A CRYSTAL-CHEMICAL APPROACH TO THE COMPOSITION AND OCCURRENCE OF VANADIUM MINERALS†

MICHAEL SCHINDLER§ AND FRANK C. HAWTHORNE§

Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada

WERNER H. BAUR

Department of Geophysical Sciences, University of Chicago, Chicago, Illinois 60637, U.S.A.

ABSTRACT

We introduce a crystal-chemical approach to the composition and occurrence of vanadium minerals. Here, the structure of a mineral is divided into two parts: the structural unit with bonds of higher bond-valence, and the interstitial complex, \([\[m\]M\]^+ a \[n\]M\(^{2+}\) b \[l\]M\(^{3+}\) c (H\(_2\)O)\(^d\) (H\(_2\)O)\(^e\) (OH)\(^f\)] (a+2b+3c–f)+\), which connects the structural units to form a continuous structure. Average coordination numbers of oxygen in structural units of vanadium minerals are in the range [2.75] to [4]. There are characteristic ranges of average O-coordination numbers for specific structural units, and these values can be used to calculate the range of Lewis basicities of structural units in vanadium minerals. The characteristic Lewis basicities explain why some interstitial cations occur, and some do not occur, with a specific structural unit. Furthermore, the maximum and minimum number of interstitial transformer (H\(_2\)O) groups can be predicted. The occurrence of different states of hydration in vanadium minerals is rationalized via bond-valence theory. Here, Lewis basicities and effective Lewis acidities of structural components in vanadium minerals can explain detailed structural changes during dehydration. The average basicity of a structural unit is independent of the average O-coordination number, and can be compared to structural units in minerals with different interstitial cations and hydration states. With increasing polymerization, there is a decrease in the average basicity of the structural unit. Examination of the conditions of crystallization of vanadate minerals and synthetic phases shows that the average basicity of the structural unit correlates with the pH of the environment of crystallization. The average basicity of aqueous species in a solution correlates linearly with the pH at the maximum concentration of the species in solution.

Keywords: vanadium minerals, bond-valence theory, hydration states, pH, crystallization, Eh–pH diagrams.

SOMMAIRE

Nous adoptons une approche cristallochimique pour traiter de la composition et du mode de formation des minéraux de vanadium. Pour ce faire, nous considérons la structure d’un minéral en deux parties: l’unité structurale contient des liaisons ayant une valence de liaison plus élevée, et le complexe interstitiel, \([\[m\]M\]^+ a \[n\]M\(^{2+}\) b \[l\]M\(^{3+}\) c (H\(_2\)O)\(^d\) (H\(_2\)O)\(^e\) (OH)\(^f\)] (a+2b+3c–f)+\), assure la connectivité des unités structurales afin de former une structure continue. La coordination moyenne des atomes d’oxygène dans les unités structurales des minéraux de vanadium va de [2.75] à [4]. Il y a des intervalles caractéristiques de la coordination de l’oxygène pour des unités structurales spécifiques. Ces valeurs servent à calculer l’intervalle de basité de Lewis des unités structurales. La basité caractéristique de Lewis explique pourquoi certains cations interstitiels sont incorporés et non pas d’autres, avec une unité structurale spécifique. De plus, nous pouvons prédire le nombre maximum et minimum de groupes (H\(_2\)O) transformateurs interstitiels. Nous nous servons de la théorie des valences de liaisons pour expliquer la présence de différents degrés d’hydratation parmi les minéraux de vanadium. Les valeurs de la basité de Lewis et de l’acidité effective de Lewis des composants structuraux rendent compte des changements structuraux au cours d’une déshydratation. La basité moyenne d’une unité structurale serait indépendante de la coordination moyenne de l’oxygène, et se compare à celle des unités structurales de minéraux ayant des cations interstitiels et des degrés d’hydratation différents. A mesure qu’augmente le degré de polymérisation, il y a une diminution de la basité moyenne de l’unité structurale. Un examen des conditions de cristallisation des minéraux vanadatés et des phases synthétiques montre que la basité moyenne d’une unité structurale est en corrélation avec l’acidité du milieu de cristallisation. La basité moyenne des espèces présentes dans une solution aqueuse montre une corrélation linéaire avec le pH à concentration maximale de ces espèces en solution.

(Traduit par la Rédaction)

Mots-clés: minéraux de vanadium, théorie des valences de liaison, états d’hydratation, pH, cristallisation, diagrammes Eh–pH.

§ E-mail addresses: schindl0@cc.umanitoba.ca, frank_hawhorne@umanitoba.ca

† Dedicated to the memory of Howard T. Evans, Jr. (1919–2000). Dr. Evans served as Associate Editor of this journal over the period 1985–1987.
In a pioneering paper, Evans & Garrels (1958) examined the occurrence of vanadium minerals in the ore deposits of the Colorado Plateau. They used information from vanadium-mineral parageneses, vanadate synthesis and polyvanadate anions in aqueous solution to assign stability fields to vanadium minerals on an Eh–pH diagram. In the sedimentary rocks of the Colorado Plateau, vanadium is transported primarily by groundwater, and has the oxidation states 4+ and 5+ (Wanty & Goldhaber 1992). There, the total concentration of V is in the range 9.8–240 μmol, and polymerized vanadate species are not stable. Wanty & Goldhaber (1992) calculated an Eh–pH diagram for vanadate anions in a solution with V$_{\text{total}} = 10$ μmol; the corresponding ions are as follows: for V$^{5+}$: VO$_4^{3-}$, HVO$_4^{2-}$, H$_2$VO$_4^-$, H$_3$VO$_4^-$ and H$_4$VO$_5^-$; for V$^{4+}$: VO$_4^{2-}$, VO(OH)$_2^-$; for V$^{3+}$: VOH$_2^+$ and V(OH)$_2^+$. Here, we use bond-valence theory to establish a connection between the structural arrangements in vanadate minerals and their pH conditions of crystallization.

THE CLASSIFICATION OF VANADIUM MINERALS

Evans & White (1987) developed a classification scheme for vanadium minerals according to their crystal-chemical character. They subdivided 119 vanadium minerals into twelve different groups: (1) sulfides, (2) species with isolated tetrahedra, (3) silicates, (4) species with isolated vanadate chains, (5) square-pyramidal (VO)$^{5+}$ species, (6) uranyl–divanadate (V$_2$O$_8$)$^{6-}$ layer complexes, (7) isopoly- and heteropolymeric complexes, (8) low-valence (V$^{4+}$O$_4$)$^{3-}$ anhydrous oxides, (10) vanadium bronzes, (11) aluminium layer vanadates, and (12) vanadates of uncertain type. Our particular interest concerns vanadium minerals and their pH conditions of crystallization.

SYNTHESIS OF VANADIUM COMPOUNDS FROM AQUEOUS SOLUTIONS

Synthesis of vanadates by Norbald (1873), Manasse (1887) and Ditte (1888) showed that polymerization of (VO$_4$)$^{3-}$ polyhedra increases with acidification of the parent aqueous solution. Synthetic vanadate compounds in the systems Na$_2$–V$^{5+}$–H$_2$O and Cu$^{2+}$–V$^{5+}$–H$_2$O have been characterized by Baker (1885), Kiehl & Manfredo (1937) and Marvin & Magin (1959), respectively. The earliest work on polyvanadate anions in aqueous solution was done by Jander & Jahr (1933), Ducret (1951) and Rossotti & Rossotti (1956); they gave detailed information on pH values and equilibrium constants for different polymerization reactions in aqueous solution. Pope (1983) reviewed the aqueous chemistry of isopolyvanadates, and concluded that the species [VO$_4$]$^{3-}$, [HVO$_4$]$^{2-}$, [H$_2$VO$_4$]$^-$, [H$_3$VO$_4$], [V$_2$O$_7$]$^{4-}$, [V$_4$O$_9$], [V$_4$O$_9$]$^{3-}$, [V$_4$O$_9$]$^{4-}$, [V$_2$O$_7$]$^{3-}$, [V$_2$O$_7$]$^{4-}$ in various states of protonation, and [VO$_3$]$^{2-}$, occur in aqueous solution. Other reviews on aqueous polyvanadate chemistry have been presented by Heath & Howarth (1981), Peetersson et al. (1983, 1985) and Tytko & Mehmk (1983).

