NEUTRON SPECTROSCOPIC STUDY OF SYNTHETIC ALUNITE AND OXONIUM-SUBSTITUTED ALUNITE

GEORGE A. LAGER

Department of Geography and Geosciences, University of Louisville, Louisville, Kentucky 40292, U.S.A.

GREGG A. SWAYZE

CHUN-KEUNG LOONG, FRANK J. ROTELLA AND JAMES W. RICHARDSON, JR.

IPNS Division, Argonne National Laboratory, Argonne, Illinois 60439, U.S.A.

ROGER E. STOFFREGEN

AWK Consulting Engineers, 1225 Rodi Road, Turtle Creek, Pennsylvania 15145, U.S.A.

ABSTRACT

Synthetic, polycrystalline samples of alunite \([\text{K}_{0.88}(\text{H}_3\text{O})_{0.12}\text{Al}_{2.64}(\text{SO}_4)_2(\text{OH})_{4.92}(\text{H}_2\text{O})_{1.08}]\) and oxonium-substituted alunite \([\text{H}_3\text{OAl}_{2.87}(\text{SO}_4)_2(\text{OH})_{5.61}(\text{H}_2\text{O})_{0.39}]\) have been investigated using incoherent, inelastic neutron-scattering (IINS) methods in order to determine the nature of the non-OH “H\(_2\)O”. IINS measurements were made on non-deuterated samples at 20 K using the HRMECS chopper spectrometer with 250 and 600 meV incident energies. Alunite and oxonium-substituted alunite exhibit similar spectral features over the energy range of 120–550 meV, where assignments for local vibrations can be made based on the presence of OH and H\(_2\)O groups. Salient differences in the intensities and positions of the observed low-energy vibrational bands reflect the effects of chemical substitution on the structural environment of the monovalent cation site and neighboring Al and OH sites in the framework.

Keywords: alunite, inelastic neutron scattering, crystal structure, oxonium ion.

SOMMAIRE

Nous avons étudié des échantillons synthétiques polycristallins d’alunite \([\text{K}_{0.88}(\text{H}_3\text{O})_{0.12}\text{Al}_{2.64}(\text{SO}_4)_2(\text{OH})_{4.92}(\text{H}_2\text{O})_{1.08}]\) et d’alunite substituée par l’ion oxonium \([\text{H}_3\text{OAl}_{2.87}(\text{SO}_4)_2(\text{OH})_{5.61}(\text{H}_2\text{O})_{0.39}]\) au moyen de dispersion incohérente et inélastique de neutrons (IINS) afin de déterminer la nature de “H\(_2\)O” autre que l’hydroxyde. Les mesures IINS ont porté sur des échantillons non-deutérés à 20 K; elles ont été faites avec le spectromètre à sécateur HRMECS à une énergie incidente de 250 et 600 meV. Les deux matériaux répondent de façon semblable selon leurs spectres sur l’intervalle d’énergie 120–550 meV, dans lesquels les vibrations locales peuvent être assignées en fonction de la présence des groupes OH et H\(_2\)O. Les différences importantes en intensité et en position des bandes vibrationnelles observées à faible énergie témoignent des effets de la substitution chimique sur les aspects structuraux du site du cation monovalent et des sites Al et OH appartenant dans la trame.

(Traduit par la Rédaction)

Mots-clés: alunite, dispersion inélastique des neutrons, structure cristalline, ion oxonium.

\(^{\dagger}\) E-mail address: galager@louisville.edu

\(^{\ddagger}\) Present address: Center for Mechanistic Biology and Biotechnology, Argonne National Laboratory, Argonne, Illinois 60439, U.S.A.
INTRODUCTION

Mineral-distribution maps produced by airborne spectrometers show a strong correlation between infrared reflectance spectra and the thermal history of the alunite–jarosite minerals (Swayze 1997). Spectral absorptions in the 2–2.5 μm region become more intense and broader as the temperature of formation increases, at least in Al-deficient alunite-group minerals. This spectral change, if correlated with temperature, could be used to gauge the depth of exposure in acid-sulfate deposits by remote sensing. The technique also has applications in the search for extraterrestrial life. For example, a knowledge of the level of exposure in possible Martian hydrothermal systems would be useful in the selection of those systems most likely to have sheltered life, thus providing a remote sensing tool for deciding which systems to target for lander exploration. The possibility of using these minerals as “spectral geothermometers” is dependent on our ability to correlate spectroscopic and crystallographic data, in particular, those data relating to the speciation and location of H2O [OH–, H2O and H3O+] in the structure. Therefore, it is desirable to have spectroscopic data to characterize the proton dynamics in members of the alunite supergroup. Incoherent, inelastic neutron scattering (IINS) is well suited for this study because of its high sensitivity to hydrogen. Infrared and Raman spectroscopy are complementary to the IINS technique; however, the overlap of the strong S–O bands with the characteristic bending modes for H3O+ makes it difficult to detect the presence of H2O using optical vibrational spectroscopy. In this study, IINS data have been collected at 20 K in order to determine the nature of the non-OH “H2O” in alunite and oxonium-substituted alunite [hereafter referred to H1O-alunite and D2O-alunite].

