PALLADIUM AND PLATINUM MINERALS FROM THE SERRA PELADA
Au–Pd–Pt DEPOSIT, CARAJÁS MINERAL PROVINCE, NORTHERN BRAZIL

ALEXANDRE RAPHAEL CABRAL§ AND BERND LEHMANN
Institut für Mineralogie und Mineralische Rohstoffe, Technische Universität Clausthal,
Adolph-Roemer-Str. 2A, D–38678 Clausthal-Zellerfeld, Germany

ROGERIO KWITKO-RIBEIRO
Centro de Desenvolvimento Mineral, Companhia Vale do Rio Doce, BR 262/ km 296, 33030-970 Santa Luzia – MG, Brazil

CARLOS HENRIQUE CRAVO COSTA
Diretoria de Metais Nobres, Companhia Vale do Rio Doce, Caixa Postal 51,
Serra dos Carajás, 68516-000 Paraúbicapan – PA, Brazil

ABSTRACT
The Serra Pelada garimpo (1980–1984) was the site of the most spectacular gold rush in recent history, but the mineralogy of the bonanza-style mineralization has not so far been documented in detail. Rediscovery of an early drill-core, recovered in 1982 from the near-surface lateritic portion of the garimpo area, has provided coarse-grained gold aggregates for this study. The centimeter-long aggregates of gold occur in powdery, earthy material. They exhibit a delicate arborescent fabric and are coated by goethite. Four compositional types of gold are recognized: palladian gold with an atomic ratio Au:Pd of 7:1 (“Au7Pd”), Hg-bearing palladian gold (Au–Pd–Hg), Pd-bearing gold with up to 3 wt.% Pd (Pd-poor gold) and pure gold. A number of platinum-group minerals (PGM) are included in, or attached to the surface of, palladian gold: “guanglinite”, Sb-bearing “guanglinite”, atheneite and isomertieite, including the noteworthy presence of Se-bearing PGM (Pd–Pt–Se, Pd–Se, Pd–Hg–Se and Pd–Bi–Se phases, and sudovikovite and palladséite). They define an As–Sb–Hg–Se mineral assemblage typical of hydrothermal vein-type deposits formed at relatively low temperatures. Native palladium, characteristically situated in the goethite coating, is intimately associated with a Pd–O phase. The remarkable occurrence of native platinum associated with Pd-bearing gold, PGM (compositonally close to mertieite-II and isomertieite) and berzelianite from a nearby prospect (Elefante prospect) is also recorded.

Keywords: palladian gold, platinum-group minerals, Pd–O phase, native palladium, native platinum, Serra Pelada garimpo, Carajás mineral province, Brazil.

SOMMAIRE
Le garimpo de Serra Pelada (1980–1984) a été le site de la ruée vers l’or la plus spectaculaire en temps modernes, mais la minéralogie de cette minéralisation de style bonanza n’a pas encore fait l’objet d’une étude détaillée. La redécouverte d’une carotte forée en 1982 d’un profil latéritique du garimpo nous a permis d’échantillonner des agrégats d’or à grains grossiers. Ces agrégats, d’une taille centimétrique, se présentent dans un matériau pulvérulement. Ils possèdent une forme arborescente délicate et sont recouverts d’une gaine de goethite. Nous distinguons quatre types d’or selon leur composition: or palladière ayant un rapport atomique Au:Pd de 7:1 (“Au7Pd”), or palladière et mercurière (Au–Pd–Hg), or palladière contenant jusqu’à 3% de Pd en poids (or à faible teneur en Pd) et or pur. Plusieurs minéraux du groupe du platine sont inclus dans l’or palladière, ou bien rattachés à la surface de ces grains: “guanglinite”, “guanglinite” stibifère, athénétique et isomertietine, avec la présence notoire de phases sélénifères (Pd–Pt–Se, Pd–Se, Pd–Hg–Se et Pd–Bi–Se, ainsi que sudovikovite et palladséite). Ces minéraux définissent un assemblage As–Sb–Hg–Se typique de gisements hydrothermaux en veines, formés à températures relativement faibles. Le

§ E-mail address: cabral@min.tu-clausthal.de
palladium natif, caractéristiquement inclus dans la gaine de goethite, est intimement lié à une phase Pd–O. Nous soulignons aussi l’association remarquable de platine natif associé à l’or palladière, des minéraux du groupe du platine dont la composition se rapproche de celle de la mertiëite-II et de l’isomertiëite, et berzélianite provenant de Elefante, puit d’exploration voisin.

(Traduit par la Rédaction)

Mots-clés: or palladière, minéraux du groupe du platine, phase Pd–O, palladium natif, platine natif, garimpo Serra Pelada, province minérale de Carajás, Brésil.

INTRODUCTION

Discovered in 1980 by garimpeiros, the Serra Pelada gold deposit was soon reputed to be an eldorado in the Amazon region. Its gold, characteristically coarse-grained and alloyed with palladium (Meireles & Silva 1988), was completely mined out from the near-surface lateritic portion, where it occurred as bonanza ore in disaggregated, quartz-bearing clayey material. The garimpo (open pit) collapsed and flooded in 1984. According to Meireles & Silva (1988), 32.6 tonnes of gold were extracted, but unofficial figures place the amount closer to 70 tonnes of gold.

