## KAZUHIRO MIYAZAKI§

Geological Survey of Japan, Higashi 1-1-3, Tsukuba, 305 Ibaraki, Japan

Carlson (1999) pointed out that the coarsening of garnet porphyroblasts due to Ostwald ripening cannot have an appreciable effect as a control of the size of porphyroblasts. However, I found that the values of the appropriate parameters chosen by Carlson (1999) cause serious problem not only for Ostwald ripening, but also for the nucleation-and-growth model of Carlson (1989) and Carlson *et al.* (1995).

Here, I consider a model rock consisting of garnet (grt), chlorite (chl), quartz (qtz) and an aqueous fluid (H<sub>2</sub>O). The garnet-forming reaction (2/3) Fe<sub>4.5</sub>Al<sub>3</sub>Si<sub>2.5</sub>O<sub>10</sub>(OH)<sub>8</sub> (chl) + (4/3) SiO<sub>2</sub> (qtz) = Fe<sub>3</sub>Al<sub>2</sub>Si<sub>3</sub>O<sub>12</sub> (grt) + (8/3) H<sub>2</sub>O (H<sub>2</sub>O) will take place. Both Ostwald ripening (Miyazaki 1991, 1996) and diffusion-controlled growth (Carlson 1989, Carlson *et al.* 1995) are governed by diffusion of the slowest-diffusing elements. The radial growth-rate is proportional to the influx of the element at the surface of growing minerals. Kretz (1994) formulated the radial growth-rate under diffusion-controlled growth. Using this formulation, the radial growth-rate becomes:

$$D\left(\frac{\partial C_{grt}}{\partial r}\right)_{r=R} = \left(C_{grt,grt} - C_{grt,eq}\right)\frac{dR}{dt},\qquad(1)$$

where *D* is the diffusion coefficient,  $C_{grt}$  is the concentration of a garnet component in a diffusive medium,  $C_{grt,eq}$  is the equilibrium concentration in a diffusive medium at the interface with the garnet, *R* is the radius of a spherical grain of garnet, and  $C_{grt,grt}$  is the concentration of a garnet component in garnet per unit volume. According to Miyazaki (1996) and Carlson (1999), I assumed that the growth of garnet is controlled by the sluggish diffusion of Al. Therefore, instead of the influx of a hypothetical component of garnet in the lefthand term in Eq. 1, I also assumed that influx of Al is proportional to growth rate. One mole of garnet contains two moles of Al, and  $C_{grt,grt} = (\frac{1}{2}) C_{Al,grt}$ , where  $C_{Al,grt}$  is the concentration of Al in solid garnet per unit volume. Eq.1 becomes,

where  $C_{Al,eq}$  is the equilibrium concentration of Al in the diffusive medium at the interface. Provided that the width of the depleted zone  $R^{dpl}$  is large relative to R, then the diffusion of Al to the interface is analogous to the diffusion of Al through a spherical shell of inner radius R and outer radius  $R^{dpl}$ . Under these conditions,

$$\left(\frac{\partial C_{Al}}{\partial r}\right)_{r=R} = \frac{C_{Al,m} - C_{Al,eq}}{1/R - 1/R^{dpl}} \frac{1}{R^2},$$
(3)

where  $C_{Al,m}$  is the concentration of Al in the diffusive medium in the non-depleted region. Taking

$$R^{dpl} = \beta R, \tag{4}$$

and  $C_{Al,grt} = 2C_{grt,grt} = 2/v$ , where v is the molar volume of garnet, and combining Eqs. 2, 3 and 4,

$$\frac{dR}{dt} = \frac{\beta}{\beta - 1} \frac{C_{Al,m} - C_{Al,eq}}{(2/\nu) - C_{Al,eq}} D \frac{1}{R}.$$
 (5)

Using supersaturation  $S = (C_{Al,m} - C_{Al,eq})/C_{Al,eq}$ , Eq. 5 becomes,

$$\frac{dR}{dt} = \frac{\beta}{\beta - 1} \frac{C_{Al,eq}}{(2/\nu) - C_{Al,eq}} SD \frac{1}{R}.$$
 (6)

Although the concentration of Al in the non-depleted region slowly decreases, the supersaturation S is initially constant, and with increasing t, it is approximately constant. Assuming constant P and T, the radius of the growing grain of garnet can be obtained by integration of Eq. 6,

 $D\left(\frac{\partial C_{Al}}{\partial r}\right)_{r=R} = \left(C_{Al,grt} - C_{Al,eq}\right)\frac{dR}{dt},\qquad(2)$ 

<sup>§</sup> E-mail address: g8707@gsj.go.jp

$$R = \left(\frac{1}{2} \frac{\beta}{\beta - 1} \frac{C_{Al,eq}}{(2/\nu) - C_{Al,eq}} SDt\right)^{1/2}.$$
 (7)

Equation 7 gives a direct estimate of the radius of garnet due to diffusion-controlled growth. The growth rate of Carlson (1989) is proportional to the enlargement of the depleted zone. Carlson *et al.* (1995) assumed that  $R^{dpl}$  is given by the diffusion length as follows:

$$R^{dpl} = (Dt)^{1/2} \,. \tag{8}$$

Comparing Eq. 7 with Eq. 4 and 8, the  $C_{Al,eq}$  becomes

$$C_{Al,eq} = \frac{4}{v} \frac{\beta - 1}{S\beta^3 + 2\beta - 2} \,. \tag{9}$$

Carlson (1989) obtained the value of  $\beta$  by fitting a crystal-size distribution. When one obtains the value of  $\beta$  and *S*, the value of  $C_{Al,eq}$  is automatically fixed by Eq. 9. Therefore, Carlson (1989) and Carlson *et al.* (1995) cannot independently choose a value of  $C_{Al,eq}$  with their kinetic model.