COORDINATION AND CHARACTERISTIC BOND-LENGTHS IN VANADIUM MINERALS

Evans (1969) surveyed the crystal chemistry of vanadium minerals and examined the types of (V$_n$O$_p$)$_9$ coordination polyhedra that they contain. Shannon & Calvo (1973a) discussed the bond-length variation of tetrahedrally coordinated V$^{4+}$ and calculated a grand mean V$^{4+}$–O bond length of 1.72(1) Å. Schindler et al. (2000) discussed bond-length variation in V$_2$O$_3$, V$_4$O$_9$, and (V$^{5+}$O$_3$)$_5$ and (V$^{5+}$O$_3$)$_6$ (n = 5, 6) polyhedra. For V$_2$O$_3$, V$_4$O$_9$ (n = 5, 6) polyhedra, the bond-length distributions show distinct populations that were used to define vanadyl, equatorial and trans V–O bonds. Schindler et al. (2000) used these definitions to define different coordinations of V in the form of the notation [a + b + c], where the sequence of numbers gives the number of vanadyl (a), equatorial (b) and trans (c) bonds, respectively. Thus, the coordination [2 + 2 + 2] indicates that there are 2 vanadyl, 2 equatorial and 2 trans bonds.

POLYMERIZATION IN VANADATE MINERALS

Schindler et al. (2000) examined which linkages [vanadyl–vanadyl, vanadyl–equatorial, vanadyl–trans, equatorial–equatorial, equatorial–trans and trans–trans] of (VO$_4$) polyhedra are possible in terms of permissible bond-valence sums, and which linkages actually occur in minerals. These linkages were denoted as [n]V$^{2+}$–O$_8$–[n]V$^{2+}$, where [n] denotes the coordination, (e.g.,
THE COMPOSITION AND OCCURRENCE OF VANADIUM MINERALS

[1 + 4 + 1] or [2 + 3], b is the type of bond between vanadium and oxygen (v: vanadyl, eq: equatorial, t: trans), and Z is the valence state of vanadium (4+ or 5+). For example, the notation of the linkages in the [VO₃] chain of rossite, Ca(VO₃)₂(H₂O)₄ (Ahmed & Barnes 1963) would be [1+4]V⁵⁺–eqOeq–[1+4]V⁵⁺ and [1+4]V⁵⁺–eqOeq–[2+3]V⁵⁺ (Fig. 1a). These terms denote linkage through a common O-atom between equatorial bonds from V⁵⁺ in [1 + 4]-coordination, and linkage through a common O-atom between an equatorial bond from V⁵⁺ in [1 + 4]-coordination and from V⁵⁺ in [2 + 3]-coordination, respectively.

Furthermore, Schindler et al. (2000) showed that, from 132 possible combinations of binary [6]V²⁻–O₆–[6]V²⁻ linkages, only 26 occur in minerals. They argued that one reason might be that many V⁴⁺ and V⁵⁺ minerals occur as secondary phases in the oxidation zone of rocks containing V³⁺ minerals. Under these conditions, 5+ is the most stable oxidation state for vanadium, accounting for its dominant role in the crystal chemistry of vanadium minerals.

Typical binary linkages involving V⁵⁺ occur in pascoite, Ca₃V₁₀O₂₈(H₂O)₁₆, which contains isolated heteropolyhedral [V₁₀O₃₈]⁶⁻ decavanadate polyanions (Swallow et al. 1966). Here, ([1+4+1]V⁵⁺O₆) and ([2+2+2]V⁵⁺O₆) polyhedra link by equatorial–equatorial, vanadyl–equatorial and trans–trans bonds (Fig. 1d). Another heteropolyhedral polyanion, [AlV⁵⁺₁₂V⁴⁺₂O₄₀]⁹⁻, occurs in the structure of sherwoodite, Ca₄.₅[AlV₁₄O₄₀](H₂O)₂₈ (Evans & Konnert 1978; Fig. 1e). In the center of the polyanion, an (AlO₆) octahedron is surrounded by two ([1+4+1]V⁵⁺O₆) bipyramids and twelve ([2+2+2]V⁵⁺O₆) polyhedra. Here, the polyhedra are linked by the rare binary linkages [1+4+1]V⁵⁺–eqOeq–[2+2+2]V⁵⁺ and [1+4+1]V⁵⁺–eqOeq–[2+2+2]V⁵⁺. The layer structure of carnotite, K₂(UO₂)V₂O₈(H₂O)₃, is built from edge-
sharing $(^1/4^1\{\text{V}^5\{\text{O}_3\})$ pyramids, $(^1/4^1\{\text{V}^5\{\text{O}_3\})$, connected by (UO_2) polyhedra (Appleton & Evans 1965; Fig. 1c).

The natural vanadium bronzes may be classified according to whether the layers contain connected tetra-vanadate chains, divanadate chains or combinations of the two (Evans & Hughes 1990; Figs. 1a, 1b). Examples are hewettite, Ca$(\text{V}_6\text{O}_{16})(\text{H}_2\text{O})_6$ (tetra-vanadate + divanadate chains; Evans 1989), corvusite, (Ca,Fe)$(\text{V}_2\text{O}_5)(\text{H}_2\text{O})_3$(tetra-vanadate chains; Evans et al. 1994), and shcherbinaite, V$_2$O$_5$ (divanadate chains; Hughes & Finger 1983). These are characterized by linkages between vanadyl-trans, equatorial-trans, equatorial-equatorial and trans-trans bonds of $^{[2+3]}\text{V}^5$, $^{[2+2]}\text{V}^5$, $^{[1+4]}\text{V}^5$, and $^{[1+4]+1}\text{V}^4$ coordinations.

General Crystal-Chemical Considerations

Synthesis of vanadium compounds in aqueous solution, characterization of polyvanadate species in aqueous solution, and examination of vanadium–mineral parageneses give information on the conditions in which structural units in vanadium minerals are formed. The classification scheme for vanadium minerals, examination of $\text{V}–\text{O}$ bond-length variations, and the types of coordination polyhedra and binary linkages give details about the structure and composition of structural units in minerals. From these considerations emerge the following questions:

1. Can we predict the pH value at which a vanadium mineral was formed, when we know the chemical composition and bond topology of its structural unit?
3. What controls the number of H_2O groups and the type of interstitial cations in a structure?
4. How does the structural unit respond to hydration and dehydration?

In order to answer these questions, we have to define specific bond-valence parameters for the structural units and the interstitial cations. These parameters are characteristic bond-valence, Lewis-acid and Lewis-base strengths, Lewis acidity and average basicity.

Bond-valence theory

Brown (1981) defined the characteristic bond-valence of a cation as the average bond-valence around that cation in a wide range of crystal structures. The characteristic bond-valence of a cation correlates with its electronegativity. Electronegativity is a measure of the electrophilic strength of the cation, and the correlation with characteristic bond-valence indicates that the latter is a measure of the Lewis-acid strength of the cation. Thus, Brown (1981) defined the Lewis-acid strength of a cation as its characteristic bond-valence, and the Lewis-base strength of an anion as its characteristic bond-valence. From this emerges the valence-matching principle: stable structures will form when the Lewis-acid strength of a cation closely matches the Lewis-base strength of an anion.

