NEW MINERALS

JOSEPH A. MANDARINO§

94 Moore Street, Toronto, Ontario M4T 1V3, Canada

Baumstarkite

AgSbS₂

Locality: The San Genaro mine, Huancavelica Department, Castrovirreyna District, Peru.

Occurrence: Found in high-grade silver ores of hypogene origin. Associated minerals are:

(dominant) miargyrite; (less frequent) pyrargyrite, stannite and kësterite; (trace)
andorite, diaphorite, robinsonite, galena, chalcoprite, sphalerite and pyrite.

General appearance: Individual crystals do not exceed 3 mm. Crystal aggregates up to 40 × 10
mm coat miargyrite. Anhedral grains in miargyrite up to several mm in diameter are
common.

Physical, chemical and crystallographic properties: Luster: metallic. Diaphaneity: opaque. Color:
iron-black. Streak: grayish black. Hardness: VH₃₉₂₅ 89.3 kg/mm², Mohs 2½. Tenacity: sectile, somewhat pliable. Cleavage: {001} perfect and {100} less perfect. Fracture: even. Density: 5.33 g/cm³ (meas.), 5.39 g/cm³ (calc.). Crystallinity: Triclinic, Pbars, a
7.766, b 8.322, c 8.814 Å, α 100.62°, β 104.03°, γ 90.22°, V 542 Å³, Z = 6, a:b:c = 0.9332:1:1.0591. Morphology: {001}, {101}, {201}, {010} and {011} are most
frequent, and {100} is subordinate. Twinning: occasionally on (001). X-ray powder-
diffraction data: 3.425(8)(021), 3.224(6)(202), 2.841(8)(221,221), 2.798(100)(003),
2.013(5)(222), 1.971(5)(224), 1.3994(6)(006). Optical data: In reflected light: gray
to white, weak to moderate bireflectance, strong to weak anisotropism, nonpleochroic.
R₁, R₂: imR₁, imR₂: (31.30, 39.65; 16.60, 23.60%) 470 nm, (29.20, 37.30; 14.60,
21.15%) 546 nm, (27.80, 36.10; 13.35, 20.10%) 589 nm, (26.15, 33.05; 12.15, 17.60%) 650 nm. **Chemical analytical data:** Mean of twenty-two sets of electron-microprobe data: Cu 0.10, Ag 36.3, Sb 40.2, As 0.7, S 22.0, Total 99.3 wt.%. Empirical formula: AgSb0.97As0.03S2.01. **Relationship to other species:** It is the triclinic polymorph of AgSbS2; the monoclinic polymorph is miargyrite, and the cubic polymorph is cuboargyrite.

Name: After Manfred Baumstark (b. 1954), German mineralogist who provided material for study.

Comments: IMA No. 1999–049. The authors gave a drawing of a twinned crystal. Here, a single crystal is shown with SHAPE; central distances were kindly provided by Dr. Herta Effenberger.

Bobkingite

Cu$_{2+5}$Cl$_2$(OH)$_8$(H$_2$O)$_2$

Occurrence: Found in veins in diorite. Associated minerals are: copper, cuprite, malachite, azurite and a large suite of secondary copper-oxysalt minerals.

General appearance: Parallel growths of thin platy crystals (up to 0.2 mm across and ≤5 μm thick) on a compact fibrous crust of malachite and crystalline azurite on massive cuprite. The crystals contain numerous inclusions of malachite and (possibly) paratacamite.

Physical, chemical and crystallographic properties:

- **Luster:** vitreous.
- **Diaphaneity:** transparent.
- **Color:** soft pale blue.
- **Streak:** pale blue.
- **Luminescence:** nonfluorescent.
- **Hardness:** 3.
- **Tenacity:** brittle.
- **Cleavage:** {001} perfect and {100} fair.
- **Fracture:** conchoidal.
- **Density:** could not be measured, 3.25 g/cm3 (calc.).
- **X-ray powder-diffraction data:**
- **Optical data:** Biaxial (–), α 1.724, β 1.745, γ 1.750, 2V(meas.) 33°, 2V(calc.) 52°; dispersion not mentioned; pleochroism distinct, X very pale blue, Z pale greenish blue, X \wedge a = 22° in obtuse angle β, Y ≈ c, Z = b. **Chemical analytical data:** Mean of five sets of electron-microprobe data (with H$_2$O calculated to give 12 H): CuO 70.46, H$_2$O (19.19), Cl 12.71, sum 102.36, less O = Cl 2.87, Total (99.49) wt.%. Empirical formula: Cu$_{4.99}$Cl$_2$(OH)$_{8.00}$(H$_2$O)$_{2.00}$. **Relationship to other species:** It is chemically related to belloite, atacamite, clinoatacamite, paratacamite, botallackite, simonkolleite, calumetite, anthonyite, claringbullite and eriochalcite.