BACKGROUND

The structure of minerals of the alunite–jarosite group

Minerals of the alunite–jarosite group have the general formula MR3(SO4)2(OH)6, where M refers to the large cation in 12-fold coordination, commonly H3O+, Na+, K+, Rb+, Ag+, TI+, NH4+, ½Pb2+ or ½Hg2+, and R, to either Al3+(alunite) or Fe3+(jarosite) in octahedral coordination. The crystal structure consists of layers of corner-sharing sulfate tetrahedra and RO4(OH)2 octahedra linked by M cations (Fig. 1). The large monovalent cation site (m symmetry) has six nearest-neighbor OH groups and six more distant O atoms within its coordination sphere.

The crystal structure of alunite was first described by Hendricks (1937), who proposed the space group R3m based on pyroelectric measurements. Wang et al. (1965) subsequently refined the structure using X-ray methods in the centrosymmetric space group R3m. X-ray refinement of the crystal structures of alunite and synthetic jarosite by Menchetti & Sabelli (1976), and a natural sample of jarosite by Kato & Miura (1977), provided more precise atom positions and interatomic distances. Menchetti & Sabelli (1976) also discussed the crystal-chemical basis for the observed variation in unit-cell parameters and presented indirect evidence for the existence of oxonium ion in the 12-fold site. Szymański (1985) used X-ray diffraction to refine the crystal structure of plumbojarosite (M = ½Pb, R = Fe), a derivative of the jarosite structure with a doubled unit-cell. Lengauer et al. (1994) have recently reported an X-ray powder refinement of the structure of a new alunite-group compound with M = K and R = Cr3+. In their study, no evidence was found for a significant incorporation of the oxonium ion substituting at the 12-fold site. A synthetic sample of stoichiometric alunite [K0.36(D3O)0.14Al3(SO4)2(OD)6] has been investigated by Schukow et al. (1999) using neutron powder diffraction. The amount of D2O in the monovalent site was found to be 12.5% based on refinement of the site-occupancy factors. The location of the D atoms associated with oxonium ion could not be determined.

Nonstoichiometry and the presence of non-OH “H2O”

Numerous crystallographic and spectroscopic studies have been devoted to the nonstoichiometry and the nature of the non-OH “H2O” in the alunite–jarosite structure (e.g., Parker 1962, Brophy & Sheridan 1965, Kubisz 1972, Wilkins et al. 1974, Serna et al. 1986, Ripmeester et al. 1986, Stoffregen & Alpers 1992, Breitinger et al. 1997). Both synthetic and natural samples are known to contain H2O in excess of the stoichiometric amount. Some of the excess H2O is generally believed to be present as oxonium ion substituting for the K on the 12-fold site. This interpretation is supported by a K deficiency in these structures, and also by the fact that the “oxonium” end-member, i.e., a compound that contains no alkali cations, can be synthesized. Members of the alunite supergroup also commonly exhibit an R-cation deficiency that requires conversion of some OH to H2O to maintain charge balance.

Ripmeester et al. (1986) have presented evidence from proton nuclear magnetic resonance (magic angle spinning) [1H NMR MAS] spectra to support the existence of the oxonium ion. Their analyses are based to a large extent on comparisons with oxonium perchlorate, a compound in which H3O+ is known to exist (O’Reilly et al. 1971). They proposed that the D2O group is highly mobile and can assume a number of different orientations within the oxygen cage surrounding the alkali site. Analyses of the 2H NMR line shapes as a function of temperature suggest that the molecular motion is temperature-dependent, i.e., the ion gradually becomes more rigid between ~150 and 77 K, implying a dynamic, time-averaged disorder. Excess D2O beyond that required to account for OD– and D3O+, also was observed.
Ripmeester et al. proposed that some OD groups located adjacent to the D₃O ion are converted in situ to D₂O \[D₃O⁺ + OD⁻ = 2D₂O\] to compensate for charge deficiencies created by vacancies at the Al site. In their model, the D₃O⁺ ion could be partially hydrated. The molar proportions of D₃O⁺, D₂O and OD⁻ determined from a fit of their proton NMR spectra show reasonable agreement with those determined by analytical methods in their study.