Lewis basicities of structural units

Hawthorne (1985) introduced the idea of defining the structural unit as a complex (usually) oxyanion and the interstitial species as a complex (generally hydrated) cation. This binary representation of a crystal structure (Hawthorne 1990, 1992) allows examination of the interaction between a structural unit and the interstitial species with the valence-matching principle. Hawthorne (1997) described a scheme to calculate Lewis basicities of structural units in minerals.

An example: Hewettite, Ca$(\text{V}_6\text{O}_{16})(\text{H}_2\text{O})_6$ (Evans 1989), contains the structural unit $^{[1+3]}\text{V}^5\{\text{O}_5\}$. Calculation of the Lewis basicity requires knowledge of the coordination numbers of the cations and anions in the structural unit. The coordination number of a cation is given by the type of (VO_n) polyhedra, and the average O-coordination number can be calculated from the structural data, or predicted if no structural data are available. In the structural unit of hewettite, the average coordination number of O is [3]. Thus, there are $16 \times 3 = 48$ bonds in the overall crystal structure that involve O-atoms of the structural unit. Within the structural unit, there are 34 bonds: 6×4 bonds occur in the (V^5O_4) polyhedra, and 2×5 in the (V^5O_5) polyhedra; there are no hydrogen bonds in the structural unit. To achieve a mean anion-coordination number of [3], the number of additional bonds required from outside the structural unit is $48 - 34 = 14$. The Lewis basicity of a structural unit (Hawthorne 1997) is defined as the charge of that unit divided by the number of bonds required by that unit to achieve its ideal coordination of O: for $^{[1+3]}\text{V}^5\{\text{O}_5\}^2^-$, the Lewis basicity is $2/14 = 0.143$ vu. This Lewis basicity does not match the Lewis acidity of Ca (0.27 vu), and therefore the structure contains interstitial H_2O groups that act as bond-valence transformers (Hawthorne 1992).

The transformer effect of (H_2O) groups

Hawthorne (1992) described the different possible roles of (H_2O) groups in crystal structures, and drew a strong distinction between (H_2O) as part of the structural unit and (H_2O) as part of the complex interstitial species. Evans (1939) designated the role of (H_2O) as “to coordinate the cations and thereby effectively surround them with a neutral shell which increases their radius and enables their charge to be distributed over a greater number of anions”.

Hawthorne (1992) described the role of (H_2O) as a bond-valence transformer in minerals, and showed that interstitial (H_2O) can, in some cases, be quantitatively predicted on this basis. However, Hawthorne (1992) did not consider all possible
Let a cation, M, bond to an anion X (Fig. 2a); the anion X receives a bond-valence of v valence units (vu) from the cation, M. Consider another cation, M, that bonds to an (H_2O) group, which, in turn, bonds to two anions, X (Fig. 2b). In the second case, the O-atom receives a bond-valence of v vu from the cation, M, and its bond-valence requirements are satisfied by two short O–H bonds of valence $(1–v/2)$ vu. To satisfy the bond-valence requirements around each H atom, each H forms at least one H bond with its neighboring anions. In Figure 2b, one of these hydrogen bonds involves the X anion, which thus receives a bond-valence of one half what it would receive were it bonded directly to the M cation. Thus the (H_2O) group acts as a bond-valence transformer, causing one bond (bond valence = v vu) to be split into two weaker bonds (bond valence = $v/2$ vu).

Consider next the situation where two cations, M, bond to an (H_2O) group, which, in turn, bonds to two anions X (Fig. 2c). Here the oxygen atom receives a bond valence of $2v$ vu from the two cations, and its bond-valence requirements are satisfied by two short O–H bonds, each of valence $(1–v)$ vu. To satisfy the bond-valence requirements of each H atom, each H forms at least one H bond with its neighboring anions. In Figure 2c, one of these H bonds involves the X anion, which thus receives the same bond-valence as when it was bonded directly to one M cation (Fig. 2a). In this case, therefore, the (H_2O) group does not act as a bond-valence transformer.

The valence-matching principle

As we have seen above, the valence-matching principle allows us to examine the quantitative interaction between the structural unit and the interstitial species in complex minerals.

An example: Let us again consider hewettite. The bond valence of the Ca–(H$_2$O) bond is $Z/cn = 2/7 = 0.286$ vu, where cn is the coordination number of the cation. Each (H$_2$O) is bonded to only one Ca atom, and hence each (H$_2$O) group acts as a bond-valence transformer. Each O–H bond has a bond-valence of $(2 – 0.286)/2 = 0.857$ vu, and therefore, each H atom needs 0.143 vu from a hydrogen bond to satisfy its bond-valence requirement. From this calculation, it is apparent that each H$_2$O group linked to only one Ca atom transforms the Ca–H$_2$O bond (0.286 vu) into two weaker bonds (0.143 vu). In the hewettite structure, Ca is bonded to six H$_2$O groups and one O atom of the structural unit. Thus, the number of bonds from Ca to the structural unit is $6/11003$ $2 + 1 = 13$, and the effective Lewis acidity of the [Ca(H$_2$O)$_6$O] group is $2/13 = 0.15$ vu. This number closely matches the Lewis basicity of the structural unit, as required by the valence-matching principle, and hewettite is a stable mineral.

Complex Interstitial Cations

A general interstitial complex can be written as

$$[\text{M}^+]_a [\text{H}_2\text{O}]_b [\text{M}^2+]_c [\text{M}^3+]_d [\text{H}_2\text{O}]_e [\text{OH}]_f [\text{H}]^{a+2b+3c–f+}\Delta$$

where M is any type of interstitial mono-, di-, and trivalent cation, d denotes the number of (H$_2$O) groups that act as bond-valence transformers (i.e., split one M–O bond into two weaker M–H$_2$O–O bonds), e denotes the number of (H$_2$O) groups bonded to two interstitial cat-

![Figure 2](image-url)
ions or bonded to one interstitial cation and receiving one hydrogen bond from another interstitial (H₂O) group. The (H₂O) groups denoted by d do not act as bond-valence transformers, and there is no splitting of an M–O bond. To distinguish these two types of (H₂O) groups, we name the first transformer (H₂O) groups and the second non-transformer (H₂O) groups. We do not differentiate between non-transformer (H₂O) groups bonded to two M cations and those bonded to one M-cation and receiving one hydrogen bond from another (H₂O) group. The (OH) groups in the last position are bonded to interstitial Oxygen atoms of the structural unit that are bonded to the interstitial cations (H₂O) groups, and usually occur only with trivalent interstitial cations (e.g., REE; rare-earth elements). Oxygen atoms of the structural unit that are directly bonded to interstitial cations (H₂O) groups, four non-transformer (H₂O) groups and no (OH) groups. There are (a – n – e) O-atoms of the structural unit that are bonded to the interstitial cation. The number of bonds from the interstitial complex to the structural unit can be written as follows:

$$\Sigma \text{bonds} = (am + bn + cl) + d - f(q - 1)$$

Thus, the number of bonds from the interstitial complex $[Ca^{2+}(H₂O)₂(H₂O)₄]^{2+}$, which has two transformer (H₂O) groups, four non-transformer (H₂O) groups and no (OH) groups, to the structural unit is $0 + 8 + 0 + 2 - 0 = 10$.

The effective Lewis acidity of a complex can be defined as its charge divided by the number of bonds to the structural unit: $(a + 2b + 3c - f) / (am + bn + cl) + d - f(q - 1)$. For example, the effective Lewis acidity of the $[Ca^{2+}(H₂O)₂(H₂O)₄]^{2+}$ complex is $(0 + 2 + 0 - 0) / (0 + 8 + 0 + 2 - 0) = 0.20$ mmol. Examples of interstitial complexes in Ca-vanadates are listed in Table 1, together with their effective Lewis acidities and the Lewis basicities of the corresponding structural units.

