 1083 340 1405 1559 238 227 516 207
L P M  0 3 1  1 3 6  2 5 9  2 2 6  2 U  5 8 3  4 I 8  1 6 4  4 1 7  l 8 t  7 2 0  3 9 3  0 9 5  0 5 5  0 8 9  0 5 8

Qurtz

Rie tve ld  160 226 t l9  202 261 2SO 340 269 t3 t  2 .26  990 336 1956 359 313 339
Poj  min  000 0 .00  000 000 000 000 000 000 000 000 000 000 1743 000 000 000
Prc j  ru  140 066 4OB 282 a79 218 4722063 1875 8E820593549 1743 000 000 000
L P n i n  2 ' 1 6  1 5 5  2 3 O  l 3 O  0 7 4  0 0 0  1 6 ' 1  2 2 2  0 0 0  1 9 2 1 1 4 8  4 9 0 1 5 7 2  2 t 9  0 0 0  4 4 8
L P l W  0 0 0  0 0 0  0 0 0  0 0 0  1 0 4  0 0 0  0 0 0  0 1 1  0 0 0  0 . 0 0  E t l  1 0 9 1 5 0 5  2 6 5  0 0 0  9 8 1

23

Rietveld 054 056 2ll 232 296 241
Projection 160 138 228 262 323 231
LPmin  166 145 242 277 349 244
LP|W 148 127 207 234 2a6 2Ol

RietYetd
Projection
LP min
LPma

Calcite

4 6 2  3 0 1  1 0 6 4 0 1 5  1 0 5 8  2 8 8 2 4 9 1  0 2 9  0 0 6  0 1 7
6.Os 343 r7749361152 3322956 6 .06  161 699
6 60 3 70 | 99 51.52 1212 3 89 28 69 5.9t 1 84 6 65
5 52 3 00 1.4',1 45.5'1 973 267 2690 5 18 143 s 66

Feldspil

R ie tve ld  026 162 121 093 O7A O7O 037 099 0 ,63  156 533 222 OaZ 283 222 4L7
P r o j e c t i o n  1 2 3  1 8 1  1 1 5  1 8 7  l 0 9  2 l l  3 4 0  1 8 0  4 0 2  3 1 8  7 8 9  5 0 2  2 7 2  9 4 4  9 1 3 1 1 9 0
LPmin  030 086 045 066 036 072 096 081 1 .60  1-31  559 260 090 349 429 434
LPIW 030 0E3 0 .45  062 034 066 oEE 076 l -38  123 498 209 084 306 389 368

Apettte

0 1 3  0 1 9  0 1 8  0 0 3  0 1 3  0 , 0 5  0 4 4  0 1 1  0 2 8  0 1 4  0 2 1  0 7 A  0 4 0  2 3 8  0 1 E  2 5 1
0 0 1  0 0 1  0 0 2  0 0 1  0 0 4  0 0 4  0 3 6  0 0 2  0 1 3  0 0 1  0 1 5  0 5 5  0 2 8  t 7 3  0 4 9  1 9 4
0 0 1  0 0 1  0 0 2  0 0 1  0 0 4  0 0 4  0 3 9  0 0 2  0 1 5  0 0 1  0 1 7  0 6 3  0 2 6  t 6 1  0 4 1  1 7 4
0 0 1  0 0 1  0 0 2  0 . 0 t  0 0 3  0 0 3  0 3 1  0 0 2  0 1 0  0 0 1  0 1 3  0 4 2  0 2 5  t 3 6  0 3 7  1 4 5

Titmitc

R i e t v e l d  0 0 0  0 0 1  0 0 3  0 0 2  0 3 9  0 4 6  4 1 1  O l 2  l 0 E  0 1 5  l 2 0  2 1 6  1 4 8  1 7 3  l 0 E  2 6 5
Prc jec t ion  005 011 020 026 057 031 304 038 155 O22 167 244 057 122 233 149
LPmin  000 000 000 000 000 000 128 000 000 000 000 000 000 100 00O 124
L P m  0 0 0  0 0 0  0 0 9  0 0 7  0 2 9  0 1 8  1 4 2  0 1 3  1 0 0  0 0 9  0 8 3  r 4 4  O l 1  0 4 6  1 3 4  0 6 8

rMndmotccelq{dionthatmioimircwollastorhe@rtq4prcjwtionmethod ?Mudenotescalculationthatluimias

woijaslonite coolflt. prcjedion method 3 LP is th€ lintr prcgming method

results (Fig. l). Maximum and minimum abundances
generally have a5-lOVo range. This range decreases as
mineral content increases, reflecting the fact that at high
abundance, the bulk composition provides a major con-
straint on mineral abundances. The linear programming
method svstematicallv underestimates the abundances

of the minor minerals titanite and apatite relative to therr
concentration as determined by the Rietveld method
(Figs. le, g).