We are aware of only one preliminary IINS study of alunite (Breitinger et al. 1998), and no IINS studies of H₃O-substituted alunite have been reported in the literature. Neutron scattering methods have also been used to determine the proton dynamics associated with oxonium ion in aluminosilicate zeolites. Comparison of the IINS spectra of oxonium-substituted mordenite [hereafter referred to as H₃O-mordenite] with those of dehydrated zeolite and ice show several bands that were assigned to H₃O⁺ (for a comparison with optical data, 1 meV is equivalent to 8.066 cm⁻¹).

Experimental

Sample preparation

End-member alunite was prepared from reagent-grade K₂SO₄ and Al₂(SO₄)₃, combined in a ratio of ~1:2. The latter compound was formed by heating Al₂(SO₄)₃•18H₂O at 973 K in air for 24 h. The mixture was dissolved in water [7 g K₂SO₄ + 15 g Al₂(SO₄)₃] per 186 mL H₂O] and heated at 423 K for 72 h in a large-volume Parr bomb fitted with a Teflon sleeve (86% fill).
This method produced ~10 g of product. In the case of H$_2$O-alunite, ~8.5 g of Al$_2$(SO$_4$)$_3$ were dissolved in 50 mL of H$_2$O. In order to produce gram amounts (~2 g) of sample, the pH of the solution was increased from ~2.2 to ~3.5 by the addition of reagent-grade MgCO$_3$ (~0.6 wt% CaO). After the MgCO$_3$ was completely dissolved, the solution was heated to 473 K (72 h) in the high-volume reaction vessel (27 mL) lined with a Teflon sleeve.

Results from thermogravimetric analysis (TGA) of protonated alunite and H$_3$O-alunite are shown in Figure 2. On the basis of the TGA curve, the sample (Fig. 2a) of alunite contains ~19 wt% H$_2$O, which exceeds the stoichiometric amount by ~6 wt%. Only a small proportion (<1 wt%) of the total H$_2$O content is present as adsorbed water. The thermal decomposition of synthetic alunite has been discussed by a number of investigators (Kubisz 1971, Fielding 1981, Pysiak & Glinka 1981, Bohmhammer et al. 1987). The TGA curve is characterized by three well-defined stages of dehydration, which correspond, respectively, to the loss of the loosely bound H$_2$O (i.e., the non-OH structurally bound H$_2$O present as either H$_2$O or H$_3$O$^+$) (~548 K), structurally bound OH (~823 K), and SO$_3$ (~1000 K), produced from the breakdown of the SO$_4$ group (Fig. 2a). In contrast to alunite, the TGA curve for H$_3$O-alunite shows a gradual weight loss to ~973 K (Fig. 2b). At this temperature, the structure dehydrates completely with the loss of the remaining OH. The final weight-loss at ~1073 K reflects the release of SO$_3$.

The results of the chemical analysis of the two samples are given in Table 1. The alunite sample was analyzed by electron microprobe using alunite from the Marysvale Christmas vein as a standard (Stoffregen & Alpers 1992). Operating conditions of the electron microprobe were 15 keV, 10 nA with a 15/9262\text{m} spot size. Short count-times (<60 s) were necessary in order to minimize the volatilization of K. Because of the fine-grained nature of H$_3$O-alunite, the electron microprobe could not be used for this sample. In this case, the concentrations of K and Al were determined by X-ray fluorescence (Taggart et al. 1990), and the level of S with a Leco sulfur analyzer and of H$_2$O by TGA. Chemical formulae normalized on the basis of two sulfur atoms are: K$_{8.8}$H$_2$(OH)$_{12}$Al$_2$(SO$_4$)$_2$(OH)$_{19/2}$H$_2$O$_{1.08}$ and H$_2$OAl$_2$(SO$_4$)$_2$(OH)$_{16/3}$(H$_2$O)$_{0.39}$. The proportion of OH was determined by charge balance. The K deficiency in alunite is less than that reported for other samples of low-temperature alunite (Stoffregen & Alpers 1992); however, it is in good agreement with the results of atomic absorption and X-ray-fluorescence measurements carried out in this study. The low oxide total (93.7%) for our alunite is consistent with the amount of non-stoichiometric H$_2$O determined from TGA analysis (Fig. 2a). A small deficiency (~6%) in Al was observed in H$_2$O-alunite (Fielding 1981). Na, Mg and Ca (from the MgCO$_3$) were also detected in this sample by X-ray fluorescence. The Mg is assumed to be incorporated in a small amount of amorphous material associated with the alunite and has not been reported in Table 1.