Comparison of the effective Lewis acidities and Lewis basicities of calcium vanadates in Table 1 shows them to be almost equal within specific structures. This is the case because we have calculated these parameters from the observed structural data. This approach is extremely useful in understanding the structural roles of all the different components of the structural unit and the interstitial species. If we wish to predict aspects of structure using this approach (e.g., in the absence of structural data), we need to predict some of the component parameters in these calculations. Thus Hawthorne (1985, 1990, 1997) showed how interstitial cation chemistry and degree of hydration can be predicted with a fair degree of success by using predicted (rather than observed) mean coordination numbers for O. The first approach (i.e., using observed coordination numbers for O-atoms) is used here in order to examine more closely the details of the structural units and interstitial complex cations in vanadate minerals.

Structural Units in Vanadium Minerals: Coordination Numbers of Oxygen

The key factor in the calculation of Lewis basicities is the average coordination number of O in the structural unit. This coordination number depends on the topology of the structural unit, and on the type and number of the interstitial components that are bonded to the structural unit. For example, we should expect that the average O-coordination numbers of a structural unit in sodium vanadates are higher than those in the corresponding calcium vanadates because (1) Na–O bonds have lower bond-valence, and therefore more Na cations can coordinate O-atoms of the structural unit, and (2) for a specific structural unit, the number of monovalent interstitial cations is twice the number of divalent interstitial cations in the corresponding Ca structures. For example, the average O-coordination number for [V₂O₇]⁻ is [4.56] in Na₅[V₂O₇](H₂O) and [3.6] in Ca₅[V₂O₇](H₂O) (Konnert & Evans 1975); for [VO₃]⁻, it is [4] in munirite, Na₅[VO₃](H₂O) (Björnberg & Hedman 1977) and [3.2] in metarossite (Kelsey & Barnes 1960); for [V₁₀O₂₈]⁻, it is [3.67] in Na₆[V₁₀O₂₈](H₂O)₁₈ (Durif et al. 1980), and [3.5] in pascoite.

Table 1. Ca-vanadate formed in aqueous solution: the interstitial $[Ca₅(H₂O)₇(H₂O)₉(OH)₉]^{30-}$ complex, its effective Lewis acidity ($<\alpha>^{2+}$), AVERAGE COORDINATION NUMBER OF OXYGEN (\bar{n}) AND LEWIS BASICITY ($\bar{b})$ OF THE STRUCTURAL UNIT

<table>
<thead>
<tr>
<th>Compound</th>
<th>Formula</th>
<th>$[Ca₅(H₂O)₇(H₂O)₉(OH)₉]^{30-}$ complex</th>
<th>$<\alpha>$ [mmol]</th>
<th>\bar{n} [2]</th>
<th>\bar{b} [mmol]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthetic</td>
<td>Ca₅V₁₀O₇₉</td>
<td>$[Ca₅(H₂O)₇(H₂O)₉(OH)₉]^{30-}$</td>
<td>0.23</td>
<td>3.6</td>
<td>0.23</td>
</tr>
<tr>
<td>Mietarosside</td>
<td>Ca₅[V₁₀O₇]³⁺</td>
<td>$[Ca₅(H₂O)₇(H₂O)₉(OH)₉]^{30-}$</td>
<td>0.22</td>
<td>3.2</td>
<td>0.22</td>
</tr>
<tr>
<td>Rossete</td>
<td>Ca₅[V₁₀O₇]³⁺</td>
<td>$[Ca₅(H₂O)₇(H₂O)₉(OH)₉]^{30-}$</td>
<td>0.18</td>
<td>3.5</td>
<td>0.18</td>
</tr>
<tr>
<td>Pascoite</td>
<td>Ca₅[V₁₀O₇]³⁺</td>
<td>$[Ca₅(H₂O)₇(H₂O)₉(OH)₉]^{30-}$</td>
<td>0.18</td>
<td>3.5</td>
<td>0.16</td>
</tr>
<tr>
<td>Hewettite</td>
<td>Ca₅[V₁₀O₇]³⁺</td>
<td>$[Ca₅(H₂O)₇(H₂O)₉(OH)₉]^{30-}$</td>
<td>0.15</td>
<td>3.0</td>
<td>0.14</td>
</tr>
<tr>
<td>Melanovanadite</td>
<td>Ca₅[V₁₀O₇]³⁺</td>
<td>$[Ca₅(H₂O)₇(H₂O)₉(OH)₉]^{30-}$</td>
<td>0.17</td>
<td>3.0</td>
<td>0.17</td>
</tr>
</tbody>
</table>
THE COMPOSITION AND OCCURRENCE OF VANADIUM MINERALS

Table 2. Characteristic ranges of average coordination numbers of oxygen (νO) in structural units of vanadium minerals

<table>
<thead>
<tr>
<th>Structural unit</th>
<th>νO</th>
<th>Examples</th>
<th>Formula</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>[VO₄]³⁻</td>
<td>2.75-3.75</td>
<td>schmuckerite</td>
<td>Fe[V₂O₇(H₂O)]</td>
<td>Schindler & Hawthorne (1999)</td>
</tr>
<tr>
<td>[V₅O₁₈]⁻²⁻</td>
<td>3.2-4.0</td>
<td>metaschist</td>
<td>Ca₉[V₅O₁₈(H₂O)]</td>
<td>Kelsey & Barnes (1980)</td>
</tr>
<tr>
<td>Polyvanadate cluster</td>
<td>~3.4-3.6</td>
<td>pascoite</td>
<td>Ca₆[V₅O₁₈(H₂O)]</td>
<td>Evans & Konnert (1978)</td>
</tr>
<tr>
<td>V-bronze minerals</td>
<td>~2.8-3.2</td>
<td>melaniewittelite</td>
<td>Ca₂[V₂O₇(H₂O)]</td>
<td>Quraishi (1961)</td>
</tr>
</tbody>
</table>

Note: Some synthetic materials exceed this range of coordination numbers [e.g., Na₄V₂O₇(H₂O) with a mean O-coordination number of 4.56].

Characteristics range of Lewis basicity of a structural unit

Hawthorne (1997) calculated the Lewis basicity of a structural unit by specifying an ideal coordination number for O; the result is a specific Lewis basicity for the structural unit. However, vanadates exhibit a range of O coordination numbers (as do other minerals), suggesting that a specific structural unit exhibits a range of Lewis basicity. This observation is in accord with the fact that a mineral is stable over a range of pH, rather than at a specific single value. If we use the range of O-coordination numbers in a structural unit (Table 2), we can calculate the range of Lewis basicity for this structural unit in minerals. According to the valence-matching principle, the effective Lewis acidity has to match closely the Lewis basicity; thus a stable structure occurs if the average effective Lewis acidity of an interstitial cation complex is in the range of Lewis basicity of a given structural unit. The characteristic ranges of Lewis basicities for different structural units are listed in Table 3.

Occurrence of interstitial cations in vanadium minerals

Applying the valence-matching principle to vanadium minerals allows us to systematize the effective Lewis acidities of [M⁺ₙ][M²⁺ₙ][M³⁺ₙ][OH] (H₂O) complexes that match the range of Lewis basicity of a specific structural unit.

Vanadium minerals with isolated [VO₄]³⁻ and [V₂O₇]⁴⁻ groups

For these structural units, the valence-matching principle requires that the effective Lewis acidities of the cation complexes are in the range 0.22-0.43 μv (Table 3). Thus, the corresponding interstitial complexes cannot contain:

- monovalent cations with coordination numbers greater than 4,
- divalent cations with coordination numbers greater than 9.