A drill core recovered in 1982 from the central part of the Serra Pelada garimpo is the only relic of the near-surface bonanza ore. One depth interval of this drill core (SP–32, 54.5–55.0 m at 132,000 g/t Au, 11,400 g/t Pd, 359 g/t Pt) (Cabral et al. 2002a) has provided coarse-grained aggregates of dendritic gold for investigation. Because the coarse-grained gold was recovered from disaggregated and powdery material, supergene enrichment has been suggested to account for the bonanza grade (Tallarico et al. 2000, Moroni et al. 2001). Our contribution records what seems to be a hydrothermal assemblage of palladium minerals associated with coarse-grained palladian gold. A native platinum vein-type mineralization from a nearby prospect, known as “Elefante”, also is documented.

GEOLOGICAL SETTING AND THE SERRA PELADA DEPOSIT

Serra Pelada is one of the numerous ore deposits of the Carajás mineral province (Fig. 1). Reviews of the geological setting of the Carajás mineral province can be found elsewhere (e.g., DOCEGEO 1988, Villas & Santos 2001, Moroni et al. 2001), and only a brief account of the Serra Pelada Au–Pd–Pt deposit is given here.

The deposit is hosted by the Rio Fresco Formation, a fluvial to shallow marine sequence of Late Archean age, which comprises weakly metamorphosed conglomerate, sandstone, dolomitic marble and siltstone. That formation is underlain by the volcano-sedimentary Rio Novo Sequence (Cunha et al. 1984, Meireles & Silva 1988, DOCEGEO 1988, Tallarico et al. 2000), whose age is constrained by the intrusive, chromite- and PGE-mineralized Luanga layered mafic–ultramafic complex (2763 ± 6 Ma; Machado et al. 1991, Suita & Nilson 1988, Diella et al. 1995), a few kilometers east–southeast of Serra Pelada. All these rocks were affected by the reactivation (ca. 1.9 Ga) of the east–west-trending Cinzento strike-slip system (Pinheiro & Holdsworth 1997a), which is still active today with small-scale earthquakes and hot springs about 50 km west–northwest from Serra Pelada (Pinheiro & Holdsworth 1997b). Proterozoic magmatism is represented by the anorogenic Cigano Granite (1883 ± 2 Ma, Machado et al. 1991), exposed about 15 km west of Serra Pelada. Subordinate dioritic and granodioritic rocks of unknown age also occur in the area (Tallarico et al. 2000). The minimum age for the onset of weathering in the Carajás region, based on K–Ar and 40Ar/39Ar dating of K-bearing manganiferous oxides, is ca. 72 ± 6 Ma (Vasconcelos et al. 1994).

The near-surface bonanza ore occurs as brecciated, but completely disaggregated, quartz-bearing clayey masses. At depth, the mineralization is less friable and lacks the aggregates of coarse-grained, characteristically dendritic, palladian gold. Located in the deeply weathered hinge-zone of a recumbent syncline, the deep-seated mineralization consists of brecciated, fine-grained carbonaceous rocks with variable amounts of quartz, carbonaceous matter, white mica, kaolinite, hematite, goethite and manganese oxide (Tallarico et al. 2000, Moroni et al. 2001). It is surrounded by a 5- to 50-m-thick zone of silicification, and broadly follows the contact between dolomitic marble and carbonaceous metasiltstone of the Rio Fresco Formation (Tallarico et al. 2000).

ANALYTICAL TECHNIQUES

Coarse-grained aggregates of gold (1–3 cm across) were picked from the drill core SP–32 at the depth interval of 54.5–55.0 m. After removal of the powdery clayey material, the gold aggregates were investigated by scanning electron microscopy (SEM). Polished sections were then prepared for ore microscopy and electron-microprobe analysis with a Cameca SX100 at the TU Clausthal. Analytical conditions, X-ray emission lines and standards were the same as described in Cabral et al. (2001), with the exception of platinum and selenium, sought using the Lα lines and pure metals as standards. Occasional modifications in the X-ray emission lines and analytical conditions used are noted in the tables.

PALLADIUM AND PLATINUM MINERALS FROM SERRA PELADA

Platinum-group minerals (PGM) are associated with coarse-grained gold, which occurs as cm-long dendrites roughly 1 mm thick (Fig. 2a) and as wire-haired aggregates of arborescent fabric (Fig. 2b). The crystals of gold are usually coated with goethite (Fig. 3a). At the contact between gold crystals and the goethite coating, it is common to observe masses of native palladium intermingled with a Pd–O phase (Fig. 3b). The coarse-grained crystals of gold occasionally host subhedral to euhedral inclusions (5–20 μm in length) of palladium and platinum-bearing minerals (Fig. 3c). Where closely associated with goethite, the PGM commonly have a low-reflectance alteration-induced halo consisting of a Pd–O phase (Fig. 3d).

