As, Sb, Be AND Ce ENRICHMENT IN MINERALS FROM A METAMORPHOSED Fe–Mn DEPOSIT, VAL FERRERA, EASTERN SWISS ALPS

JOËL BRUGGER

Mineralogisch-Petrographisches Institut der Universität, Bernoullistrasse 30, CH-4056 Basel, Switzerland

RETO GIERÉ

Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, Indiana 47907-1397, U.S.A.

ABSTRACT

Several small syngenetic-exhalative Fe–Mn deposits metamorphosed under blueschist- to greenschist-facies conditions occur in Triassic marbles of the Middle Penninic nappes in Val Ferrera (eastern Swiss Alps). Pink muscovite – aegirine – hematite – albite schists associated with the ores in one of these deposits (Starlera mine) contain an unusual assemblage of As-, Sb-, Be-, and REE-rich minerals that developed after the main deformation (D1). In these pink schists, As is present in significant amounts in both titanite (to 3.46 wt% As₂O₅) and fluorapatite (to 13.8 wt% As₂O₅), and is a major component of bergslagite, CaBeAs₂O₇(OH). Antimony is an essential constituent of rutile (to 30.63 wt% Sb₂O₅), titanite (to 9.55 wt% Sb₂O₅), and pyrophanite (to 1.91 wt% Sb₂O₅), in which it is accommodated via the exchange vector Sb⁵⁺Fe³⁺Ti⁴⁺. Roméite, (Ca,Na,tr)₂(Sb,Ti)₂O₆(F,OH,O), is also an important host for Sb, but in addition it incorporates major amounts of REE (to 23.4 wt% Ce₂O₃). The pink schists at Starlera are the second reported occurrence of natural Sb-rich rutile and Sb-rich titanite (after Praborna, western Italian Alps), and the third of As-bearing titanite (Praborna and Wannigletscher, Binntal, central Swiss Alps). The Starlera deposit is further characterized by the presence of thick veins of roméite–tilasite (CaMgAsO₄F). Most of these late (post-D₁) veins are closely associated with intensely foliated pink schists, indicating that they formed from fluids that passed through the schists. These fluids must have carried As, Sb, and Ti, and probably were similar to those responsible for growth of the post-D₁ As, Sb, Be, Ti, and REE minerals in the pink schists. The metal content of the fluids was most likely derived from the surrounding ores. The unusual assemblages in both veins and pink schists at Starlera document mobility of As, Sb, Be, Ti, and REE under lower greenschist-facies conditions and in a relatively oxidizing environment.

Keywords: Fe–Mn deposit, rutile, titanite, roméite, fluorapatite, bergslagite, Val Ferrera, Swiss Alps.

Les marbres triassiques des nappes du Pennique Moyen renferment dans le Val Ferrera (Alpes suisses orientales) plusieurs petits gisements exhalatifs métamorphisés aux conditions des faciès schistes verts à schistes bleus. Des schistes roses à muscovite – aegirine – hématite – albite associés aux minéraux d’un de ces gisements (mine de Starlera) contiennent un assemblage inhabituel de minéraux enrichis en As, Sb, Be, et terres rares (TR). Cet assemblage s’est développé après la déformation principale (D₁). Dans ces schistes roses, l’As est présent dans la titanite (jusqu’à 3.46% poids As₂O₅) et la fluorapatite (jusqu’à 13.8% poids As₂O₅), et est un constituant essentiel de la bergslagite, CaBeAs₂O₇(OH). L’antimoine est enrichi dans le rutile (jusqu’à 30.63 % poids Sb₂O₅), la titanite (jusqu’à 9.55 % poids Sb₂O₅), et la pyrophanite (jusqu’à 1.91 % poids Sb₂O₅). Le Sb est incorporé dans ces minéraux selon le vecteur d’échange Sb⁵⁺Fe³⁺Ti⁴⁺. La roméite, (Ca,Na,tr)₂(Sb,Ti)₂O₆(F,OH,O), est aussi un important hôte de Sb, et incorpore en outre de grandes quantités de TR (jusqu’à 23.4 % poids Ce₂O₃). Les schistes roses de Starlera sont, après Praborna (Alpes italiennes occidentales), le second indice de rutile et de titanite riches en Sb, et le troisième indice de titanite arsenicale après Starlera et Wannigletscher (Binntal, Alpes suisses centrales). Le gîte contient aussi d’épaisses veines de roméite et tilasite (CaMgAsO₄F). La plupart de ces veines tardives (post-D₁) sont associées intimement à ces schistes roses, ce qui fait penser qu’elles se sont formées à partir de fluides circulant dans les schistes. Ces fluides doivent avoir transporté As, Sb, et Ti, et étaient probablement identiques à ceux responsables de la croissance post-D₁ de minéraux à As, Sb, Be, Ti et TR dans les schistes roses. Les métaux ainsi mobilisés proviendraient vraisemblablement des minéraux encaissants. La minéralogie inhabituelle des veines et des schistes roses de Starlera documente la mobilité de As, Sb, Be, Ti et TR sous conditions du faciès schistes verts inférieur en milieu relativement oxydant.

Mots-clés: gisement Fe–Mn, rutile, titanite, roméite, fluorapatite, bergslagite, Val Ferrera, Alpes suisses.

1 Present address: Department of Earth Sciences, Monash University, Clayton, Victoria 3168, Australia. E-mail address: joelb@earth.monash.edu.au
The metamorphism of Mn ores commonly produces complex mineral associations of silicates, oxides, and carbonates (e.g., Roy 1968, Chopin 1978, Peters et al. 1980, Abrecht 1989, Dasgupta et al. 1989). Some metamorphosed Mn deposits are also known for their amazing diversity of accessory minerals, containing elements such as As, Sb, and Be; most famous among these deposits are Längban, Sweden (Boström et al. 1979, Holtstam et al. 1998), which is the type locality of 68 new species (Aleph Computer/CSIRO mineral database 1995), Franklin, New Jersey (Dunn 1995; 50 new species), and the Kombat mine in Namibia (Dunn 1991; seven new species).

In the Alps, many small Mn deposits occur in Jurassic radiolarites deposited on oceanic crust formed during the opening of the Tethys ocean (Trümpy 1980). These deep-sea exhalative deposits, which are similar to those forming today near active mid-oceanic ridges (e.g., Bonatti 1975), were subsequently metamorphosed during the Alpine orogeny. Several of these radiolarite-hosted deposits contain abundant As and Sb minerals, but Be minerals are extremely rare (Table 1).

The radiolarite-hosted Mn deposits are geologically very different from the Fe–Mn deposits occurring in Val Ferrera, in Graubünden, Switzerland. The latter are dominated by Fe ores (hematite) and are interbedded in Triassic dolomite marbles formed through the metamorphism of sediments deposited on a shallow marine continental platform. Recent petrological and mineralogical investigations, however, have led to the discovery of various As, Sb, Be, and V minerals in several of the Val Ferrera deposits (Brugger 1996, Brugger & Berlepsch 1996, 1997, Brugger et al. 1997, 1998). Some of these mineral deposits contain abundant As and Sb minerals, but Be minerals are extremely rare (Table 1).

The radiolarite-hosted Mn deposits are characterized by the presence of ore pebbles (BaBe₂Si₂O₇). Other As, Sb, and V minerals are found in discordant veins cutting the S₁ schistosity; in one of the Val Ferrera deposits, the Fianel mine, an association of Be–Mo–W–(As, Sb, REE) minerals occurs in late veins and in the pressure shadow of clasts (Brugger et al. 1998).