For example, an interstitial complex that contains a monovalent cation in octahedral coordination has a maximum effective Lewis acidity of 0.17 μv. This value does not match the range of Lewis basicities of isolated [VO₄]³⁻ and [V₂O₇]⁴⁻ groups; thus we should not expect a vanadium mineral to exist with [VO₄]³⁻ or [V₂O₇]⁴⁻ as the structural unit and a [6]-coordinated interstitial monovalent cation. Possible interstitial species are divalent cations in [4]- to [9]-coordinations and trivalent cations with coordination numbers higher than 6. On the basis of the valence-matching principle, these constraints predict that such compounds as Ca₅([VO₄]OH) (Kutoglu 1974) and Ca₃[V₂O₇]·(H₂O) (Konner & Evans 1975) are potential vanadium minerals, whereas such compounds as Na₃[VO₄] and K₃[VO₄] do not exist.
(Olazcuaga et al. 1975) are not potential minerals. Vanadium minerals with [VO$_3$]$^{–}$ or [V$_2$O$_7$]$^{4–}$ as structural units normally occur with such interstitial cations as Pb$^{2+}$, Cu$^{2+}$, Fe$^{3+}$, Mn$^{2+}$, Zn, Fe$^{2+}$, Bi and Y (Table 4).

Vanadium minerals with more highly polymerized (V$_2$O$_7$) structural units

The Lewis basicities of more highly polymerized structural units, such as [VO$_3$]$^{–}$, [AlV$_4$O$_{12}$]$^{9–}$, [V$_4$O$_{12}$]$^{6–}$, [V$_6$O$_{13}$]$^{5–}$ and [V$_8$O$_{16}$]$^{4–}$, are in the range 0.12–0.22 μu (Table 3). The valence-matching principle predicts that the following cations will occur in the corresponding $^{[a]}$M$^+$$_{a}$ $^{[b]}$M2$_{b}$ $^{[c]}$M3$_{c}$ (H$_2$O)$_d$ (H$_2$O)$_e$ (OH)$_f$ complexes in vanadium interstitial complexes:

- monovalent cations with coordination numbers [5], [6] and [7] and maximum numbers of transformer (H$_2$O) groups (d) of 3, 2 and 1, respectively;
- [8]-coordinated monovalent cations with no transformer (H$_2$O) groups (d = 0);
- monovalent cations in [4]-coordination with a minimum of one transformer (H$_2$O) group (d > 0);
- divalent cations in [6]-, [7]- and [8]-coordination with minimum numbers of transformer (H$_2$O) groups of 3, 2 and 1, respectively;
- trivalent cations only with interstitial (OH) groups, with coordination numbers [8], [10] and [12], and with minimum numbers of transformer (H$_2$O) groups of 6, 4 and 2, respectively.

Examples: (1) An interstitial complex with a trivalent REE-cation in [10]-coordination would have an effective Lewis acidity of 0.30 μu without transformer (H$_2$O) groups. Thus, it requires a minimum of four transformer (H$_2$O) groups to give an effective Lewis acidity of 0.6 + 0.6 + 0.8 = 2.0 μu that falls within the range of Lewis basicity (0.12–0.22 μu) of the more highly polymerized structural units.

(2) An interstitial complex with Al in [6]-coordination would have a minimum Lewis acidity of 0.25 μu without interstitial (OH) groups. Thus, there must be one (OH) group for each Al in the interstitial complex. This interstitial (OH) group must be bonded to at least two Al atoms in order to satisfy its own bond-valence requirements. The incident bond-valence sum at the O atom could be 0.6 + 0.6 + 0.8 = 2.0 μu (0.8 μu is contributed by the H-atom). The charge on the [Au]$^{[b]}$Al$_2$(H$_2$O)$_d$(OH)$_e$ complex is now: 2 \times 3$^+$. \times 2 1$^–$ = 4$^–$, and the valence-matching principle requires that six of the ten remaining ligands are transformer (H$_2$O) groups. This would result in an effective Lewis acidity of 4 / 12 + 6 = 0.22 μu, matching the Lewis basicity of the highly polymerized structural units.

(3) An interstitial complex with a [7]-coordinated divalent cation would have a Lewis acidity of 0.29 μu without transformer (H$_2$O) groups. This Lewis acidity does not match the range of Lewis basicities of highly polymerized structural units (0.12–0.22 μu). The valence-matching principle requires that the maximum effective Lewis acidity of the interstitial [7]Ca(H$_2$O)$_d$(H$_2$O)$_e$(OH)$_f$ complex is 0.22 μu, which (for a divalent cation) means that 9 < (7 + d) < 17. Thus the [7]-coordinated divalent cation requires a minimum of two transformer (H$_2$O) groups, resulting in 7 + 2 = 9 bonds to the structural unit. Vanadium minerals with higher polymerized structural units normally occur with large interstitial cations such as Na, Ca, K and Ba (Table 4).

For some structural units in vanadium minerals (Table 3), we calculated the required number of transformer (H$_2$O) groups for interstitial complexes with M = [7]Ca, [8]Ca and [6]Na. For the higher polymerized structural units, these calculations show the following features:

- Na is coordinated by fewer transformer (H$_2$O) groups than Ca;
- interstitial complexes with Ca always contain the minimum number of transformer (H$_2$O) groups.

Structural change during dehydration: A bond-valence approach

Table 2 lists the ranges of O-coordination numbers typical of structural units in vanadium minerals; we have calculated the corresponding ranges of effective Lewis acidities for interstitial $^{[m]}$M$^+$$_{a}$ $^{[n]}$M2$_{b}$ $^{[l]}$M3$_{c}$ (H$_2$O)$_d$ (H$_2$O)$_e$ (OH)$_f$ complexes in vanadium minerals with different types of structural units. Now, we show how the structures of vanadium minerals respond to dehydration where the effective Lewis acidity of the interstitial complex changes. Structural change in vanadium minerals can be rationalized using Lewis basicities and effective Lewis acidities.

Rossite, metarossite and Ca[V$_2$O$_7$]

In rossite, Ca[V$_2$O$_7$]H$_2$O$_4$ (Ahmed & Barnes 1963), the average coordination number of O is [3.5]. Calculation of the Lewis basicity of the structural unit gives 0.18 μu. Ca is coordinated by five H$_2$O groups and three O atoms of the structural unit. Two H$_2$O groups are coordinated by two Ca atoms, and the transformer effect of H$_2$O is not operative; hence the effective Lewis acidity of the [8]Ca(H$_2$O)$_3$(H$_2$O)$_2$ complex is 2 / (3 + 3 + 2 + 3) = 0.18 μu, which matches the Lewis basicity of the structural unit (Table 3). In the transformation of rossite to metarossite, Ca[V$_2$O$_7$]H$_2$O$_4$ (Kelsey & Barnes 1960), a (longer) equatorial V–O bond in rossite transforms to a (shorter) V=O vanadyl bond in metarossite (i.e., a coordination change from $^{[1+4]}$V$_4$ to $^{[2+3]}$V$_5$). This change in vanadium coordination is induced by a change in the coordination number of the corresponding O-atom, and the average O-coordination number in the structural unit decreases from [3.5] to [3.2]. This results in an increase of Lewis basicity from 0.18 to 0.22 μu, and Ca is coordinated by three H$_2$O groups and five O-atoms of the structural unit. Once again, two H$_2$O groups are coordinated by two Ca at-
omms, resulting in an effective Lewis acidity of the \([\text{[10]}\text{Ca(H}_2\text{O)}_3\text{]}\) complex of 0.22 \text{\textit{vu}}. This matches with the Lewis basicity (0.22 \text{\textit{vu}}) of the structural unit, and metarossite is a stable compound (Table 3).