Reconnaissance electron-microprobe work has indicated a uniform content of about 7 wt.% Pd in gold crystals. They have an empirical stoichiometry of Au7Pd (Table 1) (Cabral et al. 2002a). However, the composition of gold is not ubiquitously uniform. Systematic investigation has shown that the gold composition is variable in terms of both palladium, from 1.6 to 9.8 wt.% Pd, and mercury, up to 1.5 wt.% Hg (Table 1). Consequently, three compositional types of palladian gold are distinguished in this study (Serra Pelada only): (i) gold alloy with about 7 wt.% Pd, (ii) Hg-bearing Au–Pd alloys with >3 wt.% Pd, and (iii) Au–Pd alloys with <3 wt.% Pd. They will be referred to as “Au7Pd”, Au–Pd–Hg and Pd-poor gold, respectively. The term "palladian gold" is used here to designate any Au–Pd alloy. All these Au–Pd alloys are virtually free of silver. Under reflected light, the Au–Pd crystals show a whitish yellow color.

Palladium-free gold also is present, but in insignificant amounts compared to the palladian gold. It is readily distinguished from Au–Pd alloys by its typical yellow color. Being virtually pure (Table 2), the yellow gold occurs as veinlets and tiny crystals (<5 μm across) near the margin of, and attached to, crystals of palladian gold.

Specific assemblages of PGM are associated with the compositional types of palladian gold (Table 3). By far, “Au7Pd” is the dominant compositional type in the 13 aggregates of gold studied. Where present, the most abundant mineral inclusions in the coarse-grained dendrites of “Au7Pd” are two palladium arsenides (Table 4). One is Sb-free and contains around 19 wt.% As (Table 3). The Pd:As ratio indicates stoichiometric Pd₃As, corresponding to “guanglinite”, not an IMA-approved name (Cabri & Laflamme 1981, p. 159). The other arsenide has some antimony in the range of 4.3–6.3 wt.% Sb at the expense of arsenic, and hence maintains the same stoichiometry, that is Pd₃(As,Sb), corresponding to “guanglinite”. Other inclusions are a (i) Pd–Pt–Se and

<p>| Table 1. Electron-microprobe data on palladian gold, Serra Pelada, Au–Pd deposit, Northern Brazil |</p>
<table>
<thead>
<tr>
<th>Au</th>
<th>Pd</th>
<th>Hg</th>
<th>Ag</th>
<th>Cu</th>
<th>Fe</th>
<th>Total</th>
</tr>
</thead>
</table>
| 1 | 92.11 | 7.52 | <0.2 | <0.3 | <0.07 | <0.05 | 99.89
| 2 | 92.77 | 7.30 | <0.2 | <0.3 | <0.07 | <0.05 | 99.87
| 3 | 92.65 | 6.71 | <0.2 | <0.3 | <0.07 | <0.05 | 99.64
| 4 | 92.57 | 7.28 | <0.2 | <0.3 | <0.07 | <0.05 | 99.44
| 5 | 92.53 | 6.95 | <0.2 | <0.3 | <0.07 | <0.05 | 99.35
| 6 | 92.57 | 7.38 | <0.2 | <0.3 | <0.07 | <0.05 | 99.44
| 7 | 92.52 | 7.92 | <0.2 | <0.3 | <0.07 | <0.05 | 99.44
| 8 | 92.52 | 7.92 | <0.2 | <0.3 | <0.07 | <0.05 | 99.44
| 9 | 92.52 | 7.92 | <0.2 | <0.3 | <0.07 | <0.05 | 99.44
| 10 | 92.52 | 7.92 | <0.2 | <0.3 | <0.07 | <0.05 | 99.44
| 11 | 92.52 | 7.92 | <0.2 | <0.3 | <0.07 | <0.05 | 99.44
| 12 | 92.52 | 7.92 | <0.2 | <0.3 | <0.07 | <0.05 | 99.44
| 13 | 92.52 | 7.92 | <0.2 | <0.3 | <0.07 | <0.05 | 99.44
| 14 | 92.52 | 7.92 | <0.2 | <0.3 | <0.07 | <0.05 | 99.44
| 15 | 92.52 | 7.92 | <0.2 | <0.3 | <0.07 | <0.05 | 99.44

* Drill core SP-33, 54.5–55.5 m. The results correspond to the following compositional types of gold, referred to in the text: (i) "Au7Pd", 60–65; Au–Pd–Hg, 25–35; Pd-poor gold. The compositions are first listed in terms of wt%, then expressed in terms of atoms per formula unit, at%.
(ii) Pd–Se phases and, more rarely, selenides analogous to (iii) sudovikovite, PtSe₂ (Fig. 3c), and (iv) palladseite, Pd₁₇Se₁₅. The Pd–Pt–Se phase has about 72–75 wt.% Pd and a Pt:Se ratio of approximately 1:2, indicating an empirical stoichiometry of Pd₉PtSe₂ (Cabral et al. 2002a). Palladseite and sudovikovite are found as tiny (<5 μm in diameter), subhedral crystals; the former is Hg-bearing (Cabral et al. 2002a). The Pd–Se phase occurs as subhedral to anhedral crystals 5–20 μm in length and is usually surrounded by a Hg-bearing Pd–O phase (Fig. 3d). Being essentially composed of about 85 wt.% Pd and 14 wt.% Se, this phase has a Pd:Se ratio of about
4.5, close to the stoichiometry of the synthetic compound Pd$_9$Se$_2$ (Table 5).