In this communication, we describe a mineral assemblage discovered in pink muscovite – aegirine – hematite – albite schists from the Sturlera Fe–Mn mine in Val Ferrera. From a petrological point of view, these schists are valuable because the As, Sb, Be, and V minerals occur as rock-forming minerals, and several stages of element mobility can be distinguished. Most metamorphosed Fe–Mn deposits retain little information about the history of As, Sb, and Be mobility between peak metamorphism and the formation of the late veins. Therefore, the mineral assemblage of the pink schists offers a rare opportunity to gain information about this time span. Furthermore, the pink schists contain titanite, rutile, and roméite with highly unusual compositions. Study of the correlations among the elements present in these minerals allows us to recognize the major mechanisms of substitution, and to extend our knowledge of the crystal chemistry of these minerals.

INTRODUCTION

TABLE 1. SELECTED META-RADIOLARITE HOSTED Mn DEPOSITS FROM THE ALPS

<table>
<thead>
<tr>
<th>Name</th>
<th>Metamorphic grade</th>
<th>Literature</th>
<th>Mineralogy of As (s/V), Sb, Be</th>
</tr>
</thead>
<tbody>
<tr>
<td>Falotta-Parsettens, Graubünden, Switzerland</td>
<td>Zoelite facies</td>
<td>Geiger (1948)</td>
<td>Geigerite, rich association of arsenates, Sb in triphylite. One crystal of bergschlagite (Graser 1995) only.</td>
</tr>
<tr>
<td>Val Gravellia, Liguria, Italy</td>
<td>Greenschist facies</td>
<td>Cortesogni et al. (1979)</td>
<td>Rich association of vanadates and arsenates; no Be or Sb mineral reported so far.</td>
</tr>
</tbody>
</table>

METHODS OF INVESTIGATION

Petrographic studies were carried out on polished 30-μm thin sections. X-ray powder-diffraction patterns of unknown minerals were obtained using a Gandolfi camera (114.6 mm in diameter). Even small grains (about 100 × 50 × 30 μm) scraped from thin sections can be reliably identified with this method.

Quantitative chemical analyses were carried out with a JEOL JXA-8600 electron microprobe (EMP) at the Institute for Mineralogy and Petrography, University of Basel. Analytical conditions and standards used are given in Table 2. Under the chosen conditions, which allow quantification of the concentration of some minor elements in apatite, it was necessary to scan the beam over a surface of approximately 11 × 8 μm to avoid significant variation of fluorine counts during the measurement (Storner et al. 1993). However, owing to the small size of some apatite grains, some samples had to be analyzed at a higher magnification.

REGIONAL GEOLOGY

Val Ferrera, a high valley in canton Graubünden, Switzerland, belongs geologically to the Middle Penninic domain (Briançonnais) of the Eastern Swiss Alps, which is characterized by shallow-water sediments of Triassic to Middle Jurassic age (Trümpy 1980). The Triassic dolomite marbles in Val Ferrera contain numerous small Fe and Fe–Mn deposits, which were intensively mined for Fe from the 14th to the 19th century. An early (syngenetic to diagenetic) origin of these deposits is indicated by the presence of ore pebbles.

During an early stage of the Alpine orogeny, the Triassic carbonate platform was sliced into several tectonic units, now represented by the Middle Penninic Tambo, Suretta, Starlera, and Schams nappes (Baudin et al. 1995, Schmid et al. 1997). Subsequently, metamorphism evolved from possible blueschist-facies conditions to a greenschist-facies stage (400-450°C, 35-40 Ma; Hurford et al. 1989, Brugger 1996); the latter was associated with intense deformation (Ferrera phase, D1), which produced a pervasive schistosity (S1). The second phase of deformation (Nietet phase, D2) also occurred under greenschist-facies conditions and, like D1, is associated with isoclinal folding. An axial plane schistosity (S2), however, developed only in the most incompetent rock types. By using the phengite geobarometer of Massonne & Schreyer (1987), Baudin et al. 1995, Schmid et al. 1997). Textural and geochemical evidence was performed with a tightly focused beam in scanning mode; a magnification of 20000 x (as passed to the controlling software) corresponds to a scanned surface of 5.5 x 4 μm. (2) If not stated, counting time was 30 s. The counting time applies to the peak and both background measurements. (3) Measured using a LDE1 analyzing crystal.

<table>
<thead>
<tr>
<th>Mineral</th>
<th>kV</th>
<th>nA</th>
<th>Mag</th>
<th>Element-line (standard)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apatite</td>
<td>15</td>
<td>20</td>
<td>10-30k</td>
<td>FKcx and CaKcx (fluorapatite), FKcx (topaz)²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AdLa (adamite) [30], SiKcx (staurolite) [30], NaKcx (albite), VKx (V₂O₅ synthetic), CaKx (CaO synthetic) [60], MnKcx (graphonite), FeKx (graphonite), SiKcx (orthoclase)</td>
</tr>
<tr>
<td>Hematite</td>
<td>50</td>
<td>40</td>
<td>4k</td>
<td>FeKx (hematite), AlKx (sillimanite) [60], TiKx (rutile) [60], AsKx (adamite) [120], VKx (V₂O₅ synthetic) [60], SiKcx (valentineite) [180]</td>
</tr>
<tr>
<td>Silicates</td>
<td>20</td>
<td>20</td>
<td>20 k</td>
<td>SiKx (jadetite), AlKx (orthoclase), RKx (orthoclase), TiKx (rutile), SiKcx (valentineite) [180], VKx (V₂O₅ synthetic), AsKx (adamite), MgKx (olivine), CaKx (sillimanite), FeKx (graphonite), MnKx (graphonite), NaKcx (albite), FKcx (topaz) [180]²</td>
</tr>
<tr>
<td>Rutile</td>
<td>15</td>
<td>20</td>
<td>point</td>
<td>AsKx (adamite) [30], CaKx (CaO synthetic) [40], SiKcx (valentineite), NBKx (metallic Nb), WlKx (scheelite), other elements, like "Silicates"</td>
</tr>
</tbody>
</table>

Notes: ZAF-type correction was applied to all analytical results. (1) The analyses were performed with a tightly focused beam in scanning mode; a magnification of 20000 x (as passed to the controlling software) corresponds to a scanned surface of 5.5 x 4 μm. (2) If not stated, counting time was 30 s. The counting time applies to the peak and both background measurements. (3) Measured using a LDE1 analyzing crystal.

The Starlera Deposit

Starlera is the only mineral deposit in Val Ferrera that has been exploited for Mn (from 1917 to 1920). The orebody is interbedded within dolomitic marbles but is locally in direct contact with augen gneisses of the underlying basement. Mn ores at Starlera are relatively poor in Si; braunite is the main ore mineral, and the Mn silicates rhodonite and spessartite are absent. Fine needles of romanëchite, (Ba₂H₂O₄MnO₁₀, are present along the boundary of braunite grains. The ore contains numerous discordant roméite-tilasite veins, which are up to 30 cm thick and display an unusual assemblage of F-dominant roméite octahedra (< 5 mm), coarse-grained tilasite (CaMgAsO₄F), idiomorphic aegirine, calcite, phlogopite, and fluorite (Brugger et al. 1997).

Tilasite is also present in some hematite – carbonate – quartz ores that occur between the Mn ores and the carbonate wallrocks. These hematite – carbonate – quartz ores display a banded to lenticular texture, with tilasite constituting the main mineral in some of the lenses, which are up to 3 < 0.5 cm in size.