Further dehydration of metarossite would form (synthetic) \([\text{CaVO}_3\text{]}\) \(2\) \(\text{\textit{vu}}\), in which the interstitial \([\text{5}\text{Ca(H}_2\text{O)}_3\text{]}\text{(H}_2\text{O)}\text{(OH)}_3\text{]}\) complex has an effective Lewis acidity of 0.33 \text{\textit{vu}}. In \([\text{CaVO}_3\text{]}\), both \(\text{V}^{2+}\) atoms occur in \([2+3]\)-coordination, and the mean \(\text{O}\)-coordination number is \([2.7]\). Thus the structure cannot respond by transformation of equatorial to vanadyl bonds because there cannot be more than two vanadyl bonds per \(\text{V}^{2+}\) atom (Schindler \textit{et al.} 2000). Figure 1 shows the divanadate chain of the structural unit of rossite and metarossite. There are three different crystallographically independent \(\text{O}\) atoms: two \(\text{O}\) atoms that belong to vanadyl groups (\(\text{V}=\text{O}\)), and one \(\text{O}\) that links three \([2+3]\)-coordinated (\(\text{VO}_3\)) polyhedra through equatorial bonds. Here, the structural unit responds to change of the individual \(\text{O}\)-coordination numbers and bond-valence requirements with variation of the equatorial bond-lengths (\(i.e.,\) a redistribution of bond valences inside the \([2+3]\)-coordination polyhedra). Schindler \textit{et al.} (2000) examined the individual bond-length distributions of \([1+4]\), \([2+3]\) and \([1+4+1]\) coordinations of \(\text{V}^{2+}\), and showed that there is more than one maximum in the equatorial bond-length distribution for each coordination. They suggested that this variability in equatorial bond-lengths is characteristic of (\(\text{V}^{2+}\text{O}_6\)) coordinates representing different degrees of interaction between \(\text{O}(d\pi)\) and \(\text{V}(d\pi)\) orbitals. Characteristic variations in individual bond-lengths of \(\text{V}^{2+}\text{O}_6\) polyhedra can balance local bond-valence requirements caused by different effective Lewis acidities and geometries of the interstitial cation complexed.

\textit{Hewettite and metahewettite}

In hewettite, \([\text{Ca(V}_6\text{O}_{16}\text{)(H}_2\text{O})_3\text{]}\), the number of interstitial \(\text{H}_2\text{O}\) groups can vary between six and nine (Qurashi 1961); its space group is \(P2/m\), and only the lattice constants were observed to vary with the number of \(\text{H}_2\text{O}\) groups. If the number of \(\text{H}_2\text{O}\) groups drops below six (\(<\text{-5.5}\)), there is a discontinuous transition to a new structure with space group \(A2/m\). The new phase, metahewettite, has the structural formula \([\text{Ca(V}_6\text{O}_{16}\text{)(H}_2\text{O})_3\text{]}\). Use of the valence-matching principle explains the mechanism of this discontinuous phase transition in the following way. In hewettite, the Lewis basicity of the structural unit is 0.14 \text{\textit{vu}}. The interstitial \(\text{Ca}\) atom is coordinated by six transformer \(\text{H}_2\text{O}\) groups and one \(\text{O}\) atom, and hence has a Lewis acidity of 0.15 \text{\textit{vu}}. The Lewis-base strength of the structural unit approximately matches the Lewis-acid strength of the interstitial species, and thus the hewettite structure is stable. If the coordination of \(\text{Ca}\) changes from six transformer \(\text{H}_2\text{O}\) groups + one \(\text{O}\) atom to (for example) four transformer \(\text{H}_2\text{O}\) groups + three \(\text{O}\) atoms of the structural unit, then the effective Lewis acidity increases to \(2 / (2 	imes 4 + 3) = 0.18\) \text{\textit{vu}}; the Lewis acidity of this \([\text{[1]}\text{Ca(H}_2\text{O)}_3\text{(H}_2\text{O)}\text{(OH)}_3\text{]}\) interstitial complex does not match the Lewis basicity of the structural unit, and thus the structural unit will respond to increased dehydration by forming a new arrangement with the appropriate Lewis basicity.

The structure of the \([\text{V}_6\text{O}_{16}\text{]}\text{2–}\) group in metahewettite is unknown, but we can predict its structural change by analogy with the similar change in rossite–meta-rossite. Qurashi (1961) reported that the dehydration process in hewettite is easily reversible; thus we can exclude a change in the connectivity of the \(\text{VO}_3\) polyhedra or a change in the gross coordination numbers of \(\text{V}^{2+}\), because both changes would require breaking of bonds (\(i.e.,\) a reconstructive transformation). The maximum effective Lewis acidity of the \([\text{[1]}\text{Ca(H}_2\text{O)}_3\text{]}\) complex cation is 0.20 \text{\textit{vu}}, and decrease of the average \(\text{O}\)-coordination number from \([3]\) to \([2.75]\) would increase the corresponding Lewis basicity of the structural unit from 0.14 to 0.20 \text{\textit{vu}}. Thus, we can predict what happens to the individual \(\text{V}\) coordinations in hewettite when the mean coordination number decreases from \([3]\) to \([2.75]\). As in rossite and metarossite, decrease of \(\text{O}\)-coordination numbers results from transformation of longer equatorial bonds to shorter vanadyl bonds: thus, for dehydration of hewettite to metahewettite, we expect a transformation from \([\text{[1]}\text{+1]}\text{V}^{5+}\) or \([\text{[1]}\text{+2]}\text{V}^{5+}\) to \([\text{[2]}\text{+2+2]}\text{V}^{5+}\) or \([\text{[2]}\text{+3]}\text{V}^{5+}\), respectively.

\begin{table}[h]
\centering
\begin{tabular}{|l|l|}
\hline
Minerals with \([\text{VO}_3\text{]}\text{2–}\) and \([\text{V}_6\text{O}_{16}\text{]}\text{2–}\) groups & Minerals with more highly polymerized structural units \\
\hline
\textit{vanadinite} & \textit{rossite} & \textit{CaVO}_3\text{(H}_2\text{O)}_3 \\
\textit{desclolite} & \textit{ZnFe}(\text{2+})\text{VO}_3\text{(OH)}_3 & \textit{munite} & \textit{NaVO}_3\text{(H}_2\text{O)}_3 \\
\textit{volborritte} & \textit{Cu}_2\text{Fe}(\text{2+})\text{VO}_3\text{(OH)}_3 & \textit{barnesite} & \textit{Na}_2\text{Fe}_2\text{VO}_3\text{(H}_2\text{O)}_3 \\
\textit{puchertite} & \textit{Bi}(\text{3+})\text{VO}_3 & \textit{granitite} & \textit{Na}_2\text{Ca}_2\text{VO}_3\text{(H}_2\text{O)}_3 \\
\textit{stoberite} & \textit{Cu}_2\text{O}(\text{2+})\text{VO}_3 & \textit{banvernite} & \textit{Na}_2\text{VO}_3\text{(H}_2\text{O)}_3 \\
\textit{wakefieldite-(Y)} & \textit{YVO}_3 & \textit{femandinite} & \textit{Ca}_2\text{VO}_3\text{(H}_2\text{O)}_3 \\
\textit{ziezie} & \textit{Cu}_2\text{O}(\text{2+})\text{VO}_3 & \textit{stracczekite} & (\text{Cu}_4\text{Fe}(\text{2+})\text{VO}_3\text{(H}_2\text{O)}_3 \\
\textit{bloseite} & \textit{Cu}_2\text{O}(\text{2+})\text{VO}_3 & \textit{hummitite} & \textit{K}_2\text{Mg}_2\text{VO}_3\text{(H}_2\text{O)}_3 \\
\textit{chervette} & \textit{Pb}(\text{2+})\text{VO}_3 & \textit{humuitite} & \textit{Na}_2\text{Mg}_2\text{VO}_3\text{(H}_2\text{O)}_3 \\
\hline
\end{tabular}
\caption{Chemical Compositions of Several Vanadate Minerals with Structural Units of Different Degrees of Polymerization}
\end{table}

\(\text{* after Evans \& White (1987)}\)

\textit{Average basicity of a structural unit}

Table 3 shows that the Lewis basicities of the more highly polymerized structural units in vanadate minerals are similar; thus, the range of Lewis basicity of a structural unit cannot be used to compare the composition of the structural unit with conditions of crystallization. We require a parameter that is characteristic of only one specific structural unit and is independent of the
The average basicity of a structural unit is defined as the average bond-valence sum per O atom contributed by the interstitial species and other structural units.

