Sr₂B₅O₉OH•H₂O, A SYNTHETIC BORATE RELATED TO HILGARDITE

JACQUES BARBIER § AND HYUNSOO PARK

Department of Chemistry, McMaster University, Hamilton, Ontario L8S 4M1, Canada

ABSTRACT

The crystal structure of a new strontium borate, Sr₂B₅O₉OH•H₂O, space group C2, a 10.2571(6), b 8.0487(2), c 6.4043(4) Å, β 127.860(2)°, Z = 2, has been determined by X-ray diffraction using a single crystal grown under hydrothermal conditions. The structure is closely related to that of the zeolite-like hilgardite minerals, Ca₂B₅O₉Cl•H₂O, in particular that of triclinic hilgardite-1A. The main structural differences are a more symmetrical conformation of the [B₅O₁₂]⁹⁻ pentaborate chains and a random distribution of OH⁻ and H₂O in Sr₂B₅O₉OH•H₂O, that result in the monoclinic symmetry. The role of the Sr cations in determining the conformation of the pentaborate chain is discussed by comparison with hilgardite-1A.

Keywords: strontium pentaborate hydrate, calcium pentaborate hydrate, hilgardite, crystal chemistry, crystal structure, X-ray diffraction.

INTRODUCTION

The search for new compounds in alkaline-earth gallo-borate systems has recently led to the structural characterization of two new anhydrous borates, Mg²⁺Ga₂O₅ (M = Sr, Ba) (Park & Barbier 2000a), one new fluoride borate, BaGaBO₃F₂ (Park & Barbier 2000b), and one new hydrated borate, Sr₂Ga₂B₅O₁₃OH (Park & Barbier 2000c). The title compound is another new strontium borate that was synthesized during investigation of the system SrO–Ga₂O₃–B₂O₃ under hydrothermal conditions.

In the course of its structure determination, it became apparent that Sr₂B₅O₉OH•H₂O is related to the series hilgardite (Ca₂B₅O₉Cl•H₂O) – tyretskite (Ca₂B₅O₉OH•H₂O). The crystal structures of several of these minerals have been determined, including hilgardite-1A (Rumanova et al. 1977, Burns & Hawthorne 1994), hilgardite-4M (Ghose & Wan 1979), hilgardite-3A or “parahilgardite” (Wan & Ghose 1983) and the strontium-dominant analogue of hilgardite (with the name of “kurgantaite” proposed by I.V. Pekov and D. Yu. Pushcharovsky, pers. commun.; Ferro et al. 2000a). A number of related synthetic compounds have also been structurally characterized, including Ca₂B₅O₉Cl·Br (Lloyd et al. 1973), Eu₂B₅O₉X (X = Cl, Br) (Machida et al. 1981), Pb₂B₅O₉OH•H₂O (Belokoneva et al. 1998), Na₀.₅Pb₂B₅O₉Cl(OH)₀.₅ (Belokoneva et al. 2000) and Ba₂B₅O₉Cl·0.₅H₂O (Ferro et al. 2000b). The close structural relationships among all these compounds have been described in detail previously (Ghose 1982, 1985). On the basis of its unit-cell volume (Table 1), Sr₂B₅O₉OH•H₂O would be the analogue of the hilgardite-2M polymorph that has not yet been identified among borate minerals (Grice et al. 1999) or synthetic borates (Heller 1986). However, the details of its crystal structure, which is described here, show that Sr₂B₅O₉OH•H₂O is distinct from the hilgardite–tyret-
EXPERIMENTAL

Sr₂B₂O₉(OH)·H₂O crystals were recovered in the products of hydrothermal crystallization experiments carried out in 25 mL Teflon-lined Parr reactors heated to 250–275°C for periods of 3 to 10 days. The starting materials consisted of a powder (0.25 g) of either a crystalline phase with a composition of SrO·Ga₂O₃·B₂O₃, or a glass of composition 3SrO·3Ga₂O₃·14B₂O₃, together with 10 mL of deionized water. Various initial pH conditions were used by adding small amounts of concentrated nitric acid (for a pH of 1–2) or strontium hydroxide (for a pH of 10–11). In all cases, the final products contained small (0.1 to 0.5 mm) prismatic crystals of Sr₂B₂O₉(OH)·H₂O, plus an unidentified microcrystalline phase in a solution of pH in the range 6–8. Owing to the relatively small yield of crystals, no chemical analysis has been carried out. The chemical composition of the crystals has been unambiguously determined during the structure determination.