Petrographic Features of the Pink Schists

Interbedded with the Mn ores at Starlera are quartz-rich pink muscovite – aegirine – hematite – albite schists (hereafter referred to as “pink schists”). Aegirine occurs as porphyroblasts that overgrew S₁ and subsequently for the pronounced crenulation cleavage (S₃) exhibited by these mica-rich rocks. The pink schists contain abundant rounded grains of zircon showing oscillatory zonation (visible by cathodoluminescence), and two varieties of hematite: (i) fine-grained hematite occurs within the S₁ schistosity, and (ii) coarser-grained hematite is present as spherical aggregates (up to 2 mm in diameter), which were rotated during D₁. In addition, the schists contain titanite, rutile, pyrophanite, roméite, fluorapatite, and bergslagite (CaBeAsO₄(OH)); the association of elements found in these minerals, in particular As, Sb, Ti, F, is related to that in the discordant roméite-tilasite veins. Titanite occurs as chemically heterogeneous crystals (up to 150 μm across; Figs. 1a, b, c), which grew over the main schistosity, and thus after D₁. The crystallization of titanite, however, preceded the last stages of deformation, as shown by the abundance of fractured crystals. Rutile, pyrophanite, and roméite appear in the cracks of broken crystals of titanite (Fig. 1a), and therefore must be younger. Similarly,
formation of at least some of the fluorapatite and bergslagite may postdate the crystallization of titanite, but the textural relationships are less conclusive (Fig. 1b).

The minerals rutile, pyrophanite, romérite, fluorapatite, and bergslagite do not only occur in association with titanite. Rutile is also present as isolated round grains (<100 μm in diameter) in the muscovite matrix, and as sagenitic crystals within aegirine (Fig. 1d). Pyrophanite occurs as isolated inclusions in muscovite, and as a reaction rim around or as topotactic needles within rutile. Romérite forms small (up to 50 μm across), commonly euhedral crystals within the white mica matrix; one crystal also was found enclosed by aegirine, but it is unclear whether such romérite is actually overgrown by pyroxene. Fluorapatite appears in association with bergslagite, with textures suggesting that the two minerals crystallized contemporaneously (Fig. 1e); it further occurs as isolated, typically zoned crystals in the muscovite matrix (Fig. 1f). Bergslagite, which is uniformly associated with fluorapatite, clearly overgrows it, and may have crystallized at the same time as aegirine (Fig. 1e).

MINERAL CHEMISTRY

The main minerals occurring in the pink schists at Starlera display distinctive chemical features (Table 3).

<table>
<thead>
<tr>
<th>TABLE 3. COMPOSITION OF MUSCOVITE AND AEGIRINE, PINK SCHIST, SAMPLE JB445, STARLERA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muscovite</td>
</tr>
<tr>
<td>Average</td>
</tr>
<tr>
<td>n</td>
</tr>
<tr>
<td>SiO₂</td>
</tr>
<tr>
<td>TiO₂</td>
</tr>
<tr>
<td>Al₂O₃</td>
</tr>
<tr>
<td>V₂O₅</td>
</tr>
<tr>
<td>FeO</td>
</tr>
<tr>
<td>Fe₂O₃</td>
</tr>
<tr>
<td>MnO</td>
</tr>
<tr>
<td>MgO</td>
</tr>
<tr>
<td>CaO</td>
</tr>
<tr>
<td>Na₂O</td>
</tr>
<tr>
<td>K₂O</td>
</tr>
<tr>
<td>BaO</td>
</tr>
<tr>
<td>Pb</td>
</tr>
<tr>
<td>Sum</td>
</tr>
<tr>
<td>H₂O,wet</td>
</tr>
<tr>
<td>Sum</td>
</tr>
</tbody>
</table>

Note that the normalization for muscovite is based on Fe⁺⁺ = Fe₂O₃ x 10 atoms of oxygen and 2 (OH) per formula unit: (Si₄₋₄Al₀₋₂) (Mg₁₋₀₄Fe²⁺₋₁Mg₀₋₂Fe³⁺₋₁Mn₀₋₁Ti₀₋₁)₂Kₓ₋₀₂Naₓ₋₀₁₂Baₓ₋₀₁₂(OH)₂.

The normalization for aegirine is based on four cations and Fe⁴⁺/Fe⁺⁺ calculated for a total of six atoms of oxygen per formula unit: Siₓ₋₀₂₋₂(Mg₁₋₀ₓ₄Fe²⁺₋₁Mg₀₋₂Fe³⁺₋₁Mn₀₋₁Ti₀₋₁)₂Kₓ₋₀₂Naₓ₋₀₁₂Baₓ₋₀₁₂(OH)₂.

The mica is rich in Fe³⁺ and Mg, and its composition is intermediate between a hypothetical ferrian muscovite end-member K(AlFe³⁺)(Si₂Al)O₁₀(OH)₂ and aluminoceladonite K(AlMg)Si₅O₁₀(OH)₂; furthermore, the mica contains significant amounts of Ti (up to 0.80 wt% TiO₂) and Mn (up to 1.03 wt% MnO), but is poor in Na, Ba and V; both F and Sb contents are below EMP detection limits (F < 0.05 wt%; Sb < 200 ppm). The aegirine porphyroblasts (67.4 mole % aegirine component, on average) contain, like muscovite, considerable amounts of Ti and Mn (to 0.70 wt% TiO₂ and 1.71 wt% MnO), and lack detectable Sb (less than 0.03 wt% Sb₂O₃). Albite is very pure, containing less than 0.03 wt% CaO and less than 0.20 wt% BaO.

Pyrophanite

All analyzed crystals of pyrophanite contain significant amounts of Sb, ranging from 0.97 to 1.91 wt% Sb₂O₃ (Table 4). This elevated concentration of Sb can mainly be attributed to the exchange vector

$$\text{Sb}^{5+}\text{Fe}^{3+}\text{Ti}^{4+}_2$$

$$\text{Me}^{5+}\text{Me}^{3+}\text{Ti}^{4+}_2$$

Although two types of pyrophanite can be distinguished on a textural basis (isolated grains within muscovite and pyrophanite replacing rutile), they have very similar chemical compositions, suggesting that all the pyrophanite grains may have formed by replacement of former grains of rutile.

Rutile

The presence of Sb⁵⁺ in rutile-related structures is documented by the minerals squawcreekite (Fe,Sb,Sn,Ti)O₂ (Foord et al. 1991) and tripuhyite (Hussak & Prior 1897, Mason & Vitaliano 1953). The chemical formula of tripuhyite is still reported as Fe₂⁺Sb₂⁺O₆ in some compilations (e.g., Blackburn & Dennen 1997), despite solid evidence for the formula Fe₃⁺Sb⁵⁺O₄ as suggested originally by Mason & Vitaliano (1953). In particular, Mössbauer spectroscopy attests the trivalent oxidation state for Fe in natural tripuhyite (Gakiel & Malamud 1969).