Name: After Robert (Bob) King (b. 1923), former mineralogist at the Department of Geology, Leicester University (U.K.), a prominent mineral collector and founding member of the Russell Society.

Comments: IMA No. 2000–029.

Locality: The Tuminico selenium deposit in the northern part of the Sierra de Cacho (Sierra de Umango) mountain range, 25 to 30 km southwest of the village Bajo Jagüe, La Rioja, Argentina. The dump of Tuminico 1a is at Lat. 28° 49.9’ S, Long. 68° 38.04’ W, and at an altitude of 2820 m above sea level. See Comments.

Occurrence: Found in a telethermal selenide vein-type assemblage. Associated minerals are: berzelianite, belloidoite, cadmoselite (mercurian and cuprian), chamaéanite, crookesite, eskebornite, eucairite, ferroselite, hakite, klockmannite, a luanheite-type phase, trogtalite–krutaite, tiemannite, tyrellite, umangite and uraninite.

General appearance: Individual anhedral grains from 10 × 20 μm, rarely to 50 × 100 μm, and as aggregates of composite grains reaching 150 × 250 μm.

Physical, chemical and crystallographic properties: Luster: metallic. Diaphaneity: opaque. Color: dark gray. Streak: dark gray. Hardness: VHN_{10} 118 kg/mm², Mohs 2½ to 3. Tenacity: brittle. Cleavage: not evident. Fracture: uneven. Density: could not be measured, 7.77 g/cm³ (calc.). Crystallography: Monoclinic, \(P2_1/n \), \(a = 7.492, b = 4.177, c = 7.239 \) Å, \(\beta = 114.20° \), \(V = 206.6 \) Å³, \(Z = 2 \), \(a:b:c = 1.7936:1:1.7331 \). Morphology: no forms were observed. Twinning: none mentioned. X-ray powder-diffraction data: 3.991(70)(101), 3.576(50)(110), 3.534(50)(011), 3.414(50)(200), 2.730(100)(112), 2.223(70)(211), 2.072(50)(13112). Optical data: In reflected light: white, weak to strong anisotropism, strong bireflectance, weak to moderate pleochroism. \(R_1, R_2, \) im\(R_1, \) im\(R_2: (29.60, 37.10; 15.15, 22.00%) \) 470 nm, (27.40, 35.10; 13.30, 20.15%) 546 nm, (26.60, 34.60; 12.70, 19.80%) 589 nm, (26.10, 34.10; 12.30, 19.25%) 650 nm.

Chemical analytical data: Mean of seven sets of electron-microprobe data: Cu 26.2, Hg 40.7, Se 32.9, Total 99.8 wt.%. Empirical formula: \(\text{Cu}_2\text{Hg}_{0.98}\text{Se}_{2.02} \). Relationship to other species: It is not structurally related to imiterite, \(\text{Ag}_2\text{HgS}_2 \), and appears to belong to a unique prototype structure.

Name: After Milka Kronegold de Brodtkorb (b. 1932), Professor at the universities of Buenos Aires and La Plata, Argentina, for her fundamental and numerous contributions to the economic geology and mineralogy of Argentina.

Comments: IMA No. 1999–023. The latitude and longitude of the locality are interchanged in the paper.

Buryatite

\[\text{Ca}_3(\text{Si,Fe}^{3+},\text{Al})[\text{SO}_4][\text{B(OH)}_4](\text{OH})_5\text{O} \cdot 12\text{H}_2\text{O} \]

Locality: The Solongo deposit, Buryatiya, Russia.

Occurrence: Found in drill core in kurchatovite–sakhaite ore. Associated minerals are: calcite, fluoborite, frolovite, magnetite, kurchatovite, clinokurchatovite, fedorovskite, sakhaite, vimsite, pentahydroborite, hexahydroborite and borcarite.