The single-crystal X-ray data were collected with a Siemens P4 diffractometer equipped with a MoKα rotating anode and a SMART–1K CCD area detector. The raw intensity data were processed with the SAINT software, and an empirical absorption correction based on equivalent reflections was applied using the SADABS program (Sheldrick 1996). The structure was then solved and refined anisotropically with the SHELXS (Sheldrick 1990) and SHELXL (Sheldrick 1997) programs. The crystal data and the details of the refinement are listed in Table 2. No significant reflections violating the C2 monoclinic symmetry were observed. The atom coordinates with the isotropic displacement parameters are given in Table 3, and the anisotropic displacement parameters are given in Table 4. Selected bond-distances and bond-angles are listed in Table 5. It should be noted that the C2 symmetry of the Sr₂B₂O₉(OH)·H₂O structure implies a complete OH–H₂O disorder at the fully occupied O6 site. However, only one hydrogen position could be determined from difference-Fourier maps. The remaining hydrogen atom of the H₂O molecule corresponds to only one half hydrogen atom bonded to O6 and, as such, could not be identified in the residual-electron-density maps. The coordinates of the H atom were refined with a constrained O6–H distance of 0.95 ± 0.01 Å and a fixed isotropic displacement parameter of 0.02 Å² (Table 3).

DESCRIPTION OF THE STRUCTURE

The structure of Sr₂B₂O₉(OH)·H₂O is depicted in Figures 1 and 2. Like the hilgardite structure, its fundamental building block (Grice et al. 1999) consists of B₁₂₅–pentaborate anions built of three corner-shared tetrahedra (2 B₁ + 1 B₂) bridged by two triangles (2 B₃). As in hilgardite, the pentaborate anions are linked to one another to form chains along [001], and adjacent chains are further linked into a three-dimensional zeolite-like framework (Ghose & Wan 1979, Wan & Ghose 1983). Both the individual pentaborate anions and the

TABLE 1. UNIT-CELL DATA OF HILGARDITE-RELATED COMPOUNDS

<table>
<thead>
<tr>
<th>Compound</th>
<th>Formula</th>
<th>Space group</th>
<th>Unit-cell volume (Å³)</th>
<th>Z</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>hilgardite 1</td>
<td>Ca₅BO₅(OH)₂H₂O</td>
<td>P1</td>
<td>204.9</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Sr-substituted</td>
<td>SrC₅BO₅(OH)₂H₂O</td>
<td>P1</td>
<td>206.9</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>synthetic</td>
<td>Ca₅BO₅(OH)₂H₂O</td>
<td>P1</td>
<td>206.9</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

TABLE 2. REFINEMENT DETAILS FOR Sr₂B₂O₉(OH)·H₂O

<table>
<thead>
<tr>
<th>Formula</th>
<th>Sr₂B₂O₉(OH)·H₂O</th>
<th>20 max (°)</th>
<th>72.24</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>space group</td>
<td></td>
<td>index ranges</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a (Å)</td>
<td>10.257(1)</td>
<td>-10 < h < 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b (Å)</td>
<td>8.048(2)</td>
<td>-10 < l < 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c (Å)</td>
<td>6.404(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β (°)</td>
<td>127.860(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V (Å³)</td>
<td>417.4(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>density (g·cm⁻³)</td>
<td>3.241</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>crystal size (mm)</td>
<td>0.18 ± 0.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wavelength (Å)</td>
<td>1.5407</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>absorption (mm⁻¹)</td>
<td>12.837</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>frame exposure (s)</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>no frames</td>
<td>3500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>frame width (°)</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 3. ATOM COORDINATES AND DISPLACEMENT PARAMETERS FOR Sr₂B₂O₉(OH)·H₂O

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Ueq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sr</td>
<td>0.2046(3)</td>
<td>0.0408(5)</td>
<td>0.0149(5)</td>
</tr>
<tr>
<td>B1</td>
<td>0.5730(4)</td>
<td>0.3266(4)</td>
<td>0.2538(7)</td>
</tr>
<tr>
<td>B2</td>
<td>0.5</td>
<td>0.1593(6)</td>
<td>0.5</td>
</tr>
<tr>
<td>B3</td>
<td>0.2677(5)</td>
<td>0.0730(3)</td>
<td>0.5058(7)</td>
</tr>
<tr>
<td>O1</td>
<td>0.6439(3)</td>
<td>0.0518(4)</td>
<td>0.5859(4)</td>
</tr>
<tr>
<td>O2</td>
<td>0.1464(3)</td>
<td>0.9662(3)</td>
<td>0.4529(5)</td>
</tr>
<tr>
<td>O3</td>
<td>0.5536(3)</td>
<td>0.2513(5)</td>
<td>0.7371(5)</td>
</tr>
<tr>
<td>O4</td>
<td>0.5</td>
<td>0.4048(3)</td>
<td>0.0</td>
</tr>
<tr>
<td>O5</td>
<td>0.2997(3)</td>
<td>0.2020(3)</td>
<td>0.6758(5)</td>
</tr>
<tr>
<td>O6</td>
<td>0.4129(3)</td>
<td>0.8154(3)</td>
<td>0.1089(5)</td>
</tr>
<tr>
<td>H</td>
<td>0.526(4)</td>
<td>0.821(7)</td>
<td>0.289(4)</td>
</tr>
</tbody>
</table>