For example, all structures with \([\text{VO}_3]^-\) units have in common the charge of the unit, the number of O atoms and the coordination number of V. There are no hydrogen bonds from one structural unit to another structural unit, and thus the charge of the unit is the sum of bond valences from the structural unit to interstitial components. The average basicity is therefore the charge/number of O atoms = 1/3 = 0.33 \(vu\). If H atoms occur in the structural unit, they will effectively decrease the charge of the unit in the following way. Each H atom requires, on average, 0.20 \(vu\) from a H bond. The sum of the bond valences required from the H bonds must be added to the charge of the structural unit. This is apparent when we consider that we count only bonds of higher bond-valence in a structural unit. Hydrogen bonds can connect different structural units or are linked to interstitial H2O groups. The necessary 0.20 \(vu\) of the H bond can be provided by O atoms of H2O groups; however, as shown above, each H2O group itself requires the same bond-valence for their H bonds; thus, only O-atoms of the structural unit can provide the necessary 0.20 \(vu\). As an example, the \([\text{H}_2\text{V}_{10}\text{O}_{28}]^{4-}\) group has an average basicity of \((4 + 2/11) / 28 = 0.16 \(vu\).

Different average basicities for \((\text{VO}_n)^{2+}\) structural units are listed in Table 3.

The system \(\text{CaO}\text{–V}_5\text{O}_3\text{–H}_2\text{O}\)

Marvin & Magin (1959) examined the system \(\text{CaO}\text{–V}_5\text{O}_3\text{–H}_2\text{O}\) between 20 and 90°C and assigned the phases to stability fields on a pH–T diagram (Fig. 3). With decreasing pH and increasing polymerization of the \((\text{V}_5\text{O}_4)\) polyhedra, the average basicity of the structural units decreases from 0.75 \(vu\) for an isolated \([\text{VO}_3]^-\) unit to 0.125 \(vu\) for the \([\text{V}_6\text{O}_{16}]^{2-}\) bronze layer units. The increase of average basicity from acid to neutral environments corresponds to depolymerization from the layer structures of the natural bronzes to isolated \([\text{VO}_4]^{3-}\) groups with 4 + 2 \(vu\) basicity (Table 3) and also involves a change in coordination number of V from 5 to 4.

Depolymerization of the \([\text{V}_5\text{O}_{13}]^{2-}\) chain without change in V coordination number would produce isolated \((\text{VO})_2\) polyhedra with 4 + 2 \(vu\) basicity in which the equatorial bonds have a bond-valence of 0.65 \(vu\) and require 1.35 \(vu\) additional incident bond-valence. Assuming a maximum of 4 coordination for the equatorial O atoms, each bond to an interstitial cation must have a bond-valence of 0.45 \(vu\). The valence-matching principle requires a similarly large Lewis acidity from a cation, and thus the 0.45 \(vu\) requirement can be satisfied only by high-valence cations (e.g., \(U^{VI}\) in carnotite, Fig. 1c), and not by univalent or divalent cations such as Na or Ca. Thus, depolymerization to isolated \([\text{VO}_3]^{3-}\) and \([\text{VO}_4]^{3-}\) structural units requires a change in coordination number of vanadium.

Evans & Garrels (1958) formulated a set of equations for polymerization processes in aqueous solution using the chemical data of Jander & Jahr (1933) and Ducret (1951):

\[
\begin{align*}
2[\text{VO}_4]^{3-} + 4\text{H}^+ &\rightarrow [\text{V}_2\text{O}_7]^{4-} + 2\text{H}_2\text{O} \quad (1) \\
2[\text{V}_2\text{O}_7]^{4-} + 4\text{H}^+ &\rightarrow [\text{V}_4\text{O}_{12}]^{4-} + 2\text{H}_2\text{O} \quad (2) \\
5[\text{V}_4\text{O}_{12}]^{4-} + 8\text{H}^+ &\rightarrow 2[\text{V}_{10}\text{O}_{28}]^{6-} + 4\text{H}_2\text{O} \quad (3) \\
[\text{V}_{10}\text{O}_{28}]^{6-} + \text{H}^+ &\rightarrow [\text{HV}_{10}\text{O}_{28}]^{5-} \quad (4) \\
[\text{HV}_{10}\text{O}_{28}]^{5-} + \text{H}^+ &\rightarrow [\text{H}_2\text{V}_{10}\text{O}_{28}]^{4-} \quad (5) \\
[\text{H}_2\text{V}_{10}\text{O}_{28}]^{4-} + 4\text{H}^+ &\rightarrow 5[\text{V}_5\text{O}_3]\text{nH}_2\text{O(s)} + (3-\text{n})\text{H}_2\text{O} \quad (6) \\
[\text{V}_2\text{O}_3]\text{nH}_2\text{O(s)} + (5-\text{n})\text{H}_2\text{O} + 2\text{H}^+ &\rightarrow 2\text{VO}_2^+ + 6\text{H}_2\text{O} \quad (7)
\end{align*}
\]

Fig. 3. The \(\text{CaO–V}_5\text{O}_3\text{–H}_2\text{O}\) system as a function of T and pH (Marvin & Magin 1959). The average basicities of the structural units (Table 3) are listed beside the corresponding minerals.
Other polyanion groups were described by Pettersson et al. (1983, 1985), who showed that with pH decreasing from 11 to 1, the following major and minor polyanion species occur in aqueous solution: (40 mmol [V], 0.6 mol NaCl): $[\text{HVO}_4]^{2-}$, $[\text{V}_2\text{O}_7]^{4-}$, $[\text{HV}_2\text{O}_7]^{3-}$, $[\text{V}_4\text{O}_{13}]^{6-}$, $[\text{HV}_4\text{O}_{13}]^{5-}$, $[\text{V}_5\text{O}_{15}]^{5-}$, $[\text{HV}_2\text{O}_7]^{3-}$, $[\text{H}_2\text{VO}_4]^{-}$, $[\text{H}_2\text{V}_{10}\text{O}_{28}]^{4-}$, $[\text{H}_3\text{V}_{10}\text{O}_{28}]^{3-}$, $[\text{H}_3\text{V}_{10}\text{O}_{28}]^{2-}$, $[\text{VO}_2]^{+}$. Some polyanion structures in aqueous solution are not directly comparable to the structural units in minerals (e.g., $[\text{V}_4\text{O}_{12}]^{4-}$ versus $[\text{VO}_3]^{-}$ in rossite). In general, with acidification of an aqueous solution, the average basicity of polyanions decreases with protonation of terminal O atoms or with increasing polymerization of the polyanion species.