I estimated the value of supersaturation *S* using differences in chemical potential between reactants and products. I assumed that the reactants equilibrated with the diffusive medium in the non-depleted region. The change in Gibbs free energy of dissolution of the reactants,  $\Delta G_{\text{react}}$ , into the diffusive medium becomes

$$\Delta G_{react} = \frac{2}{3} \mu_{chl} + \frac{4}{3} \mu_{qtz} - 2\Re T \ln a C_{Al,m} - \mu_{other} = 0, (10)$$

Here, I assumed that the diffusive medium is an ideal solution,  $\Re$  is the gas constant,  $\mu_i$  is the chemical potential of mineral *i*,  $\mu_{other}$  is the chemical potential of chemical species dissolved in the diffusive medium (excluding ideal mixing part of Al), *a* is a constant that is a factor to convert from concentration to mole fraction ( $X_{Al} = a C_{Al}$ ). The change in Gibbs free energy of the products,  $\Delta G_{prod}$ , becomes,

$$\Delta G_{prod} = \mu_{grt} + \frac{8}{3} \mu_{H2O} - 2\Re T \ln a C_{Al,eq} - \mu_{other} = 0.$$
(11)

Because growth is controlled by the sluggish diffusion of Al, the concentration of the other elements is constant through the reactants region and the products region. This constancy implies that  $\mu_{other}$  in Eq. 10 has the same value as that in Eq. 11. Using Eqs. 10 and 11, the concentration of Al becomes,

$$C_{Al,m} = \frac{1}{a} Exp\left(\frac{(2/3)\mu_{chl} + (4/3)\mu_{qlz} - \mu_{other}}{2\Re T}\right), (12)$$

$$C_{Al,eq} = \frac{1}{a} Exp\left(\frac{\mu_{grl} + (8/3)\mu_{H2O} - \mu_{other}}{2\Re T}\right) \cdot (13)$$

From Eqs. 12 and 13, the supersaturation S becomes,

$$S = \frac{C_{Al,m}}{C_{Al,eq}} - 1,$$
  
=  $Exp\left(\frac{\Delta\mu}{2\Re T}\right) - 1,$  (14)

where  $\Delta \mu = (2/3) \mu_{chl} + (4/3) \mu_{qtz} - \mu_{grt} - (8/3) \mu_{H20}$ . The value of  $\Delta \mu$  was given by Carlson (1999). Using the value of  $\Delta \mu$  (1 kJ/mole for  $\Delta T = 5^{\circ}$ C, and 10 kJ/ mole for  $\Delta T = 50^{\circ}$ C, where  $T = T_{eq} = 490^{\circ}$ C at 5 kbar), S = 0.082 for  $\Delta T = 5^{\circ}$ C and S = 1.095 for  $\Delta T = 50^{\circ}$ C, were obtained.

With the input of the value of *S*,  $\beta = 2.85$  [from Carlson (1989)] and  $v = 1.20 \times 10^5$  mm<sup>3</sup>/mole into Eq. 9,  $C_{Al,eq}$  becomes  $1.1 \times 10^{-5}$  and  $2.1 \times 10^{-6}$  mole/mm<sup>3</sup>. These values are about seven or eight orders of magnitude greater than the appropriate value of concentration Al in the medium ( $C_{Al,eq} = C_{eff\infty} = 1.7 \times 10^{-13}$  mole/mm<sup>3</sup>) according to Carlson (1999). It is clear that Carlson's choice of the value of Al concentration is inconsistent with the kinetic model of Carlson (1989) and Carlson *et al.* (1995). Moreover, there is no reason why one uses a very high concentration for diffusion-controlled growth and does not use such a value for Ostwald ripening. This is the most important flaw in the set of values estimated by Carlson (1999).

Next, I calculated the length of time for diffusioncontrolled growth using Carlson's set of appropriate values. Using  $\beta = 2.85$  and Carlson (1999)'s set of values of parameters eleven orders of magnitude smaller than that of Miyazaki (1996),  $C_{Al,eq} = C_{eff\infty} = 1.7 \times 10^{-13} \text{ mole/mm}^3$ ,  $D = D_{eff} = 5.1 \times 10^{-21} \text{ m}^2/\text{s} = 1.61 \times 10^{-7} \text{ mm}^2/\text{year}$ , the time of growth for a grain of garnet 1 mm in radius is given by Eq. 7 as follows:  $t = 7.22 \times 10^{14}$  years (for S = 1.095) and  $t = 9.64 \times 10^{15}$  years (for S = 0.082). These results shows that a grain of garnet 1 mm in radius cannot be produced during the geological time-scale by diffusion-controlled growth. Therefore, if one use the Carlson's appropriate set of values, the case is not only against Ostwald ripening, but also against the nucleation-and-growth model of Carlson (1989) and Carlson *et al.* (1995).