General appearance: Fine-grained aggregates (up to 3 x 10 mm) and tabular crystals (up to 10 μm).

Physical, chemical and crystallographic properties: Luster: dull. Diaphaneity: transparent to translucent. Color: light gray with a lilac tint. Streak: white. Luminescence: fluoresces light blue in short-wave ultraviolet light. Hardness: 2½. Tenacity: sectile. Cleavage: \{100\} perfect. Fracture: rough. Density: could not be measured, 1.90 g/cm³ (calc.). Crystallography: Hexagonal, \(P\overline{3}1c \), \(a = 11.14 \), \(c = 20.99 \) Å, \(V = 2256 \) Å³, \(Z = 4 \), \(c:a = 1.8842 \). Morphology: \{001\} and \{100\}. Twinning: none observed. X-ray powder-diffraction data: 9.70(8)(100), 3.85(6)(105,114), 3.04(8)(032,214), 2.73(6)(304), 2.59(10)(312), 2.37(4)(134), 2.12(9)(136), 1.83(6)(332), 1.49(7)(248); db: double line. Optical data: Uniaxial (+), \(\omega = 1.523 \), \(\epsilon = 1.532 \), nonpleochroic. The optic sign is given as (−), but the indices indicate (+). Chemical analytical data: Mean of three sets of electron-microprobe data (SiO₂ by atomic emission spectroscopy): MgO 0.38, CaO 25.88, B₂O₃ 5.70, Al₂O₃ 0.75, Fe₂O₃ 2.20, SiO₂ 5.60, MnO₂ 0.27, SO₃ 12.52, H₂O 45.80, Total 99.10 wt.%. Empirical formula: \(\text{Ca}_3.01(\text{Si}_{0.61}\text{Fe}^{3+}_{0.18}\text{Al}_{0.10}\text{Mg}_{0.06}\text{Mn}^{4+}_{0.02})[\text{SO}_4]_{0.97}[\text{B(OH)}_4]_{1.10}[\text{(OH)}_5\text{O}]_{0.39}[\text{O}]_{26.00} \cdot 11.64\text{H}_2\text{O} \). Relationship to other species: It is a member of the ettringite group.

Name: After the locality.

Comments: IMA No. 2000–021.

MALINKO, S.V., CHUKANOV, N.V., DUBINCHUK, V.T., ZADOV, A.E. & KOPORULINA, E.V. (2001): Buryatite \(\text{Ca}_3(\text{Si,Fe}^{3+},\text{Al})[\text{SO}_4][\text{B(OH)}_4](\text{OH})_5\text{O} \cdot 12\text{H}_2\text{O} \), a new mineral. Zapiski Vserossiyskogo Mineralogicheskogo Obshchestva 130(2), 72-78 (in Russ.).
Bussenite

\[\text{Na}_2\text{Ba}_2\text{Fe}^{2+}\text{Ti}_2\text{Si}_2\text{O}_7(\text{CO}_3)(\text{OH})_3\text{F} \]

Locality: Mt. Kukisvumchorr, Khibina alkaline massif, Kola Peninsula, Russia.

Occurrence: Found in a sodalite–natrolite–calcite veinlet cross-cutting urtite. Associated minerals are: natrolite, sodalite, aegirine, biotite, vinogradovite, titanite, eudialyte, calcite, barytocalcite, fluorapatite, fluorite, djerfisherite, and molybdenite.

General appearance: Curved plates, 2 to 5 cm wide by 0.5 mm thick.

Physical, chemical and crystallographic properties:

- **Luster:** Vitreous.
- **Diaphaneity:** Transparent to translucent.
- **Color:** Yellow-brown.
- **Streak:** White.
- **Luminescence:** Nonfluorescent.
- **Hardness:** 4.
- **Tenacity:** Brittle.
- **Cleavage:** {001} perfect, {110} and {¯110} moderate.
- **Fracture:** Stepped.
- **Density:** 3.63 g/cm³ (meas.), 3.73 g/cm³ (calc.).
- **Crystallography:** Triclinic, \(P1 \), \(a = 5.419 \), \(b = 7.042 \), \(c = 16.334 \) Å, \(\alpha = 102.45° \), \(\beta = 93.20° \), \(\gamma = 90.00° \), \(V = 607.7 \) Å³, \(Z = 2 \), \(a:b:c = 0.7695:1:2.3195 \).