Vanadium minerals

Evans & Garrels (1958) examined the occurrence of vanadium minerals in the ore deposits of the Colorado Plateau, and assigned them and other (VO_2O_n) anion groups to stability fields on an Eh–pH diagram (Fig. 4a). They assigned the mixed-valence natural-bronze structural units $[\text{V}^{4.75+}_{4.75}\text{O}_{20}]^{2-}$ (corvusite, Evans et al. 1994) and $[\text{V}^{4.5+}_{4.5}\text{O}_{10}]^{2-}$ (melanovanadite, Konnert & Evans 1987) to more reduced conditions and higher pH-values than the corresponding V^{5+} bronzes. The average basicities for $[\text{V}^{4.75}_{4.75}\text{O}_{20}]^{2-}$ and $[\text{V}^{4.5}_{4.5}\text{O}_{10}]^{2-}$ are 0.10 and 0.20 vu, respectively (Table 3). Müller et al. (1991) synthesized an $[\text{As}^{5+}\text{V}^{5+}_{12}\text{V}^{4+}_{12}\text{O}_{40}]^{7-}$ group at pH 4.6; this group is structurally identical to the $[\text{AlV}_{12}\text{O}_{40}]^{9-}$ group in sherwoodite. Thus, we assigned sherwoodite (with an average basicity of 0.23 vu) to the pH range of 4.0–6.0 and under more reduced conditions than pascoite. In Figure 4b, the average basicities 0.57 and 0.75 vu are those from $[\text{V}_2\text{O}_7]^{4-}$ and $[\text{VO}_4]^{3-}$, respectively (Table 3), and are arranged in the Eh–pH diagrams on the basis of the experimental work of Marvin & Magin (1959). These structural units do not occur in minerals formed in aqueous solutions at the Colorado Plateau. They occur in minerals like vanadinite, $\text{Pb}^{2+}_5(\text{VO}_4)_3\text{Cl}$ (Dai & Hughes 1989), and descliozite, $\text{ZnPb}^{2+}_5(\text{VO}_4)_{10}\text{OH}$ (Hawthorne & Faggiani 1979), which are normally formed in an alkaline environment (pH = 8 ± 1) at higher temperature. Figure 4b shows a strong correlation at high and low Eh-values between the average basicities of the (VO_2O_n) structural units and the pH ranges of the corresponding minerals.

Evans & Garrels (1958) found carnotite, $\text{K}_2[\text{UO}_2\text{O}_3][\text{H}_2\text{O}]_3$ (average basicity = 0.17 vu), in the acid, as well in the alkaline, environment of the Colorado Plateau (Fig. 4a). Langmuir (1978) confirmed the observation of Evans & Garrels (1958), and showed that carnotite is stable over pH–Eh ranges of 4.5–8 and 1.0–0.0 V, respectively. He showed further that, depending on the partial pressure of CO$_2$, the minimal solubility of carnotite is between pH 6 and 8. This information shows that, independent of pH, minerals like carnotite can precipitate only where small concentrations of the corresponding ions [i.e., $(\text{UO}_2)^{2+}$ and $(\text{VO}_4)^{3-}$] occur in solution.

Polyvanadate anions in aqueous solution

Evans & Garrels (1958) assigned vanadium minerals to different stability fields on an Eh–pH diagram with the help of vanadium-mineral parageneses and thermo-
dynamic data of vanadate complexes in aqueous solution. Presuming that crystallization proceeds via condensation of the principal species in solution, correlation of the average basicities of aqueous species and their occurrence emphasizes the connection between the pH of the environment of crystallization and the structural units in the resulting minerals.

The aqueous chemistry of vanadate complexes has been examined extensively. Pope (1983) reviewed the aqueous chemistry of isopolyvanadates. The occurrence of an aqueous species at a specific value of pH depends on the total concentration of the element in solution and on the type of electrolytic medium. Here, we consider the results of polyvanadate analyses by Pettersson et al. (1983; pH range 1–10, 0.04 mol [V], 0.6 m NaCl solution) and Tytko & Mehmke (1983; pH range 6–16, 0.1 mol [V], 0.5 M NaCl). Table 5 lists the aqueous species and the pH at which they achieve maximum concentration in solution; the average basicities of the species also are listed. There is a strong linear correlation between the average basicity of the species and the pH value at maximum concentration of that species in solution (Fig. 5), in accord with our general contention.

Average Basicities of Structural Units and Eh–pH Values of their Environment of Crystallization

The example of carnotite shows that extremely stable minerals can occur over a large range of pH, and that the average basicity of their structural unit cannot be uniquely related to conditions of crystallization. This is obvious if we consider that the formation and stability of minerals depend not only on the pH value but also on the concentration of the elements in solution. However, comparison between the occurrence of polyvanadate anions in aqueous solution and the parageneses of vanadium minerals (Evans & Garrels 1958) shows that the type of aqueous species (its degree of polymerization and average basicity) is a primary control on the crystallization process of vanadium minerals.

At lower Eh-values, there is also a correlation between the average basicity of a structural unit and the pH of its environment. Here, further examination of mineral – aqueous systems is needed to better understand how Eh affects the characteristics of structural units.

Conclusions

Calculation of ranges of effective Lewis acidities in vanadium minerals with specific structural units shows that we can predict the type and coordination number of interstitial cations and the number of transformer (H₂O) groups. In addition, using bond-valence theory, we can rationalize structural changes in vanadium minerals during isostructural dehydration: structural changes are characterized by lengthening and shortening of V–O bonds in the structural units. This approach takes us another step toward understanding how Nature combines different structural components in minerals. Average basicities of structural units and aqueous species correlate linearly with the pH-value of their formation or their maximum concentration in solution, respectively. We show that this is also true for minerals formed under more reducing conditions in aqueous systems from 20 to 100°C.

Table 5. Average Basicity (〈b⁵〉) for Synthetic Vanadate ([V₅O₇]⁻) Species with the pH-value of their Maximum Concentration (pH^{max}) in Aqueous Solution

<table>
<thead>
<tr>
<th>Species</th>
<th>pH<sup>max</sup></th>
<th>〈b<sup>5</sup>〉</th>
</tr>
</thead>
<tbody>
<tr>
<td>[VO<sub>4</sub>]<sup>3-</sup></td>
<td>16.0</td>
<td>0.75</td>
</tr>
<tr>
<td>[HVO<sub>4</sub>]<sup>2-</sup></td>
<td>12.2</td>
<td>0.55</td>
</tr>
<tr>
<td>[V₂O₇]<sup>2-</sup></td>
<td>12.2</td>
<td>0.57</td>
</tr>
<tr>
<td>[V₃O₉]<sup>4-</sup></td>
<td>11</td>
<td>0.46</td>
</tr>
<tr>
<td>[HV₂O₅]⁻</td>
<td>9.5</td>
<td>0.45</td>
</tr>
<tr>
<td>[HV₂O₇]⁻</td>
<td>9</td>
<td>0.40</td>
</tr>
<tr>
<td>[V₅O₁₇]⁻</td>
<td>7.25</td>
<td>0.33</td>
</tr>
<tr>
<td>[V₆O₉]⁻</td>
<td>7.25</td>
<td>0.33</td>
</tr>
<tr>
<td>[V₁₀O₆]⁻</td>
<td>5.8</td>
<td>0.21</td>
</tr>
<tr>
<td>[HV₆O₁₉]⁻</td>
<td>4.8</td>
<td>0.19</td>
</tr>
<tr>
<td>[H₄V₆O₂₅]⁻</td>
<td>3.2</td>
<td>0.16</td>
</tr>
<tr>
<td>[H₄V₆O₂₅]⁻</td>
<td>2.7</td>
<td>0.13</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENTS

We thank reviewers Carl Francis and Jeff Post, associate editor John Hughes and editor Bob Martin for their comments on this paper. Funding was provided by Natural Sciences and Engineering Research Council of Canada grants to FCH.

REFERENCES

DUÑET, L.P. (1951): Contribution a l’étude des ions des va-

EVANS, H.T., JR. (1988): The crystallography of munitite NaVO₃

HAWTHORNE, F.C. (1983): Graphical enumeration of polyhe-

HEATH, E. & HOWARTH, O.W. (1981): Vanadium-51 and oxy-

JANDER, G. & JAHR, K.F. (1933): Uber amphotere Oxyd-

JANDER, G. & JAHR, K.F. (1933): Uber amphotere Oxyd-

KIEHL, S.J. & MANFREDO, E.J. (1937): A study of heterogene-

KIEHL, S.J. & MANFREDO, E.J. (1937): A study of heterogene-

Received May 1, 2000, revised manuscript accepted October 19, 2000.