Other PGM associated with the "Au-Pd" dendrites are situated in the goethite coating. Of very restricted occurrence, these minerals are too small to avoid interference from either the goethite coating or the palladian gold. Therefore, their microprobe-derived compositions must be considered with caution (Table 6). They are: (i) a Pd–Pt–S–As–Se phase (Fig. 3a), (ii) a Pd–Au–Pt–As phase (Fig. 3b), and (iii) a Se-bearing Pt–Pd sulfide.

The Au–Pd–Hg alloy has a mineral assemblage characterized by a Pd–Hg–As phase. The Pd–Hg–As crystals are subhedral, 10–50 μm in length, commonly attached to the margins of the Hg-bearing palladian gold (Fig. 3c). Recalculation of the electron-microprobe data indicates an empirical stoichiometry close to that of athenite, (Pd,Hg)$_3$As; some platinum, up to 2 wt.% Pt, has also been detected (Table 7). Other PGM apparently restricted to the Au–Pd–Hg alloy occur very rarely as subhedral crystals of about 10 μm in length: (i) a Pb-bearing Pd–Hg–Se phase, and (ii) a Pb–Bi–Se phase (Table 7).

The Pd-poor gold crystals are usually finer (<100 μm) than those of "Au-Pd" and the Au–Pd–Hg alloy, but coarse-grained (>100 μm) crystals also exist. The

TABLE 2: ELECTRON-MICROPROBE DATA ON YELLOW GOLD ASSOCIATED WITH PALLADIUM GOLD ("Au-Pd") SERRA PELADA Au-Pd-IN DEPOSIT, NORTHERN BRAZIL

<table>
<thead>
<tr>
<th>Au wt.%</th>
<th>Ag</th>
<th>Cu</th>
<th>Pb</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>89.70</td>
<td><0.5</td>
<td><0.5</td>
<td><0.5</td>
<td>0.24</td>
</tr>
<tr>
<td>89.80</td>
<td><0.5</td>
<td><0.5</td>
<td><0.5</td>
<td>0.24</td>
</tr>
<tr>
<td>89.90</td>
<td><0.5</td>
<td><0.5</td>
<td><0.5</td>
<td>0.24</td>
</tr>
<tr>
<td>90.22</td>
<td><0.5</td>
<td><0.5</td>
<td><0.5</td>
<td>0.24</td>
</tr>
<tr>
<td>90.29</td>
<td><0.5</td>
<td><0.5</td>
<td><0.5</td>
<td>0.24</td>
</tr>
</tbody>
</table>

* Drill core SP-32, 54.5–55.5 m

TABLE 4: ELECTRON-MICROPROBE DATA ON PALLADIUM ARSENIDE INCLUSIONS IN PALLADIUM GOLD ("Au-Pd") SERRA PELADA Au-Pd-IN DEPOSIT, NORTHERN BRAZIL

<table>
<thead>
<tr>
<th>Au</th>
<th>Ag</th>
<th>Cu</th>
<th>Pb</th>
<th>Fe</th>
<th>Sb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.94</td>
<td>0.09</td>
<td><0.03</td>
<td><0.03</td>
<td><0.03</td>
<td>0.06</td>
</tr>
</tbody>
</table>

* Drill core SP-35, 54.5–55.5 m.

FIG. 2. SEM images of (a) a palladian gold thread and (b) an arborescent palladium gold aggregate from Serra Pelada.
Fig. 3. Back-scattered electron (BSE) images of palladian gold and associated PGM from Serra Pelada. a. Crystals of palladian gold (empirical stoichiometry: "Au-Pd") coated by goethite. Note inclusions of YPO₄ and Fe–Pd–O phase in the goethite coating. Electron-microprobe data for the Pd–Pt–S–As–Se phase are provided in Table 6 (anal. 1). Black: resin. b. Detail of the area indicated in (a). Native palladium (Pd) intimately associated with a Pd–O phase and a relic of a Pd?–Au?–Pt–As phase (Table 6, anal. 2). Black: resin. c. Inclusions of sudovikovite (PtSe₂) and "guanglinite" (PdAs) in palladian gold ("Au-Pd"). d. Alteration rim of Pd–O on Pd–Se phase at the contact between palladian gold ("Au-Pd") and goethite. Black: resin. e. Hg-bearing palladian gold (Au–Pd–Hg), Pd-poor gold and associated PGM in a Mn–Ba–O matrix (possibly romanèchite, dark grey). Note that the crystals of atheneite [(Pd,Hg)₃As] are on the surface of the Au–Pd–Hg alloy. f. Aggregates of Pd-poor gold and isomertieite (Pd₁₁₂As₂Sb₂, arrows) intergrown with a Mn–Ba oxide (romanèchite?, dark grey).
crystals of Pd-poor gold have so far been recognized in aggregates intergrown with a Mn–Ba oxide (Figs. 3f), possibly romanechite, in which coarse-grained crystals of Au–Pd–Hg alloy occur (Fig. 3e). A Pd–As–Sb mineral seems to compose a particular mineral assemblage with the Pd-poor gold. The Pd–As–Sb crystals are subhedral and have a variable grain-size. Where fine-grained (<100 μm), they are found as aggregates with Pd-poor gold (Figs. 3e, f) and as isolated crystals; those slightly exceeding 100 μm in length are attached to coarse-grained Pd-poor gold. Their composition is about 75 wt.% Pd, 14% Sb and 9% As, corresponding to that of isomertieite, Pd_{11}Sb_{2}As_{2} (Table 7).