Estimates of mineral abundance by the projection
method also compare favorably with those of the
Rietveld method (Fig. 2). Wollastonite, titanite and cal-
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cite contents as determined by the two techniques are
consistent; the projection method, however, tends to
overestimate garnet and feldspar contents, and underes-
timate pyroxene and apatite abundance relative to the
Rietveld method. The projection method results for
qnaftz are consistent with the Rietveld results but with
large brackets (Fig. 2d).

A comparison of the linear programming results with
those of the projection method is instructive because
both techniques use the same set of whole-rock chemi-
cal data (Table l). This comparison (Fig. 3) shows
excellent correlation for maximum and minimum abun-
dances of wollastonite, calcite and apatite, and a clear
tendency for the linear programming technique to esti-
mate lower contents of garnet, titanite and feldspar with
respect to the projection method.

The linear programming test was run to maximize
and minimize wollastonite content, hence the range of
wollastonite values is larger than the equivalent deter-
mination by the projection method. Calcite abundances
estimated by the linear programming and projection
techniques are very similar because both are constrained
by the value ofloss on ignition in the whole-rock analy-
sis. This is sufficient to estimate the calcite content of
the skarn samples (Figs. lf, 2f), although direct mea-
surement of CO2 content of skarn would likely provide
more accurate constraints on calcite content. The linear
programming method systematically estimates higher
abundances of pyroxene than the projection method,
although the maximum pyroxene contents of the two

0 0  0 5  1 0  1 5  2 0  2 5  3 0

Feldspat

0 1 2 3 4 5 6

methods compare favorably. Quartz abundances as de-
termined by the two methods are consistent, largely
because of the extreme range in quartz content allowed
by the projection method.

The linear programming method provides better es-
timates ofpyroxene, garnet, quartz and feldspar content
than the projection method because the linear program-
ming technique incorporates a more accurate represen-
tation of mineral chemistry. The linear programming
technique allows for all observed mechanisms of sub-
stitution within each mineral but limits their abundance
to lie within the observed range of mineral composi-
tions. This additional set of constraints is not included
in the projection method. The projection method does
not solve for the compositions of the minerals. Rather,
it determines the extent of each substitution (exchange
component) for the whole rock. This approach results
in poor estimates of pyroxene and garnet abundance in
the Isk skarn. For some solutions of the projection for-
mulation, the total Mg content of the rock is accommo-
dated by garnet through the Fe-Mg exchange vector
(Figs. 2b,c). These solutions have zero pyroxene con-
tent Garnet in the Isk skarn does not contain sufficient
Mg to accommodate all of the Mg in the rock (Table 3).
The linear programming solution for these samples re-
quires non-zero pyroxene contents (Fig. lc).

The projection and linear programming methods pro-
duce similar estimates of apatite abundance, both of
which are determined by the P2O5 content of the rock.
The discrepancy between R.ietveld estimates of apatite

Mineral abundance by linear programming (mole o/o)

Frc. l. Mineral abundance in mole 7o determined by linear programming versas mineral abundance determined by the Rietveld
method. The length of the horizontal bars corresponds to the range of wollastonite contents obtained in the linear program-
mins solution
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content and those determined by linear programming
and projection can be attributed to the inaccuracy of the
Rietveld method for low-abundance minerals. Methods
of estimation based on data on whole-rock composition
provide more accurate determination of mineral abun-
dance than the Rietveld method for minor Dhases that
accumulate incompatible elements.