Table 1: Results of Chemical Analyses of Synthetic Alunite-Group Phases

<table>
<thead>
<tr>
<th>Sample</th>
<th>K$_2$O</th>
<th>Al$_2$O$_3$</th>
<th>SO$_4$</th>
<th>H$_2$O</th>
<th>Na$_2$O</th>
<th>CaO</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>alunite (and member)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ideal</td>
<td>11.38</td>
<td>36.95</td>
<td>38.65</td>
<td>13.04</td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>this study*</td>
<td>10.00</td>
<td>32.3</td>
<td>38.4</td>
<td>13.04</td>
<td>93.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H$_2$O$_3$-substituted alunite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ideal</td>
<td>38.81</td>
<td>40.63</td>
<td>20.55</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>this study†</td>
<td>36.96</td>
<td>41.62</td>
<td>20.1</td>
<td>0.1</td>
<td>0.5</td>
<td>98.6</td>
<td></td>
</tr>
</tbody>
</table>

* Average result of 15 electron microprobe analyses.
† K$_2$O, Al$_2$O$_3$, Na$_2$O and CaO were determined by XRF, SO$_4$ by a Leco sulfur analyzer, and H$_2$O by TGA. Na$_2$O and CaO were introduced as impurities from MgCO$_3$, which was used to increase the pH of the sulfur solution prior to hydrothermal treatment. Both samples were non-deuterated.

Table 2: Unit-Cell Parameters of Selected Alunite-Group Phases (Space Group Iam)

<table>
<thead>
<tr>
<th>Source</th>
<th>a (Å)</th>
<th>c (Å)</th>
<th>V (Å3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>alunite (and member)</td>
<td>7.011(1)</td>
<td>17.164(3)</td>
<td>730.76(1)</td>
</tr>
<tr>
<td>H$_2$O$_3$-substituted alunite</td>
<td>7.00(2)</td>
<td>17.180(7)</td>
<td>729.4(4)</td>
</tr>
<tr>
<td>H$_2$O$_3$-substituted alunite</td>
<td>6.984(1)</td>
<td>17.131(1)</td>
<td>731.39(2)</td>
</tr>
<tr>
<td>H$_2$O$_3$-substituted alunite</td>
<td>6.98(3)</td>
<td>17.130(1)</td>
<td>732.77(5)</td>
</tr>
<tr>
<td>H$_2$O$_3$-substituted alunite</td>
<td>7.003(1)</td>
<td>17.125(2)</td>
<td>727.55(1)</td>
</tr>
<tr>
<td>H$_2$O$_3$-substituted alunite</td>
<td>7.005(2)</td>
<td>17.114(7)</td>
<td>727.24(1)</td>
</tr>
<tr>
<td>H$_2$O$_3$-substituted alunite</td>
<td>6.99(6)</td>
<td>17.13(2)</td>
<td>725.65(3)</td>
</tr>
</tbody>
</table>

Sources: 1 Stofffregen & Alpers (1992), 2 Schickow et al. (1990), 3 Swayne & Smyth, pers. commun. high-temperature, stoichiometric alunite, Marysvale, Utah; 4 Rippon et al. (1986).
Measurements of inelastic neutron-scattering

The atomic dynamics in members of the alunite supergroup were studied by inelastic-scattering experiments using the High-Resolution Medium-Energy Chopper Spectrometer (HRMECS) at IPNS. A pulsed-neutron source like IPNS, equipped with cold moderators, provides a large flux of cold-to-epithermal neutrons that are essential to study the low-energy lattice modes as well as the high-energy molecular vibrations. In general, the energy resolution ΔE (full width at half-maximum) of the HRMECS spectrometer varies from $\sim4\%$ of the incident energy (E_0) in the elastic region to $\sim2\%$ near the end of the neutron energy-loss spectrum. The