The empirical chemical formulae (Fe,Sb,Sn,Ti)O₂ with Fe = Sb >> (Sn+Ti), and Fe₃⁺Sb⁵⁺O₄ for squawcreekite and tripuhyite, respectively, are identical, but the minerals must have different structures. However, no structure refinement is available for these minerals, because of the lack of suitable single crystals. Squawcreekite is reportedly isostructural with rutile (i.e., disordered substitution of Fe and Sb in the Ti site).
FIG. 1. BSE pictures illustrating the zonation and textures of the minerals in the pink schists from Starlera. (a) Broken crystal of titanite; sample JB345.C2. (b) Association of titanite, fluorapatite and bergslagite; sample JB345.C8. (c) Titanite crystal displaying zonation with three sectors; sample JB345.C2. (d) Antimonian rutile found inside a crystal of aegirine; sample JB345.C7. (e) Textural relations between fluorapatite and bergslagite; sample JB345.C13. (f) Zoned crystal of fluorapatite; sample JB345.C2. The location of three EMP analyses (#62, 63, 64) is indicated (cf. Table 7, Fig. 7). Abbreviations: ae: aegirine, ap: fluorapatite (light gray: As-rich), brg: bergslagite, hem: hematite, pr: pyrophantite, ro: römeite, rt: rutile, ttn: titanite (light gray: Sb-rich).
TABLE 4. COMPOSITION OF RUTILE, PYROPHANITE, TITANITE AND ROMEITE FROM THE PINK SCHISTS AT STARLETRA

<table>
<thead>
<tr>
<th>Analysis #1</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>28.01</td>
<td>27.84</td>
<td>29.70</td>
<td>28.01</td>
<td>30.86</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>TiO₂</td>
<td>100.06</td>
<td>54.17</td>
<td>73.75</td>
<td>85.89</td>
<td>52.33</td>
<td>51.81</td>
<td>28.36</td>
<td>33.22</td>
<td>35.38</td>
<td>28.36</td>
<td>37.52</td>
<td>14.16</td>
<td>21.49</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>1.30</td>
<td>1.25</td>
<td>0.82</td>
<td>0.82-1.38</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Nb₂O₅</td>
<td>0.05</td>
<td>30.63</td>
<td>15.94</td>
<td>8.22</td>
<td>1.05</td>
<td>1.57</td>
<td>9.55</td>
<td>3.01</td>
<td>2.12</td>
<td>0.47-9.55</td>
<td>47.51</td>
<td>30.25</td>
<td>30.25-47.51</td>
</tr>
<tr>
<td>V₂O₅</td>
<td>0.48</td>
<td>0.23</td>
<td>0.49</td>
<td>0.52</td>
<td>0.22</td>
<td>0.21</td>
<td>0.11</td>
<td>0.41</td>
<td>0.16</td>
<td><0.05-0.41</td>
<td>0.16</td>
<td>0.18</td>
<td><0.04-0.18</td>
</tr>
<tr>
<td>WO₃</td>
<td>n.d.</td>
<td>0.54</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td>1.67</td>
<td>3.46</td>
<td>0.61</td>
<td>0.57-3.46</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
</tr>
<tr>
<td>Nb₂O₅</td>
<td>0.41</td>
<td>0.63</td>
<td>1.33</td>
<td>0.63</td>
<td>0.30</td>
<td>0.36</td>
<td>0.20</td>
<td>0.18</td>
<td>0.70</td>
<td><0.04-0.08</td>
<td>1.04</td>
<td>1.18</td>
<td>0.59-2.13</td>
</tr>
<tr>
<td>CaO</td>
<td>0.22</td>
<td>0.10</td>
<td>0.05</td>
<td>0.16</td>
<td>0.21</td>
<td>0.04</td>
<td>0.12</td>
<td>0.18</td>
<td>0.08</td>
<td><0.03-0.22</td>
<td>1.10</td>
<td>1.83</td>
<td>4.44-1.83</td>
</tr>
<tr>
<td>MnO</td>
<td><0.03</td>
<td>0.03</td>
<td>0.77</td>
<td>0.03</td>
<td><0.03</td>
<td><0.03</td>
<td>24.76</td>
<td>25.53</td>
<td>26.72</td>
<td>24.74-27.56</td>
<td>16.35</td>
<td>11.69</td>
<td>11.69-16.35</td>
</tr>
<tr>
<td>Nb₂O₅</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.70</td>
<td>0.45</td>
<td>0.17</td>
<td>0.06-0.77</td>
<td>1.66</td>
<td>0.38</td>
<td>0.31-2.26</td>
</tr>
<tr>
<td>MnO</td>
<td>0.27</td>
<td>1.09</td>
<td>0.51</td>
<td>0.65</td>
<td>1.30</td>
<td>1.68</td>
<td>0.60</td>
<td>0.53-1.68</td>
<td>0.44</td>
<td>0.24</td>
<td>0.22-1.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CeO₂</td>
<td><0.04</td>
<td>0.09</td>
<td>0.09</td>
<td><0.04</td>
<td><0.04</td>
<td>n.a.</td>
<td><0.04</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05-0.28</td>
<td>11.63</td>
<td>23.90</td>
<td>11.69-23.90</td>
</tr>
<tr>
<td>F</td>
<td>n.a.</td>
<td>2.04</td>
<td>0.31</td>
<td>0.28-2.53</td>
</tr>
<tr>
<td>(Co,F)</td>
<td></td>
<td>0.86</td>
<td>0.15</td>
<td></td>
</tr>
</tbody>
</table>

Notes: The above compositions, expressed in weight %, are results of electron-microprobe analyses. Normalization procedures for rutile: Σ(cations) = 1. For pyrophosphate, Σ(cations) = 2. For titanite, Σ(cations) = 3. For roméite-bétafite, Σ(Sh,Ti,Fe,Nb,V,W) = 2. Column headings: 1) isolated rutile in muscovite, 2) rutile with the highest Nb₂O₅ content (selected from a total of nine analyses, sample JB345A 11), 3) rutile from sample JB345 C3 (cf. Fig. 1a), 4) rutile (sagenitic) in core of a pyroxene porphyroblast (cf. Fig. 1d), 5) pyrophosphate, isolated grains in muscovite, sample JB345 C9, 6) pyrophosphate, replacing rutile in samples JB345 C3 and JB345 C7 (the associated rutile contains <0.03 wt% Sb₂O₅), 7) Sb-rich titanite, sample JB345 C8, 8) As-rich titanite, sample JB345 C9, 9) selected compositions of titanite from sample JB345 C3, 10) minimum and maximum values for titanite from sample JB345, 11) "roméite" from sample JB345 (corresponding point labeled on Fig. 5), 12) selected composition of "bétafite" from sample JB345 (corresponding point labeled on Fig. 5), 13) minimum and maximum values for "roméite-bétafite" from sample JB345.
As, Sb, Be AND Ce ENRICHMENT, VAL FERRERA, SWITZERLAND

Mn (to 1.5 wt% of oxides), and some contain in addition minor amounts of W. Figure 2 compares data for rutile from Starlera with data from Praborna. In Figure 2a, Mn has been included as Mn$^{3+}$ to calculate the correlation between Fe + Mn and the pentavalent cations (Me$^{5+}$ = Sb + V + Nb), among which Sb is the most abundant at Starlera ($0.83 < \text{Sb/Me}^{5+} < 0.86$). Choice of Mn$^{3+}$ as the predominant form of Mn is consistent with the occurrence of the Mn$^{3+}$-Mn$^{2+}$ mineral braunite, and with considerations of ionic sizes: the ionic radius of octahedrally coordinated Mn$^{3+}$ (0.64 Å; Shannon 1976) is similar to that of Ti$^{4+}$ (0.60 Å), Fe$^{3+}$ (0.64 Å), and Sb$^{5+}$ (0.60 Å), whereas that of Mn$^{2+}$ (0.83 Å) is significantly larger. The correlations and slopes of the regression lines shown in Figure 2 strongly suggest that exchange vector (2) [with a major component of the vector (1)] is of primary importance in rutile from both localities.