Native palladium, Pd–O and gangue minerals

Native palladium is characteristically located at the contact between the goethite coating and “Au7Pd.” Two styles of occurrence are recognized: (i) as masses (Fig. 3b) and (ii) as submicrometer-wide stripes lining vugs (Fig. 4a). There is an intimate association between native palladium and a Pd–O phase of low reflectance, which imparts a spongy appearance to the palladium masses (Fig. 3b). Relics of PGM are sporadically found in masses of native palladium. The native palladium is generally pure (Table 8); the extraneous elements detected in micro-analyses may stem from the surroundings (Au from palladian gold) or be inherited from a precursor PGM (7.2 wt.% As, anal. 5, Table 8).

Apart from being intermingled with masses of native palladium, the low-reflectance, Pd–O phase also occurs as an alteration halo on PGM. Such halos are best developed on arsenic- and selenium-bearing palladium minerals where in contact with goethite (Fig. 3d).

The Pd–Se phase of Figure 3d (no Hg and Cu detected) is altered to Pd–O with 2.0 wt.% Hg and 1.7 wt.% Cu. Some Pd–O-bearing phases were analyzed for oxygen. The oxidation-induced halo on the Pd–Pt–Se phase, for instance, has low contents of oxygen, from about 4 to 6 wt.% O; higher contents (9–11 wt.% O) were detected in the Pd–O associated with native palladium (Table 9). Note that in some cases, considerable amounts of Hg, Cu and Mn, and perhaps Cl, are present in the Pd–O phases.

Gangue minerals are rarely included in the “Au–Pd” alloy. One exception is an acicular Al–O, possibly diaspor [AlO(OH)]. Rare crystals of yttrium phosphate (probably a xenotime-group mineral) occur in vugs.

Table 5. Electron-microprobe data on palladium–selenium alloy. **Serra Pelada Au–Pd–Pt deposit, Northern Brazil.**

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd wt.%</td>
<td>91.01</td>
<td>91.84</td>
<td>91.61</td>
<td>91.75</td>
<td>94.04</td>
</tr>
<tr>
<td>Au</td>
<td>0.97</td>
<td>0.58</td>
<td>1.12</td>
<td>1.72</td>
<td>1.74</td>
</tr>
<tr>
<td>Fe</td>
<td>0.41</td>
<td>0.41</td>
<td>0.53</td>
<td>0.59</td>
<td>0.83</td>
</tr>
<tr>
<td>Se</td>
<td>13.01</td>
<td>14.25</td>
<td>13.35</td>
<td>14.10</td>
<td>14.17</td>
</tr>
<tr>
<td>5</td>
<td>0.52</td>
<td><0.03</td>
<td><0.03</td>
<td><0.03</td>
<td><0.03</td>
</tr>
<tr>
<td>Total</td>
<td>106.02</td>
<td>106.36</td>
<td>106.67</td>
<td>107.00</td>
<td>102.38</td>
</tr>
<tr>
<td>Pd ppm</td>
<td>8956</td>
<td>8977</td>
<td>8861</td>
<td>9283</td>
<td>8907</td>
</tr>
<tr>
<td>Au</td>
<td>0.955</td>
<td>0.955</td>
<td>0.955</td>
<td>0.955</td>
<td>0.955</td>
</tr>
<tr>
<td>Fe</td>
<td>0.682</td>
<td>0.682</td>
<td>0.682</td>
<td>0.682</td>
<td>0.682</td>
</tr>
<tr>
<td>Se</td>
<td>13.02</td>
<td>13.07</td>
<td>13.06</td>
<td>13.07</td>
<td>13.07</td>
</tr>
<tr>
<td>Total</td>
<td>0.010</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

* Drill core SP-32, 34.5–55.0 m.

Table 6. Electron-microprobe data on the PGM at the contact between the goethite coating and palladium group. **Serra Pelada Au–Pd–Pt deposit, Northern Brazil.**

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au wt.%</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>Pd</td>
<td>34.26</td>
<td>34.11</td>
<td>78.82</td>
<td>0.184</td>
</tr>
<tr>
<td>Cu</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>Fe</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>Pd</td>
<td>34.74</td>
<td>34.77</td>
<td>55.10</td>
<td>0.500</td>
</tr>
<tr>
<td>As</td>
<td>7.58</td>
<td>7.58</td>
<td>7.58</td>
<td>7.58</td>
</tr>
<tr>
<td>Se</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>5</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>Total</td>
<td>0.016</td>
<td>0.016</td>
<td>0.016</td>
<td>0.016</td>
</tr>
</tbody>
</table>

* Drill core SP-32, 34.5–55.0 m.