![Graph showing TGA curves for nonstoichiometric alunite (a) and H$_3$O-alunite (b). Data were obtained on 30-mg samples heated at a rate of 10$^\circ$/min in a N_2 atmosphere.](image-url)
powder (~10 and ~30 g of H\textsubscript{2}O-alunite and alunite, respectively) was placed inside a sealed aluminum container in the shape of a thin slab (dimension 7.5 \times 100 \times 2 mm3) mounted to the cold plate of a closed-cycle helium refrigerator at a 45° angle to the incident beam of neutrons. Such a geometry reduces as much as possible the multiple-scattering effects. In order to minimize multiple scattering of phonons, the sample was cooled to ~20 K. Background scattering was subtracted from the data by using an empty-container run. Measurements of elastic incoherent scattering from a vanadium standard provided detector calibration and intensity normalization. Two incident energies, 600 and 250 meV, were used in order to characterize the energy spectra from 0 to 550 meV with good resolution.

Owing to the spin incoherence of the proton, the neutron scattering cross-section of hydrogen is predominantly incoherent, which is ideal for probing the single-particle motions of hydrogen atoms associated with atomic migrations, lattice and localized vibration without being subject to any selection rules. The incoherent scattering function for lattice and local vibrations (phonons) of atoms in a harmonic solid is given by

$$S(Q,E) = \sum_i \frac{c_i \sigma_i}{m_i} \left((\mathbf{Q} \cdot \mathbf{e})^2 e^{-2W(Q)} \right) n(E) + 1 \left(\frac{E}{n(E) + 1} \right) F_i(E),$$

where c_i, σ_i, m_i, e_i, $e^{-2W(Q)}$, and F_i are the concentration, incoherent scattering cross-section, mass, phonon unit-polarization vector, Debye–Waller factor, and partial phonon density of states, respectively, for the ith atom.

The quantity (\hbarQ, E) corresponds to the momentum and energy transfer of the neutron, respectively (\hbar being Planck’s constant), and $n(E)$ is the Bose thermal occupation factor (Price & Sköld 1986). At low temperatures and high energies the thermal factor, $n(E) + 1$ is approximately equal to 1. The quantity enclosed in the angular brackets (...) is averaged over all modes with the energy E and, for polycrystalline materials, it is effectively averaged over all Q directions. The ratios σ_i / m_i for K, O, S, Al and H are 0.0658, 0.265, 0.0320, 0.0557, and 81.7 b/amu, respectively for thermal neutrons (1 b = 10-24 cm2, and amu refers to atomic mass units). Therefore, the scattering function is particularly sensitive to hydrogen vibrations and effectively provides a measure of the hydrogen vibrational density of states. The scattering function given below was obtained from an average over the Q values corresponding to scattering angles of 4° to 20°. Such a low-Q region is needed in order to avoid significant Doppler broadening of the inelastic features at high-momentum transfers, which is most significant for hydrogen motion. The observed low- and high-energy neutron-scattering functions for alunite and H\textsubscript{2}O-alunite at 20 K, obtained from 250 and 600 meV runs, respectively, are compared in Figure 3.

RESULTS AND DISCUSSION

In general, the IINS spectra of the two samples of alunite can be divided into a high-energy (160–550 meV) and a low-energy (20–160 meV) region, which relate primarily to hydrogen vibrations involving localized motion and collective modes associated with neighboring atoms or framework units, respectively. The high-energy spectra of alunite and H\textsubscript{2}O-alunite are similar, whereas marked differences can be seen at low energies (Fig. 3).

The bands at about 200 and 430 meV are characteristic of H–O–H bending and O–H stretch vibrations of H\textsubscript{2}O or H\textsubscript{3}O species (or both), and that at ~510 meV is a combination mode (Loong et al. 1987). The band

FIG. 3. Comparison of the observed low- and high-energy neutron scattering functions for alunite and H\textsubscript{2}O-alunite obtained at 20 K from the 250 (a) and 600 meV (b) runs. Major vibrational bands are labeled in units of meV, where 1 meV = 8.066 cm-1.
around 280 meV is an overtone of the 140 meV band. In this region of the spectrum, we do not expect large differences in the O–H stretch frequencies between H₂O and H₂O⁺ because these species have very similar O–H bond lengths. The most obvious difference is the asymmetric shape at the lower-energy side of the OH band in alunite, which suggests a stronger network of H-bonds. This is consistent with the conversion of some OH to H₂O in alunite in order to compensate for the charge imbalance created by vacancies at the Al site. By choosing an incident energy of 250 meV (Fig. 3a), the resolution (ΔE = 5 meV) for E > 200 meV is sufficient to resolve the narrow width of the H–O–H bending mode (~204 meV) in H₃O⁺-alunite. The corresponding peak in alunite, on the other hand, exhibits considerable broadening. This effect indicates that the force fields relevant to H–O–H bending are more uniform in H₃O⁺-alunite, presumably owing to long-range structural correlations arising from H-bonding.