Titanite

The crystal structure of titanite, CaTi(O,OH,F)SiO$_4$, allows for incorporation of a wide range of elements, including U, Th, the rare-earth elements (REE), Na, Mn, Fe$^{2+}$, Fe$^{3+}$, Mg, Sr, Ba, Nb, Ta, Al, V and Cr (e.g., Deer et al. 1982, Gieré 1992, Pan & Fleet 1992, Russell et al. 1994, Kunz et al. 1997). In addition to these elements, Sb and As have recently been observed in natural titanite. Perseil & Smith (1995) discovered Sb-rich titanite in the Mn ores of Praborna, Italy (up to 12.59 wt% Sb$_2$O$_5$), and subsequently also reported the presence of up to 3.5 wt% As$_2$O$_3$ in these Sb-rich titanite crystals (Perseil & Smith 1996). Significant amounts of As also are present in hydrothermal titanite from fissures in the Binnat, central Swiss Alps (up to 3.60 wt% As$_2$O$_3$; Krzemnicki & Gierz 1996, Krzemnicki 1996). This compositional flexibility of titanite is one of the main reasons why the mineral was proposed as a possible host-phase for high-level nuclear waste (e.g., Hayward 1988).

In the ores of Val Ferrera, titanite is relatively rare and could only be identified in the pink schists at Starlera. On back-scattered electron (BSE) images, titanite crystals display complex patterns of zoning, which are mainly related to variations in the Sb and Ti contents, with Sb-rich zones appearing brighter (Figs. 1a–c). The zonation commonly represents sector zoning (Fig. 1c), a typical feature in titanite (e.g., Bouch et al. 1997, Krzemnicki & Gierz 1996, Krzemnicki 1996, Paterson & Stephens 1992). In some cases, titanite exhibits Sb-rich zones along fractures (Fig. 1a), indicating that Sb was introduced metasomatically.

The most striking characteristic of the titanite from Starlera is that all crystals contain high concentrations of Sb, As, and Mn (Table 4). F was not detected in any crystal (<0.05 wt% F), but low amounts of Na, W, Nb, V, and Ce are generally present. Derivation of the structural formula of this titanite is not a trivial problem, because the H$_2$O content is unknown, and several elements could occur in more than one oxidation state and at different sites.

In the pink schists at Starlera, Sb is an important constituent of titanite (up to 9.55 wt% Sb$_2$O$_5$) and may be present as either Sb$^{5+}$ or Sb$^{3+}$; the ionic radii suggest that the octahedrally coordinated Ti site (0.60 Å) could easily accommodate Sb$^{5+}$ (0.60 Å) and possibly some Sb$^{3+}$ (0.76 Å), whereas the Ca site (1.06 Å in coordination seven) probably can only host Sb$^{5+}$ (>0.76 Å). Data from the Starlera occurrence display an excellent inverse correlation between Ti and Sb, but no significant correlation between Ca and Sb (Table 5). These relationships strongly suggest that Sb occurs in the Ti site of the titanite structure, most probably as Sb$^{5+}$. Vanadium, Nb, and possibly As (see below) are other pentavalent cations present in minor amounts in the Starlera titanite. The slope of the regression line for Ti versus Me$^{5+}$ (Fig. 3a) is intermediate between the slope associated with exchange vector (2) and that of

$$Na \text{Me}^{5+} \text{Ca}^{-1} \text{Ti}^{-1}$$

(3), an exchange vector indicated by the correlation matrix given in Table 5. Vector (2), with a large component of...
vector (1), is predominant in the Praborna titanite (Perseil & Smith 1995), as well as in rutile from Starlera and Praborna (see above). If vectors (2) and (3) account for the substitution of all pentavalent cations, Na + Me3* must be equal to or greater than Me5*. This condition is indeed fulfilled (Fig. 3b). The regression lines indicate that at Me5+ = 0, titanite from the pink schists contains some Me3+ (Fig. 3c), but no Na. The excess Me3+ may be accounted for by the substitution

\[\text{Me}^{3+} (\text{OH}) \text{Ti}_{1-\text{O}_1} \]

which is common in titanite (e.g., Gieré 1992). Substitution (4) further explains the intercept at 0.96 instead of 1.00 in the Ti versus Me5+ diagram (Fig. 3a).

The assignment of most of Fe and Mn as trivalent cations to the Ti site, implicitly assumed in the preceding discussion, is supported by the good negative correlation of each of these elements with Ti (Table 5, Fig. 3d for Mn). This conclusion is also consistent with the generally high oxidation state of the Mn ores and, in addition, with the similar ionic sizes of \(\text{V}^5\text{Mn}^{5+} \) (0.64 Å), \(\text{V}^5\text{Fe}^{5+} \) (0.64 Å) and \(\text{V}^5\text{Ti}^{5+} \) (0.60 Å). However, both Fe

Fig. 3. Diagrams illustrating the crystal chemistry of titanite from the pink schists at Starlera (sample JB345). Error bars correspond to 2σ errors resulting from counting statistics. (a) Ti versus Me5+, (b) Me5+ + Na versus Me5+, (c) Me5+ versus Me5+, (d) Mn versus Ti, (e) Mn versus Ca, (f) As versus Ti, (g) As versus Si. Notes: Me5+ = Al + Mn + Fe, Me3+ = Sb + As + V + Nb.
for As contained in the titanite from Binntal: it is associated with arsenite minerals, and accommodates As in the Ti site (Krzemnicki & Giré 1996, Krzemnicki 1996). The crystal chemistry of As in the Starlara titanite is therefore different from that of the Binntal, with As occurring as As$^{5+}$ in the Ti and Si sites at Starlara.

The composition of titanite at Starlara can be simplified and described in terms of the seven components Ca, Na, Ti, Si, Me$^{2+}$ (i.e., Al, Fe, Mn), Me$^{3+}$ (i.e., Sb, As, Nb, V), O, and OH. If we neglect the small amounts of As$^{5+}$ inferred to be present in the Si site and the minor amounts of Fe$^{2+}$ and Mn$^{2+}$ possibly occurring in the Ca site, we can define the composition space by four end-members (Fig. 4a), emphasizing the deviation from the ideal composition CaTiOSiO$_4$: (A) CaTiOSiO$_4$ [origin], (B) Ca$^{Me^{2+}Me^{3+}O}$SiO$_4$ [vector (2)], (C) CaMe$^{3+}$OSiO$_4$ [vector (4)], and (D) NaMe$^{3+}$SiO$_4$ [vector (3)]. As shown in Figures 4b and 4c, end-member D is of minor importance, and the compositional variability is mainly due to substitution along vector 2, a result that was also found for titanite at Praborna (Persei & Smith 1995). At Starlara, vector 2 is therefore responsible for incorporation of Sb in three Ti minerals (pyrophanite, rutile, and titanite). Note that vector 4 represents a maximum OH content (all Mn and Fe assumed to be trivalent), and is associated with a large cumulative error; for these reasons, calculated H$_2$O contents are not reported in Table 4.