Table 7. Electron-microprobe data on PGM associated with Au–Pd–Se and Pd-poor gold alloys. **Serra Pelada Au–Pd–Pt deposit, Northern Brazil.**

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd ppm</td>
<td>2.665</td>
<td>2.720</td>
<td>2.704</td>
<td>2.656</td>
</tr>
<tr>
<td>Au</td>
<td>0.01</td>
<td>0.20</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Hg</td>
<td>0.280</td>
<td>0.300</td>
<td>0.290</td>
<td>0.275</td>
</tr>
<tr>
<td>Cu</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>Se</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>2Pd</td>
<td>5.814</td>
<td>5.940</td>
<td>5.940</td>
<td>2.971</td>
</tr>
<tr>
<td>As</td>
<td>0.996</td>
<td>0.980</td>
<td>0.980</td>
<td>0.980</td>
</tr>
<tr>
<td>Se</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>Pd</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>2Pd</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>Total</td>
<td>100.61</td>
<td>98.29</td>
<td>98.18</td>
<td>100.61</td>
</tr>
</tbody>
</table>

* Drill core SP-32, 54.5–55.0 m.
within the “Au-Pd”. It is remarkable that xenotime is sporadically included in the goethite coating (Fig. 3a). The goethite coating has patches enriched in palladium with no recognizable inclusions of native palladium, suggesting the existence of a Pd-bearing iron oxyhydroxide or hydroxide.

ELEFANTE PROSPECT: VEINLET OF NATIVE PLATINUM AND ASSOCIATED PGM

The coarse-grained, arborescent aggregates of palladian gold described above were picked from deeply weathered, disaggregated and powdery material, and hence their relation to the host rock could not be determined. Evidence from relatively fresh material comes from the Elefante prospect, about 2 km south–southeast of Serra Pelada. A dark chlorite phyllite (drillcore EL–03, 31.5 m) is cross-cut by a veinlet of native platinum 20 μm wide, with which coarse-grained gold aggregates, as well as native palladium, Pd–Sb–As and Pd–Cu–O phases, and a Cu selenide are associated.

The host rock is a carbonaceous, white mica – quartz – chlorite phyllite, with traces of titanite (rutile?) and zircon. Two generations of chlorite are recognized: an early, ferroan clinochlore [Fe_(2−Σ), Mg] ≈ 0.3] is

TABLE 6. ELECTRON-MICROPROBE ANALYSIS OF NATIVE PALLADIUM, SERRA PELADA Au–Pd–Pt Deposit, Northern Brazil

<table>
<thead>
<tr>
<th>Element</th>
<th>Pd wt %</th>
<th>Au wt %</th>
<th>Pt wt %</th>
<th>Cu wt %</th>
<th>Fe wt %</th>
<th>As wt %</th>
<th>Total wt %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd</td>
<td>97.75</td>
<td>97.82</td>
<td>96.66</td>
<td>98.22</td>
<td>96.66</td>
<td>96.76</td>
<td>99.74</td>
</tr>
<tr>
<td>Au</td>
<td>0.16</td>
<td>0.23</td>
<td>0.17</td>
<td>0.19</td>
<td>0.19</td>
<td>0.17</td>
<td>0.33</td>
</tr>
<tr>
<td>Pt</td>
<td><0.30</td>
<td><0.50</td>
<td><0.30</td>
<td><0.30</td>
<td><0.30</td>
<td><0.30</td>
<td><0.30</td>
</tr>
<tr>
<td>Cu</td>
<td>1.15</td>
<td>0.87</td>
<td>0.87</td>
<td>0.87</td>
<td>0.87</td>
<td>0.87</td>
<td>0.87</td>
</tr>
<tr>
<td>Fe</td>
<td>0.16</td>
<td>0.23</td>
<td>0.17</td>
<td>0.19</td>
<td>0.19</td>
<td>0.17</td>
<td>0.33</td>
</tr>
<tr>
<td>As</td>
<td><0.15</td>
<td><0.42</td>
<td><0.15</td>
<td><0.15</td>
<td><0.15</td>
<td><0.15</td>
<td><0.15</td>
</tr>
<tr>
<td>Total</td>
<td>99.42</td>
<td>99.07</td>
<td>100.77</td>
<td>99.87</td>
<td>101.61</td>
<td>100.75</td>
<td></td>
</tr>
</tbody>
</table>

FIG. 4. Reflected-light photomicrographs illustrating the relationships of native palladium (Pd) and a Pd–O phase in palladian gold from Serra Pelada (a) and the Elefante prospect (b). a. Stripes of native palladium (white), associated with a Pd–O phase (dark grey), line vugs filled by goethite (black). Note incipient stage of Pd–O formation in a crystal of “guanglinite”(Pd3As). b. Native palladium with parallel segments of a Pd–O phase. Black: gangue.

* * Drill core SP–12, 54 5–55 0 m. Micro-analysis 6 and 7 were done using A. Wa (InAs as standard)
replaced by clinochlore [Fe/(Fe + Mg) ≈ 0.06]. A whitemica-rich alteration zone of about 1 cm in width envelopes the veinlet of native platinum. The veinlet has a reddish halo of iron oxide.