Not refined.
pentaborate chains in Sr$_2$B$_5$O$_9$OH•H$_2$O possess two-fold symmetry (around the B2 and O4 atoms, Fig. 1), and the C-centered symmetry of the structure implies that all pentaborate chains have the same orientation and conformation (Fig. 2). Two-fold symmetry is also present in the pentaborate anion of garrelsite, NaBa$_3$Si$_2$B$_7$O$_{16}$(OH)$_4$ (Ghose et al. 1976), but is absent from all the hilgardite structures.

The Sr cations in Sr$_2$B$_5$O$_9$OH•H$_2$O are located at the intersections of tunnels parallel to the a and b axes of the unit cell (Fig. 1). The sites are nine-coordinated, with a bond-valence sum equal to 2.12 valence units (vu) for the nine Sr–O bonds shorter than 3 Å (Table 5), as calculated with the parameters of Brese & O’Keeffe (1991). Two of the shorter Sr–O bonds correspond to O6 sites located in tunnels parallel to the c axis and randomly occupied by OH$^-$ anions and H$_2$O molecules (Fig. 2). These sites occur in pairs, with alternating short (2.48 Å) and long (4.31 Å) O6…O6 distances along the c direction (Fig. 1). The short distance of 2.48 Å

| Table 4. Anisotropic Displacement Parameters for Sr$_2$B$_5$O$_9$OH•H$_2$O |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| U$_{11}$ | U$_{22}$ | U$_{33}$ | U$_{12}$ | U$_{13}$ | U$_{23}$ |
| Sr 0.009(1) | 0.0091(1) | 0.0067(1) | -0.0014(2) | 0.00453(9) | -0.00252(2) |
| B1 0.0066(1) | 0.0090(13) | 0.0044(14) | 0.0002(10) | 0.0031(13) | 0.00071(11) |
| B2 0.0072(3) | 0.0052(2) | 0.0072(2) | 0.0000 | 0.0064(2) | 0.0000 |
| B3 0.0080(11) | 0.0033(15) | 0.0055(14) | -0.0004(9) | 0.0056(13) | -0.0013(9) |
| O1 0.0085(8) | 0.0066(12) | 0.0073(8) | 0.0010(10) | 0.00497(8) | 0.0026(10) |
| O2 0.0085(11) | 0.0087(9) | 0.0085(10) | -0.0027(01) | 0.00539(9) | -0.0050(7) |
| O3 0.0059(10) | 0.0082(9) | 0.0046(10) | -0.0007(7) | 0.00269(9) | 0.0011(7) |
| O4 0.0080(13) | 0.0048(12) | 0.0051(14) | 0.0000 | 0.00037(13) | 0.0000 |
| O5 0.0091(11) | 0.0086(10) | 0.0087(11) | -0.0034(8) | 0.0062(10) | -0.0028(8) |
| O6 0.011(12) | 0.0147(11) | 0.0150(13) | 0.0000(10) | 0.0059(11) | -0.0000(9) |

| Table 5. Selected Bond Distances (Å) and Bond Angles (°) for Sr$_2$B$_5$O$_9$OH•H$_2$O |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Sr - O1 2.564(2) | O4 - B1 - O5 113.3(2) |
| Sr - O6 2.575(3) | O4 - B1 - O3 110.8(2) |
| Sr - O6 2.598(3) | O5 - B1 - O3 110.4(3) |
| Sr - O5 2.610(2) | O4 - B1 - O2 105.6(3) |
| Sr - O5 2.648(2) | O5 - B1 - O2 111.3(3) |
| Sr - O3 2.684(2) | O3 - B1 - O2 105.1(2) |
| Sr - O2 2.703(2) | O3 - B2 - O3 118.9(4) |
| Sr - O2 2.909(3) | O3 - B2 - O1 109.3(2) |
| B1 - O4 1.449(4) | O3 - B2 - O1 104.9(2) |
| B1 - O5 1.470(4) | O3 - B2 - O1 109.3(2) |
| B1 - O3 1.472(4) | O1 - B2 - O1 109.3(4) |
| B1 - O2 1.513(4) | O2 - B3 - O1 123.2(3) |
| B2 - O3 1.461(3) | O2 - B3 - O5 114.9(3) |
| B2 - O3 1.461(3) | O1 - B3 - O5 121.8(3) |
| B2 - O1 1.496(4) | O2 - B3 - O5 114.9(3) |
| B2 - O1 1.496(4) | O1 - B3 - O5 121.8(3) |
| B3 - O2 1.367(4) | O1 - B3 - O5 121.8(3) |
| B3 - O1 1.370(4) | O1 - B3 - O5 121.8(3) |
| B3 - O5 1.379(4) | O1 - B3 - O5 121.8(3) |
| O6 - H 0.94(1) | | |