Roméite

Roméite, [Na(Ca,Na,Ce,$[\square]$,)]$_3$[(Sb,Ti)$_2$O$_6$(F,OH,O)], can be regarded as a member of the pyrochlore group (Hogarth 1977). It occurs as an accessory mineral in metamorphosed syngenetic-exhalative deposits and in hydrothermal veins. Brugger et al. (1997) described several occurrences of roméite in Val Ferrera, including the roméite–tilasite veins from Starlara. The composition of roméite from the pink schists, however, is distinct from that of all previously investigated samples, primarily because of its unusually high Ce contents, which range from 11.63 to 23.9 wt% Ce$_2$O$_3$ (Table 4). To our knowledge, these are by far the highest Ce contents ever reported for this mineral; they are significantly higher than those observed at all other localities in Val Ferrera, where 4.22 wt% Ce$_2$O$_3$ was found as a maximum concentration (Brugger et al. 1997). The Ce:Ca ratio reaches a value of 0.7 (Fig. 5), such that Ce is not far from being the dominant A-site cation. Moreover, the roméite occurring in the pink schists at Starlara is Ti-rich, with the amount of Ti in apfu exceeding that of Sb in several grains; the latter should, strictly speaking, be named antimonian betafite (Fig. 5). Antimonian betafite has also been observed in the Fe–Mn deposit at Fianel (Brugger et al. 1997), where it rarely occurs as a core in zoned roméite. These cores of antimonian betafite, however, contain high amounts of U and H$_2$O, a feature characteristic of betafite, but that is not observed in samples from the pink schists at Starlara.

Notes

- As$^{3+}$ is only a minor component. Nevertheless, these data are compatible with the occurrence of As in both the Si and Ti sites. An inverse correlation is also observed between As and Ca (Table 5), which could be explained by the coupled substitution:

$$\text{Na}^{[IV]}\text{As}^{5+}\text{Ca}_{1-\xi}\text{Si}_{1-\xi}$$

(5)

The high oxidation state of the Starlara ores and the association of titanite with arsenate minerals (bergslitigite, tilasite) suggest that As occurs primarily as As$^{5+}$. In contrast, the trivalent oxidation state has been inferred for As contained in the titanite from Binntal; it is associated with arsenite minerals, and accommodates As in the Ti site (Krzemnicki & Giré 1996, Krzemnicki 1996). The crystal chemistry of As in the Starlara titanite is therefore different from that of the Binntal, with As occurring as As$^{5+}$ in the Ti and Si sites at Starlara.

The composition of titanite at Starlara can be simplified and described in terms of the seven components Ca, Na, Ti, Si, Me$^{2+}$ (i.e., Al, Fe, Mn), Me$^{3+}$ (i.e., Sb, As, Nb, V), O, and OH. If we neglect the small amounts of As$^{5+}$ inferred to be present in the Si site and the minor amounts of Fe$^{2+}$ and Mn$^{2+}$ possibly occurring in the Ca site, we can define the composition space by four end-members (Fig. 4a), emphasizing the deviation from the ideal composition CaTiOSiO$_4$: (A) CaTiOSiO$_4$ [origin], (B) Ca$^{Me^{2+}Me^{3+}O}$SiO$_4$ [vector (2)], (C) CaMe$^{3+}$OSiO$_4$ [vector (4)], and (D) NaMe$^{3+}$SiO$_4$ [vector (3)]. As shown in Figures 4b and 4c, end-member D is of minor importance, and the compositional variability is mainly due to substitution along vector 2, a result that was also found for titanite at Praborna (Persei & Smith 1995). At Starlara, vector 2 is therefore responsible for incorporation of Sb in three Ti minerals (pyrophanite, rutile, and titanite). Note that vector 4 represents a maximum OH content (all Mn and Fe assumed to be trivalent), and is associated with a large cumulative error; for these reasons, calculated H$_2$O contents are not reported in Table 4.

Roméite

Roméite, [Na(Ca,Na,Ce,$[\square]$,)]$_3$[(Sb,Ti)$_2$O$_6$(F,OH,O)], can be regarded as a member of the pyrochlore group (Hogarth 1977). It occurs as an accessory mineral in metamorphosed syngenetic-exhalative deposits and in hydrothermal veins. Brugger et al. (1997) described several occurrences of roméite in Val Ferrera, including the roméite–tilasite veins from Starlara. The composition of roméite from the pink schists, however, is distinct from that of all previously investigated samples, primarily because of its unusually high Ce contents, which range from 11.63 to 23.9 wt% Ce$_2$O$_3$ (Table 4). To our knowledge, these are by far the highest Ce contents ever reported for this mineral; they are significantly higher than those observed at all other localities in Val Ferrera, where 4.22 wt% Ce$_2$O$_3$ was found as a maximum concentration (Brugger et al. 1997). The Ce:Ca ratio reaches a value of 0.7 (Fig. 5), such that Ce is not far from being the dominant A-site cation. Moreover, the roméite occurring in the pink schists at Starlara is Ti-rich, with the amount of Ti in apfu exceeding that of Sb in several grains; the latter should, strictly speaking, be named antimonian betafite (Fig. 5). Antimonian betafite has also been observed in the Fe–Mn deposit at Fianel (Brugger et al. 1997), where it rarely occurs as a core in zoned roméite. These cores of antimonian betafite, however, contain high amounts of U and H$_2$O, a feature characteristic of betafite, but that is not observed in samples from the pink schists at Starlara.
CaTiOSiO₄

\[\text{Ca}^{2+}\text{Ti}^{4+}\text{O}_4 \]

Figure 4. (a) Tetrahedron illustrating the various end-members and exchange vectors allowing the incorporation of trivalent or pentavalent cations (or both) at the octahedrally coordinated Ti site of titanite. (b) Projection of the compositions from Starlera on (A)–(B)–(D). (c) Projection of the compositions from Starlera on (A)–(C)–(D). The proportion of the end-members was calculated from the compositions normalized to three cations (in apfu) according to the following assumptions:

\[\text{Na} = (D), \text{Mes}^+ = 0.5(\text{B}) + (D), \text{Me}_3^+ = 0.5(\text{B}) + (C), (A) + (B) + (C) + (D) = 1. \]

Notes: Me³⁺ = Al + Mn + Fe, Me⁺⁺ = Sb + As + V + Nb.

Figure 6a illustrates the one-for-one replacement of Ti by Sb, expressed in mole of element/(100 g mineral) to avoid artifacts introduced by normalization of the chemical results. A recent crystal-structure refinement revealed that in some samples of roméite from Praborna (type locality of roméite; Damour 1841), the Mn content is split into two sites, i.e., as Mn⁵⁺ in the A site and as Mn²⁺ in the B site (R.C. Rouse, written commun. 1997). At Starlera, the very good inverse correlation between Ca and Mn (Fig. 6b) suggests that most Mn occurs as Mn²⁺ at the A site, in accord with the substitution

\[\text{A}_1\text{Mn}^{3+} \text{A}_1\text{Ca}^{-1} \]

Ce and Ti exhibit an excellent positive correlation (Fig. 6c, Table 6), which is consistent with the exchange vector (Brugger et al. 1997):

\[\text{Ce}^{3+}\text{Ti}^{4+} \text{Na}^{-1}\text{Sb}^{5+}^{-2} \]

Vector (7) also conforms with the relationship between Sb and Ti (Fig. 6a). This vector accounts for all the Ce contained in the roméite samples described by Brugger et al. (1997). For the roméite occurring in the pink schists, however, the slope of the linear fit in Figure 6c is closer to +1.0 than to +0.5, and an additional exchange-vector must therefore be operating to account for the incorporation of all Ce into roméite. A possibility that does not affect the Ti content is the substitution

\[\text{CeO Ca}_{-1} \text{F}_{-1} \]

as suggested by the correlation data given in Table 6. If vectors (7) and (8) operate simultaneously, we can describe the incorporation of Ce into roméite by the overall substitution

\[\text{Ce}_2\text{Ti}_2\text{ONa}_{-1}\text{Ca}_{1}\text{Sb}_{2}\text{F}_{-1} \]