The veinlet of native platinum consists of very fine-grained platinum crystals, less than 3 μm across, intermingled with a Mg-rich aluminosilicate (clinochlore?). Enveloped by a goethite–hematite halo, the veinlet cuts vein quartz with inclusions of Ti oxide and a Cu₂(Se,S) phase of bluish tint, identified as berzelianite (Fig. 5a). An accurate electron-microprobe analysis of the native platinum could not be made owing to the small grain-size and poor quality of polish. The composition, recalculated to 100% and shown in Table 10, is noteworthy because of the low contents of iron and copper.

Gold occurs adjacent to the native platinum veinlet as anhedral crystals and aggregates up to 2 mm long. It is made up of 96.6 ± 1.1 wt.% Au, 2.2 ± 0.2% Ag, 0.8 ± 0.3% Cu, and 0.39 ± 0.02% Pd (Table 11). The gold contains inclusions of Ti oxide, subhedral to euhedral, 5 μm-long crystals of Cu₂(Se,S), and palladium antimonides. The palladium antimonides have compositions close to mertieite-II and isomertieite (Table 12).

Native palladium is attached to, or partially enclosed in, gold, and has virtually no impurities, except for traces of copper (Table 12). The native palladium shows an intimate relationship with a low-reflectance phase resembling goethite in reflected light. This phase is a Pd–Cu–O compound that sporadically occurs in parallel arrays perpendicular to the margins of the host native palladium (Fig. 4b). A relic of mertieite-II is preserved at the margin of a Pd–Cu–O grain that encloses a Pd–Hg alloy (Fig. 5b, Table 12). The empirical formula is close to (Cu,Pd)O (Table 9, anal. 7 and 8).

DISCUSSION

Dendrites of palladian gold

Because the Serra Pelada *garimpo* is located in a lateritic profile, supergene processes have been suggested to account for the bonanza near-surface mineralization (Meireles & Silva 1988, Tallarico et al. 2000, Moroni et al. 2001). However, the investigation of the coarse-grained dendrites of palladian gold has revealed PGM assemblages having an As–Sb–Se–Hg signature characteristic of epithermal deposits (Lindgren 1928). Significantly, most selenide minerals are deposited between 300° and 65°C (Simon et al. 1997). The Se signature of the Serra Pelada mineralization has been emphasized by Şener et al. (2002).

The weathering of gold particles under lateritic conditions leads to the development of an Au-rich, Ag-depleted halo (e.g., Mann 1984, Colin & Vieillard 1991, Freyssinet et al. 1989, Minko et al. 1992, Colin et al. 1997), and ultimately, to the formation of grains of composition...
positionally pure, supergene gold \(e.g., \) Boyle 1979, Mann 1984, Oliveira & Campos 1991, Santosh & Omana 1991, Lawrance & Griffin 1994). Like silver, palladium also is leached from gold alloy during weathering (Varajão \textit{et al.} 2000). In fact, some crystals of \textquotedblleft Au\textsubscript{7}Pd\textquotedblright{} have a thin, discontinuous, Pd-depleted rim, and pure gold occurs as tiny crystals and marginal veinlets, but is very minor. Therefore, the dendritic aggregates of palladian gold appear to be only weakly affected by weathering, and are more likely residual components of a primary, hydrothermal mineralization. In this connection, it is worth mentioning that dendritic gold is known to occur in epithermal and hot-spring gold deposits (Saunders 1994, Sherlock & Lehrman 1995). Also, the dendritic aggregates of Pt–Pd and Pd–Hg–Au alloys from the Bom Sucesso stream, Minas Gerais, possibly result from open-space infill by low-temperature hydrothermal fluids (Cassedanne \textit{et al.} 1996, Fleet \textit{et al.} 2002).

Se-bearing phases

Sparse crystals of palladseite and sudovikovite are included in palladian gold. These very rare selenide minerals occur in the hematite-rich auriferous veins \textit{(jacutinga)} at the Cauê iron-ore mine, Minas Gerais, Brazil (Davis \textit{et al.} 1977, Olivo & Gauthier 1995, Kwitko \textit{et al.} 2002, Cabral \textit{et al.} 2002b). Like at Serra Pelada, the jacutinga-style mineralization is characterized by (i) palladian gold (Hussak 1904) and (ii) a metal assemblage typical of epithermal deposits (Cabral \textit{et al.} 2002b).

The Pd–Se phase seems to be a new \textit{PGM}, as there are no reports in the literature of a natural compound analogous to the synthetic Pd\textsubscript{9}Se\textsubscript{2}. This unidentified species is an alloy, rather than a selenide, as its Se content is too low to account for charge balance in relation to Pd. It is interesting to note that a Pd–Cu–Se alloy consisting of 85 at.% Pd, 8% Cu and 7% Se was found at Ruwe and Shinkolobwe, Congo, where palladian gold, native palladium and PtSe\textsubscript{2} (sudovikovite?) also occur (Jedwab 1997). The possibility that the Pd–Se phase corresponds to synthetic Pd\textsubscript{9}Se\textsubscript{2} raises the question whether the phase-equilibrium relationships in the system Pd–Se can be applied to natural systems. Pd\textsubscript{9}Se\textsubscript{2} apparently is stable between 635 and 390°C (Okamoto 1992), but such a temperature range is far above the suggested temperature of formation (<300°C) of the Serra Pelada mineralization (Şener \textit{et al.} 2002).