The low-energy spectrum of alunite differs considerably from that of the H₂O-substituted analog. The strong peak at ~140 meV, which can be assigned to OH librations (δOH modes), is narrower in alunite. The corresponding peak in H₂O-alunite shifts slightly toward lower energy and shows small shoulders at ~130 and 120 meV. The broad band from 60 to 120 meV in alunite can be assigned to Al–OH and S–OH motion and OH-hindered rotations (Serna et al. 1986, Breitinger et al. 1997). This band is wider and its substructure is different in H₂O-alunite. In both samples, the highest intensity sub-peak is located at 74.1 meV. However, the relative intensities of the side peaks (~63 and ~85 meV) are inversely related in the two samples. Finally, the band at ~26 meV is much more pronounced in the H₂O-alumite than in alunite.

Despite the lower resolution at low-energy transfers, features in the HRMECS spectrum of aluminate agree well with the INS spectrum of a sample of aluminate of nominal composition KAl₃(OH)₆(SO₄)₂ measured by an inverse-geometry spectrometer (TFXA) at the ISIS facility (Breitinger et al. 1998).

One of the objectives of this study was to determine if oxonium ions occupy the monovalent cation site. Obviously, if structural differences between alunite and H₂O-alumite are related simply to oxonium content, we would expect a much different spectrum for H₃O⁺-alumite, i.e., it should show additional features that can be attributed to the vibrations of the oxonium ion. For example, in the case of H₂O-substituted mordenite, bands at about 172 and 207 meV were assigned to the symmetric and antisymmetric bending modes of oxonium ions (Jobic et al. 1992). In a similar study, Loong et al. (1994) compared the INS spectra of H₂O-mordenite [H(H₂O)/H(H₂O) ≈ 1] and mordenite-Na (H₂O-free). Two small peaks at 59 and 155 meV in H₂O-mordenite were attributed to oxonium. Distinct peaks corresponding to the presence of oxonium were not observed in the alunite samples. However, as pointed out previously, spectroscopic features that reflect a difference in the oxonium content in the samples are expected to occur in the low-energy portion of the spectrum. In fact, we observed significant differences in all the major bands from about 20 to 120 meV. However, these differences may arise not only from the presence of oxonium but also from a complex modification of the structure related to substitutions involving the monovalent [K = H₂O], octahedral [Al = vacancy] and OH sites [OH = H₂O].

One possible interpretation of the neutron data is that there are no oxonium ions present in these particular samples, because no new peaks were observed in the spectrum of H₂O-alumite. However, this conclusion is based on a comparison of IINS spectra for alunite and H₂O-mordenite, a zeolite. The environment of oxonium is quite different in these two structures. As noted above, the oxonium ion in alunite would occupy the 12-coordinated monovalent site, with 3m symmetry. In mordenite, oxonium is associated with a framework oxygen and has no symmetry constraints. Therefore, we suggest that oxonium may exist in alunite-group phases, but the present data, based on a comparison of the spectra of the alunite and its H₂O-substituted analog at low energy transfers, cannot distinguish oxonium from hydroxyl groups and H-bonded H₂O molecules in such a complex structure. The question concerning the nature of the non-OH “H₂O” can be addressed, in principle, if data from neutron, optical and NMR spectroscopy are analyzed by rigorous numerical simulations.

ACKNOWLEDGEMENTS

This work has benefited from use of the Intense Pulsed Neutron Source at Argonne National Laboratory. This facility is funded by the U.S. Department of Energy, BES–Materials Science, under contract W–31–109–Eng–38. The authors thank L.A. Groa for carrying out the electron-microprobe analysis of the synthetic alunite. Comments by D.K. Breitinger, C. McCammon and an anonymous reviewer significantly improved the manuscript.

REFERENCES

Received September 28, 2000, revised manuscript accepted July 7, 2001.