Figure 5. Nomenclature diagram for roméite–betafite. Chemical compositions of the two labeled points are listed in Table 4.
which accounts for the slopes of the Ce/Sb (-0.87), Sb/Ti (-1.03, Fig. 6a), and Na/Sb (0.52) regression lines. Equation (9) predicts a slope of approximately -0.5 for the regression line between F and Ti. The observed slope of -0.96 (Fig. 6d) can be explained by allowing the F content to vary along the additional exchange-reaction

\[(\text{OH})F\text{-r}
\]

Given the many cations that enter the structure of roméite along various independent exchange-vectors, it is surprising that the correlations between each pair of elements (Table 6) are still excellent. Three datasets have been omitted in the calculation of the linear regression; these data points define an independent array that is nearly parallel to the main trend (e.g., Figs. 6c, d). The correlations of Table 6 imply that the substitutions (6), (7), (8), and (10) operate simultaneously in these samples of roméite. As no crystal-chemical reason apparently explains the link among the various independent exchange-vectors, an external control by fluid chemistry seems likely.

Fluorapatite

Many elements can enter the structure of fluorapatite, \(\text{Ca}_3(\text{PO}_4)_2\text{F}\); for apatite occurring in Mn deposits, the most significant among these are: Sr, Mn, Fe, and Ce at the two Ca sites; As, Si, and possibly \((\text{CO}_3)_2^2-\) at the P site, and \((\text{OH})^-\) at the F site.

In the pink schists at Starlera, fluorapatite is present as isolated grains and locally, it exhibits a complex chemical zonation (Fig. 1f). This pronounced zoning is mainly the result of highly variable As contents (2.2-13.8 wt% As2O5; cf. Table 7) which, as shown in Figure 7a, can be explained by the simple substitution \(\text{As}^3\text{P}^-\text{r}\). In general, the As content of apatite at Starlera increases toward the edge of the crystals. In BSE images, the zoned crystals commonly display two distinct stages of growth, whereby As-rich apatite (stage 2) appears along fractures within or as a rim around apatite of stage 1 (see Fig. 1f, Table 7).

Several important components of apatite exhibit strong correlations (Table 8); in addition to the excellent correlation shown between As and P (Fig. 7a), there are good correlations between As and Mn, as well as F (cf. Figs. 7b, c), and an excellent inverse correlation between Mn and P (Table 8). On the other hand, no correlation is observed between As and the minor constituents Sr and Fe. The correlated variations of As, P, Mn, and F probably result from the simultaneous operation of \(\text{As}^3\text{P}^-\text{r}\) and other, in principle independent exchange-vectors, e.g., \((\text{OH})\text{F}^-\) and \(\text{MnCa}^-\). This result is similar to what has been observed for roméite and, again, suggests that the fluid composition may have exerted a control on these correlations. We should bear
in mind that although two generations of apatite may be distinguished in BSE images, both generations display the same chemical trends.

It is of note that at Starlera, we do not observe svabite, the As equivalent of fluorapatite, despite high As contents of the apatite. Svabite, Ca$_5$(AsO$_4$)$_3$F, is a characteristic mineral of some metamorphosed Mn deposits and occurs, for example, at Långban, Sweden (associated with bergslagite, Hansen et al. 1984), and at Franklin, New Jersey (Dunn 1995).

Bergslagite

The mineral bergslagite, CaBeAsO$_4$(OH), has been discovered in the metamorphosed Mn ores of Långban, Sweden (Hansen et al. 1984). To date, bergslagite has been reported as a rare vug-filling mineral from three additional localities: in the radiolarite-hosted Mn ores at Falotta, Graubünden, Switzerland (Graeser 1995), in metarhyolites at Cavradi, Graubünden, Switzerland (Graeser 1995), and in rhyolites at Saitlauf, Spessart, Germany (Kolitsch 1996). In Val Ferrera, bergslagite was observed as a rock-forming, post-D$_1$ mineral in the pink schists at Starlera, and in quartz-carbonate veins from a Be-, Mo-, W-, and Sb-rich pink dolomite breccia at Fianel (Brugger et al. 1998).

Bergslagite forms a solid solution with the phosphate mineral herderite, CaBePO$_4$(F,OH) (Graeser 1995), but at both localities in Val Ferrera, the extent of the PAs$_5$ substitution is very limited (<0.45 wt% P$_2$O$_5$; Table 7). At Starlera, the composition of bergslagite is

TABLE 6. CORRELATION MATRIX FOR THE MAIN ELEMENTS PRESENT IN THE ROMEITE–BETAITE FROM STARLERA

<table>
<thead>
<tr>
<th></th>
<th>Ti</th>
<th>Sb</th>
<th>Ti</th>
<th>Na</th>
<th>Mn</th>
<th>Ce</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti</td>
<td>-0.99</td>
<td>1.00</td>
<td>-0.96</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>0.96</td>
<td>-0.96</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>0.96</td>
<td>-0.97</td>
<td>0.97</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>0.94</td>
<td>0.95</td>
<td>-0.97</td>
<td>-0.99</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ce</td>
<td>-0.96</td>
<td>0.99</td>
<td>-0.96</td>
<td>-0.98</td>
<td>0.97</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>0.95</td>
<td>-0.96</td>
<td>0.98</td>
<td>0.98</td>
<td>-0.99</td>
<td>-0.96</td>
<td></td>
</tr>
</tbody>
</table>

Notes: n = 16; three data points (cf. Figs. 6c, d) have been omitted in these calculations, based on normalized electron-microprobe data.

TABLE 7. COMPOSITION OF FLUORAPATITE AND BERGSLAGITE, PINK SCHIST, STARLERA, SAMPLE JB345

<table>
<thead>
<tr>
<th></th>
<th>62</th>
<th>64</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO$_4$</td>
<td>39.96</td>
<td>39.96</td>
<td>39.96</td>
<td>39.96</td>
<td>39.96</td>
</tr>
<tr>
<td>As$_3$</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>SiO$_2$</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
</tr>
<tr>
<td>CaO</td>
<td>55.79</td>
<td>55.79</td>
<td>55.79</td>
<td>55.79</td>
<td>55.79</td>
</tr>
<tr>
<td>MnO</td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
</tr>
<tr>
<td>FeO</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>H$_2$O</td>
<td>0.37</td>
<td>0.37</td>
<td>0.37</td>
<td>0.37</td>
<td>0.37</td>
</tr>
</tbody>
</table>

Structural formulae are calculated on the basis of eight and two cations per formula unit for apatite and bergslagite, respectively. Electron-microprobe data, reported as weight %: n: number of points for average. Column headings: 6: Core of crystal shown in Figure 1f: 6: Rim of crystal shown in Figure 1f: 3: Minimum and maximum values. 4: Mean value, addition of 1 OH and 1 Be per formula unit would raise the analytical total to 100.51%. 5: Minimum and maximum values.