Fig. 1. View of the Sr$_2$B$_5$O$_9$OH•H$_2$O structure projected along the b axis. Small numbers refer to the oxygen positions. Only the H atom determined during the structure refinement is shown bonded to the O6 atom. The small numbers at the corners of the polyhedra refer to the oxygen atom positions (cf. Table 3).
cates the formation of hydrogen bonds between adjacent OH$^-$ anions and H$_2$O molecules, suggesting that the missing second H atom of the H$_2$O molecule lies directly between adjacent O6 sites. The resulting orientation and geometry of the H$_2$O molecule would be consistent with the observed H–O6...O6 angle of 101$^\circ$. A similar scheme of hydrogen bonding also is present between the Cl$^-$ anions and the H$_2$O molecules in hilgardite, but with more regular Ow...Cl...Ow spacings of 3.15–3.30 Å (Ghose & Wan 1979, Wan & Ghose 1983, Burns & Hawthorne 1994).

Comparison of Sr$_2$B$_5$O$_9$OH\cdotH$_2$O and hilgardite

The structure of hilgardite-1α is depicted in Figure 3 (Burns & Hawthorne 1994). It is one of the three known polymorphic forms of hilgardite (with hilgardite-4M and hilgardite-3α, or “parahilgardite”) that are based on different combinations of right- or left-handed (or both) pentaborate anions and chains (Ghose 1982). The basic hilgardite-1α unit-cell contains only one Ca$_2$B$_5$O$_9$Cl•H$_2$O formula unit, so that all pentaborate chains in the structure are equivalent and have the same conformation. Consequently, a pseudo C-centered symmetry is apparent in the [001] projection (Fig. 3), with unit-cell dimensions very similar to those of the C2 monoclinic unit-cell of Sr$_2$B$_5$O$_9$OH•H$_2$O (Table 6). However, hilgardite-1α lacks 2-fold symmetry in both structures, but the hilgardite chain lacks 2-fold symm-

![Fig. 2. View of the Sr$_2$B$_5$O$_9$OH•H$_2$O structure projected along the c axis.](image)

Table 6. Unit-Cell Relations Between Hilgardite-1α and Sr$_2$B$_5$O$_9$OH•H$_2$O

<table>
<thead>
<tr>
<th></th>
<th>triclinic P1</th>
<th>pseudo-monoclinic C1</th>
<th>Sr$_2$B$_5$O$_9$OH•H$_2$O monocl</th>
<th>Sr$_2$B$_5$O$_9$OH•H$_2$O mono</th>
</tr>
</thead>
<tbody>
<tr>
<td>a (Å)</td>
<td>6.452</td>
<td>10.382</td>
<td>10.257</td>
<td>8.049</td>
</tr>
<tr>
<td>b</td>
<td>6.559</td>
<td>7.843</td>
<td>6.404</td>
<td>12.786</td>
</tr>
<tr>
<td>c</td>
<td>6.286</td>
<td>6.286</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>α (°)</td>
<td>61.60</td>
<td>89.86</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>β</td>
<td>118.72</td>
<td>126.81</td>
<td>127.86</td>
<td>417.4</td>
</tr>
<tr>
<td>γ</td>
<td>105.86</td>
<td>90.98</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>V (Å3)</td>
<td>204.9</td>
<td>409.8</td>
<td>417.4</td>
<td></td>
</tr>
</tbody>
</table>