The results of this study show that the linear pro-
gramming technique produces results in good agreement
with the Rietveld method for the skarn samples in the
reference dataset. The linear programming method is
superior to the projection method for estimating min-
eral abundance in the complex calc-silicate skarn. Data
required for the projection method are similar to those
required for the linear programming method: bulk com-
positions and the nature of substitutions in the constitu-
ent minerals. The linear programming technique
incorporates additional constraints, namely the range of
substitutions. As a result, mineral abundances deter-
mined by linear programming are in general more accu-
rate than those determined by projection. However, this
does not translate into smaller computed ranges of wol-
lastonite content. The extremes thus represent the most
conservative and most optimistic grades of wollastonite
ore. Bulk-composition methods, if augmented by min-
eralogical constraints, can provide rapid and inexpen-
sive estimates of mineral abundances in skarns. The
level of accuracy is sufficient for reconnaissance and
exploration purposes.

AcrNowrBocplreNrs

Financial support for this work was provided by the
Natural Sciences and Engineering Research Council of
Canada (research grant to TMG and grant IOR195826
to GMD) and Whitegold Resources Inc. of Vancouver,
B.C. We thank Bart Jaworski, Brian Lueck and Allen
Achilles of Whitegold Resources for their continued
support, and Howard Day and Andrew Zingg for their
constructive comments.

RnreneNces

Bmtrs, R. (1979): The use of linear programming in the analy-
sis of petrological mixing problems. Contrib. Mineral. Pet-
rol 70,237-244.

on Crnrrlr, P., BLocH, J. & HurcmoN, l. (1994): LPNORM:
a linear programming normative analysis code Comput.
Geosci. 20,313-347 .

GHIonso, M S (1983): LSQIEQ: a FORTRAN IV subroutine
package for the analysis ofmultiple linear regression prob-
lems with possible deficient pseudorank and linear equal-
ity and inequality constraints. Comput. Geosci. 9, 391-416.

GonooN, T.M., GHENT, E D. & Srour, M.Z. (1991): Algebrarc
analysis of the biotite-sillimanite isograd in the File Lake
area, Manitoba. Can. Mineral. 29, 67 3-686.

Gnnerwooo, H. J. (1967): The n-dimensional tieJine problem.
Geochim. Cosmochim. Acta 31,465- 49O.

JAwoRsKr, B J. (1996): Geology and Controls on Skam For-
mation at the Zippa MountainWollastonite Sknrns, North-
westem British Columbia (1048/11). B.Sc thesis, Univ.
British Columbia, Vancouver, British Columbia.

& DppI-e, G.M. (1996a); Zippa Mountain wolla-
stonite skarns, Iskut River map area. B.C. Ministry of
Energy, Mines and Petroleum Resources, Pap. 1996-1,
243-249

& _ (1996b): Formation of the Zippa Moun-
tain wollastonite skarns, Iskut River area, NW British
Columbia. GeoI Assoc. Can. - Mineral Assoc. Can.., Pro-
gram Abstr. 21, A-4'7.

L.q.usB, N., HrncenreN, S. & NBucrsluen, H.J. (1996):
MODUSCALC - a computer program to calculate a mode
from a geochemical rock analysis Comput. Geosci.22,
631-63't.

MnrzuBn, C & GRIMMEISBN, W. (1990): MONA: a user-
friendly computer-program for calculating the modal min-
eralogy ofrocks ftom chemical analyses. Eur. J. Mineral.
2,735-738.

RAUDsEpp, M., P.qNr, E. & Dppre, G.M. (1999): Measuring
mineral abundance in skarn with the Rietveld method and
X-ray powder-diffraction data. Can. Mineral.3T, l-15.

RBNNrn, R M., GLASBv, G.P., MlNHetlra, F.T. & LeNs-
BosrwrcK, C.M. (1989):  A part i t ioning process for
geochemical datasets. 1n Statistical Applications in the
Earth Sciences (F P. Agterberg & G.F Bonham-Carter,
eds.) Geol. Surv. Can., Pap. 89-9,319-328.

THoMpsoN, J.B., Jn. (1982): Reaction space: an algebraic and
geometric approach. 1n Characterization of Metamorphism
through Mineral Equilibria (J.M. Ferry, ed.). Rev. Mineral.
10,33-52.

WnI-rre, G.J. (1997): End-member modeling of compositional
data: numerical-statistical algorithms for solving the ex-
plicit mixing problem Math.Geol. 29, 503-549.

Wnrcrr, T.L. & DoHERry, P.C. (1970): A linear programming
and least-squares computer method for solving petrologic
mixing problems. GeoL Soc.Am., BulI.8l, 1995-2008.

ReceivedAugust 4, 1998, revised manuscript accepted January
25, 1999.