FIG. 7. Element correlations in fluorapatite from the pink schists at Starlera. The points corresponding to the compositions of the fluorapatite depicted in Figure 1f are labeled. Error bars correspond to 2σ and result from counting statistics.
As, Sb, Be and Ce enrichment, Val Ferrera, Switzerland

As, Ca, Na, F

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>As</th>
<th>Ca</th>
<th>Mn</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>As</td>
<td>-0.98</td>
<td>1.00</td>
<td>0.35</td>
<td>-0.49</td>
<td>0.78</td>
</tr>
<tr>
<td>Ca</td>
<td>-0.97</td>
<td>0.98</td>
<td>-0.49</td>
<td>1.00</td>
<td>-0.84</td>
</tr>
<tr>
<td>Mn</td>
<td>-0.97</td>
<td>0.98</td>
<td>-0.49</td>
<td>1.00</td>
<td>-0.84</td>
</tr>
<tr>
<td>F</td>
<td>0.78</td>
<td>-0.84</td>
<td>0.61</td>
<td>-0.81</td>
<td></td>
</tr>
</tbody>
</table>

Notes: n = 21; based on the normalized results of electron-microprobe analyses.

Further characterized by small amounts of Sb (<0.1 wt% Sb₂O₃), Si (<0.38 wt% SiO₂), Sr (<0.20 wt% SrO), Fe (<0.08 wt% FeO), and Mn (<0.07 wt% MnO). Neither F nor Na were detected, but Ce is present in concentrations up to 0.23 wt% Ce₂O₃.

DISCUSSION

The mineral assemblage in the pink schists at Starlera is particularly interesting because several As, Sb, and Be minerals are present as rock-forming minerals. In contrast to other localities in Val Ferrera, however, these minerals do not occur in S₁ and, as suggested by petrographic observations, must have formed postkinematically with respect to the main deformational event (D₁). At least two stages of post-D₁ crystallization can be distinguished within the pink schists (Fig. 8). Moreover, the thick roméite–tilasite veins also formed after D₁; most are closely associated with the intensely foliated pink schists, suggesting that the foliation may have focused the flow of an As-, Sb-, and Ti-bearing fluid during vein formation. Relatively large amounts of fluid were required to generate these thick veins. The association of elements found in the post-D₁ assemblage of the pink schists and in the late roméite–tilasite veins are very similar (in particular As, Sb, and Ti), indicating that the post-D₁ assemblages in the schists were formed by the same fluid that generated the roméite–tilasite veins.

The elements that accumulated in the roméite–tilasite veins and in the post-D₁ minerals of the pink schists were probably derived from a local source, e.g., the surrounding ores or the pink schists.

Titanium

Although Ti is an essential constituent of roméite in the late veins of Starlera, the carbonate-hosted Fe–Mn ores are Ti-poor (<0.10 wt% TiO₂, Brugger 1996). The pink schists, however, are fairly rich in Ti and are the only ore-related lithology where titanite and rutile have been identified. Microscopic observations indicate that Sb-poor rutile was present as a detrital mineral in the sedimentary protolith; furthermore, the micas contain considerable amounts of Ti (average 0.44 wt% TiO₂, Table 3). We therefore conclude that the pink schists are a possible source for the Ti concentrated in the roméite–tilasite veins.

Arsenic, antimony, and beryllium

The carbonate-hosted ores of Val Ferrera are characterized by elevated contents of As, Sb, and Be rela-
tive to the country rocks (Brugger 1996). The growth in some deposits of As, Sb, and Be minerals during the main deformation \((D_h) \) points to a pre-\(D_h \) or, at the latest, syn-\(D_h \) accumulation of these elements in the ores. At Starlera, concordant tilasite-rich lenses possibly represent the metamorphosed equivalent of As-rich hydrothermal sediments. Such high levels of As enrichments have not yet been reported from modern exhalative Mn deposits, although the latter commonly contain in excess of 100 ppm As (Marchig et al. 1982). On the other hand, several wt% As may be concentrated in other types of modern hydrothermal metalliferous sediments (e.g., Karpov & Naboko 1990, Pearcy & Petersen 1990).

Thus, the large amounts of As, Sb, and Be concentrated in the post-\(D_h \) assemblage of minerals in the pink schists and the discordant roméite–tilasite veins were most probably derived from the surrounding Fe–Mn ores. As outlined above, however, the pink schists lack syn-\(D_h \) As, Sb, or Be minerals and, moreover, the white mica is poor in Sb (<200 ppm Sb). This finding may indicate that the unusual association of minerals in the pink schists is not related to anomalous concentrations of As, Sb, and Be in the protolith of the pink schists relative to the surrounding Fe–Mn ores, but to physical (permeability) and mineralogical (presence of detrital rutile) characteristics. Fluids enriched in As, Sb, and Be through interaction with the Fe–Mn ores were focused into the pink schists, where they became further enriched in Ti by reaction with mica and rutile.

A striking mineralogical characteristic of the pink schists at Starlera is the abundance of Sb in the three Ti minerals rutile, titane, and pyrophanite. While Praborna, Starlera is only the second locality where Sb-rich varieties of rutile and titanite have been reported. Praborna is a small syngenetic-exhalative deposit interbedded within radiolaries that overlie mid-ocean ridge basalts of the Piemont nappe. This nappe was subjected to a Cretaceous eclogite-facies metamorphism, and subsequently underwent several episodes of retrograde metamorphism, terminating under greenschist-facies conditions in the early Tertiary (Martin-Vernizzi 1984). At Praborna, Sb-rich rutile and Sb-rich titanite developed during the greenschist-facies stage and were, at least in part, formed by metasomatic replacement of older Sb-free rutile and Sb-free titanite (Perseil 1991, Perseil & Smith 1995, Smith & Perseil 1997).

At Starlera, however, As probably occurs as As\(^{5+}\) in both Ti and Si sites. As-bearing titanite also was reported from the Praborna Mn deposit (Perseil & Smith 1996).

Roméite is a widespread accessory mineral in several Fe–Mn deposits of Val Ferrera, but the specimens from the pink schists are unique because of their high Ce and Ti contents (up to 23.90 wt\% Ce₂O₃; up to 23.00 wt\% TiO₂). In contrast, the roméite crystals occurring in other Val Ferrera localities as well as those present in the roméite–tilasite veins at Starlera contain a maximum of 4.22 wt\% Ce₂O₃ and 8.26 wt\% TiO₂ (Brugger et al. 1997). The composition of the roméite from the pink schists is intermediate between roméite (Ca,Na₃₋ Nb, Sb)₂O₆(F,OH,O) and a hypothetical "ceriumbetafite-(Ce)" end-member Ce₂Ti₂O₆., similar to the existing end-member yttrobetafite-(Y), (Y,U,Ce,n)₂Gi,No, Ta)₂O₆(OH,O) (Hogarth 1977). The composition of roméite in the pink schists illustrates the strong affinity of the pyrochlore structure for the REE, as all other minerals associated with roméite (including titane andapatite) contain less than 0.3 wt\% Ce₂O₃.

Acknowledgements

We thank Susanne Schmidt and Richard Guggenheim (EMP and SEM Laboratories, University of Basel) for providing access to their facilities. We are grateful to Daniel Mathys for supplying the BSE images, to Stefan Graeser, Michael Krzemnicki, and Peter Berlepsch for stimulating discussions, and to John F. Slack and David C. Smith for their thorough and helpful reviews. This work was funded through a grant from the Schweizerischer Nationalfonds (grant 2000–43350.95).

References

As, Sb, Be And Ce Enrichment, Val Ferrera, Switzerland

Received April 7, 1997, revised manuscript accepted December 28, 1998.