* the P1 → C1 transformation matrix is 1-10 / 110 / 001
try, primarily because of a large rotation of the B1 tetrahedron around its O3…O4 edge (Fig. 4). The more extended chain conformation in Sr$_2$B$_5$O$_9$OH•H$_2$O is associated with larger B–O–B angles around the bridging tetrahedral O atoms: an average of 121.7° around O3 and O4 in Sr$_2$B$_5$O$_9$OH•H$_2$O (Fig. 4, top) versus 116.5° around O8, O4 and O5 in hilgardite-1A (Fig. 4, bottom). This leads to a slight expansion of the structure along the c axis and contributes to the increase in unit-cell volume (Table 6). In that respect, it is noteworthy that the volumes per formula unit for hilgardite, Sr-substituted hilgardite, tyretskite and Sr$_2$B$_5$O$_9$OH•H$_2$O are quite similar, with only minor increases associated with the Sr ↔ Ca and Cl⁻ ↔ OH⁻ substitutions (Table 1). It may therefore be argued that the different chain conformation in the Sr$_2$B$_5$O$_9$OH•H$_2$O structure serves to accommodate the larger Sr cations without significantly altering the dimensions of the pentaborate framework. The bonding environments of the alkaline-earth cations are indeed quite distinct in the Ca and Sr structures. In hilgardite-1A, the Ca(1) and Ca(2) cations are eight- and seven-coordinated, respectively (by six and five framework O atoms, plus two Cl⁻ and H$_2$O ligands), with an average bond-distance of 2.53 Å (Burns & Hawthorne 1994). The Ca(2) site remains slightly underbonded [with a bond-valence sum of 1.85 versus 2.00 Å for Ca(1)] and, not surprisingly, is the site occupied by Sr in Sr-substituted hilgardite (Ferro et al. 2000a). In contrast, as described above, the Sr cations in Sr$_2$B$_5$O$_9$OH•H$_2$O are nine-coordinated [by seven framework O atoms, plus two O(6)H⁻ and H$_2$O(6) ligands], with an average bond-distance of 2.66 Å. The volume difference between the SrO$_9$ and CaO$_8$ polyhedra (18.82 versus 16.19 Å3, or 16.2%, calculated for a spherical coordination environment) is clearly much larger than expected from the difference in unit-cell volumes alone (1.9%, Table 6).

The presence of the Cl⁻ anions in the hilgardite structure may also play a role in determining the conformation of the pentaborate chains. Their large size is associated with long Cl⁻…O distances, with the shortest being equal to 3.29 Å in hilgardite-1A (Burns & Hawthorne 1994). By comparison, the shortest O6…O distances in the Sr$_2$B$_5$O$_9$OH•H$_2$O structure are 3.08 Å (O6…O1), 3.11 Å (O6…O3) and 3.16 Å (O6…O1), comparable with the OH$_2$…O distances in hilgardite.

Fig. 3. View of the hilgardite-1A, Ca$_3$B$_5$O$_9$Cl•H$_2$O, structure in projection along the c axis. The dashed line represents the pseudo-monoclinic C-centered unit-cell similar to that of Sr$_2$B$_5$O$_9$OH•H$_2$O (cf. Table 6). Compare to Figure 2.
(3.04–3.15 Å). Clearly, the Cl– anions occupy a larger site than the OH− anions and H2O molecules.

It would be of interest to compare the structure of Sr2B5O9OH•H2O with that of tyretskite, Ca2B5O9OH•H2O. Unfortunately, no refinement of the tyretskite structure has been carried out to date, and only unit-cell parameters have been determined. These show a similarity to the parameters of hilgardite-IA (a 6.44, b 6.45, c 6.41 Å, α 61.8, β 119.7, γ 106.5°, as quoted in Rumanova et al. 1977). However, even these cell parameters are in doubt, as they do not provide a suitable indexing of the published powder X-ray data for tyretskite (ICDD database, file #260002). Furthermore, the published powder-diffraction pattern shows little resemblance with that simulated using the atomic positions of hilgardite-IA. True triclinic symmetry would imply an ordered distribution of OH− and H2O in tyretskite, but questions remain as to the exact conformation of the pentaborate chains. A predominant role for the size of the alkaline-earth cation would imply a hilgardite-like chain in view of the small size of the Ca ions. However, the presence of the OH− anions and H2O molecules in the framework cavities, together with the associated hydrogen bonding, might favor the more symmetrical conformation of chains found in Sr2B5O9OH•H2O.

ACKNOWLEDGEMENTS

The X-ray data were collected by Dr. J. Britten of the Department of Chemistry at McMaster University. The work was supported by the Natural Sciences and Engineering Research Council of Canada through an Undergraduate Summer Research Award to HP and a Research Grant to JB. The authors thank S. Filatov, F.C. Hawthorne, P.C. Burns and R.F. Martin for their helpful reviews of the manuscript.

REFERENCES

A SYNTHETIC BORATE RELATED TO HILGARDITE

Received July 23, 2000, revised manuscript accepted January 16, 2001.