A Pd–Hg–Se phase was observed at the margins of the Au–Pd–Hg alloy. Note that micro-analytical data suggest the empirical formula \((\text{Pd,} \text{Hg,} \text{Pb})_3\text{Se}\), raising the question whether there is a compositional series between Se- and As-rich (atheneite) end-members. More importantly, however, a Pd–Hg–Se association is known from Au–Se-bearing hydrothermal veins (Mernagh \textit{et al.} 1994, Paar \textit{et al.} 1998, Nickel 2002, Stanley \textit{et al.} 2002), for which a temperature of formation of about 100°C has been proposed (Simon \textit{et al.} 1997).

Native palladium

The native palladium from both Serra Pelada and the Elefante prospect is virtually pure. Nekrasov (1996, p. 85) pointed out that auriferous native palladium, even with only 1 to 2 wt.% Au, is extremely rare. It seems to have exclusively been recorded from Itabira, Minas Gerais, Brazil, with 2 wt % Au (Olivo & Gauthier 1995). In the Kupferschiefer deposits of Poland, nearly pure...
native palladium forms intergrowths (<10 μm) with Pd–Pt-bearing argentiferous gold (Kucha 1981).

The native palladium masses of both the Serra Pelada and Elefante areas are intimately associated with a Pd–O–bearing phase. Microstructural evidence indicates that part of such a Pd–O compound formed at the expense of a precursor Pd mineral (e.g., Pd–Se alloy, mertieite-II; Figs. 3d, 5b). The Pd–O-bearing phase was possibly susceptible to variable pH and Eh conditions due to oscillations of the water table. Where conditions were compatible with the stability field of palladium, native palladium would have formed from the Pd–O phase (cf. stability diagrams of Bowles 1986, Wood et al. 1989, Olivo & Gammons 1996). On the other hand, the presence of some mercury in the Pd–O-bearing phase may also suggest involvement of a low-temperature hydrothermal fluid. Some spongy masses of native palladium are similar to those of native platinum and Pt–Pd alloy documented from the Waterberg deposit, South Africa (Wagner 1929, McDonald et al. 1999). In this case, crystallization of native palladium from an amorphous Pd–O precursor could have occurred under temperatures within the epithermal range (McDonald et al. 1999). The parallel array of a Pd–O phase in native palladium (Fig. 4b) could be interpreted as relics of desiccation cracks from which native palladium crystallized (i.e., oxygen loss and dehydration leading to cracking of amorphous Pd–O).

Veinlet of native platinum

Whereas it contains significant amounts of palladium, the native platinum is poor in iron and copper, and resembles the virtually Fe–Cu–free Pt–Pd alloy from the hematite veins and hematite replacement zones of the Waterberg deposit (Wagner 1929, McDonald et al. 1999). A rim of native platinum around a Pt–Fe alloy from the Baimka placer deposit, Russian Far East, is also nearly devoid of Cu and Fe (Gornostayev et al. 1999). These observations on natural alloys confirm the experimental evidence that under low fugacity of sulfur and low-temperature conditions, grains of platinum alloy are poor in Fe (Eustigneeva & Tarkian 1996).

CONCLUDING REMARKS

The coarse-grained aggregates of palladian gold from Serra Pelada display four compositional types of gold, with distinct mineral assemblages: i) “Au–Pd”, the most abundant Au–Pd alloy, hosts Pd arsenides (“guanglinite” and Sb-bearing “guanglinite”), Pt–Pd–Se and Pd–Se phases, sudovikovite and palladseite, ii) Au–Pd–Hg alloy, characteristically with athenite and rarely observed Pb-bearing Pd–Hg–Se and Pd–Bi–Se phases, iii) Pd-poor gold – mertieite – Mn–Ba oxide assemblage, and iv) pure gold–goethite assemblage.

The paragenetic relationships among the gold–PGM assemblages cannot be established, but the Pd-poor gold assemblage is possibly later than the Au–Pd–Hg alloy. Whatever the case, subsequent removal of As, Sb and Se from PGM led to the formation of Pd–O–bearing compounds, either by low-temperature hydrothermal or supergene fluids. Oxygen loss and dehydration of Pd–O masses would account for the spongy masses of native palladium, occasionally with cracks and parallel arrays of Pd–O.

ACKNOWLEDGEMENTS

ARC has benefited from a DAAD (Deutscher Akademischer Austauschdienst) scholarship. This contribution would have not been possible without the cooperation of Companhia Vale do Rio Doce (CVRD), particularly of Paulo R. Amorim dos Santos Lima (Paulão), in providing access to the garimpo area and to the drill cores, polished sections and private reports. Thanks are also due to Klaus Herrmann (TU Clausthal) for his meticulous assistance with the electron-microprobe analyses, Chris Stanley and an anonymous reviewer are gratefully acknowledged for the constructive comments. The careful editorial handling by Robert F. Martin is also deeply appreciated.

REFERENCES

Received May 5, 2002, revised manuscript accepted September 10, 2002.