X-ray powder-diffraction data:

- 3.910(44)(1 1 2,1 1 1,1 0 3),
- 3.186(100)(1 1 3,1 1 4,0 0 5),
- 3.055(38)(1 1 4,1 1 3),
- 2.797(29)(1 2 1,1 2 3),
- 2.738(62)(1 2 3,1 2 1),
- 2.695(32)(2 0 0,2 0 1),
- 2.677(29)(1 0 5,0 1 5,1 1 6),
- 2.613(32)(1 2 2,1 2 4),
- 2.312(28)(0 1 6,0 1 7).

Optical data: Biaxial (+), \(\alpha = 1.671 \), \(\beta = 1.694 \), \(\gamma = 1.734 \), \(2\text{V} = 71° \), \(2\text{V} = 76° \); dispersion \(r > v \); pleochroism \(X \) and \(Z \) pale yellow, \(Y \) brownish orange; \(Y \approx a, X \wedge c = 5° \) in obtuse angle \(a \).

Chemical analytical data: Mean of five sets of electron-microprobe data (\(\text{H}_2\text{O} \) by Penfield method, \(\text{CO}_2 \) by weight loss minus \(\text{H}_2\text{O} \)): \(\text{Na}_2\text{O} 8.98, \text{K}_2\text{O} 0.65, \text{CaO} 1.56, \text{MnO} 4.68, \text{FeO} 6.77, \text{SrO} 6.78, \text{BaO} 28.79, \text{SiO}_2 18.01, \text{TiO}_2 11.57, \text{Nb}_2\text{O}_5 1.04, \text{CO}_2 5.76, \text{H}_2\text{O} 3.90, \text{F} 2.79, \text{sum} 101.28 \), less \(\text{O} = \text{F} 1/17 \), Total 100.11 wt.%. Empirical formula: \(\text{Na}_{1.98}\text{K}_{0.09}\text{Sr}_{2.07}\text{Ba}_{1.28}\text{Ca}_{0.19}\text{Fe}_{0.64}\text{Mn}_{0.45}\text{Nb}_{0.05}\text{Si}_{2.04}\text{O}_{7.38}(\text{CO}_3)_{0.89}(\text{OH})_{2.95}\text{F}_{1.00} \).**

Relationship to other species: It has a bafertisite-like structure.

Name: After Irina V. Bussen (b. 1915), Russian petrologist, specialist in the petrology and mineralogy of the Khibina–Lovozero alkaline complex.

Comments: IMA No. 2000–035.

Khomyakov, A.P., Men’shikov, Yu.P., Nechelyustov, G.N. & Zhou, Huyin (2001): Bussenite, \(\text{Na}_3\text{Ba}_2\text{Fe}^{2+}\text{Ti}_2\text{O}_7(\text{CO}_3)(\text{OH})_3\text{F} \), a new mica-like titanosilicate from the Khibina alkaline massif (Kola Peninsula). *Zapiski Vserossiyskogo Mineralogicheskogo Obshchestva* 130(3), 50-55 (in Russ.).
Cobaltneustädtelite

Bi$_2$Fe$^{3+}$Co$^{2+}$O(OH)$_3$(AsO$_4$)$_2$

Triclinic

Locality: The dumps of the Güldener Falk mine near Schneeberg–Neustädtel, Schneeberg area, Saxony, Germany. It also has been found on the dumps of other mines in the area: Siebenschlecken, Junge Kalbe, Friedefürst and Peter und Paul.

Occurrence: Associated minerals are: quartz, neustädtelite, preisingerite and goethite; rarely found with mixite, zeunerite and bismutite.

General appearance: Crystal aggregates (up to 0.3 mm) and as very small tabular crystals usually <0.1 mm thick. One specimen has crystals up to 0.2 mm in diameter and 0.1 mm thick.

Physical, chemical and crystallographic properties:
- **Luster:** adamantine.
- **Diaphaneity:** transparent to translucent.
- **Color:** brown.
- **Streak:** light brown.
- **Luminescence:** nonfluorescent.
- **Hardness:** 4½.
- **Tenacity:** brittle.
- **Cleavage:** {001} good.
- **Fracture:** conchoidal.
- **Density:** could not be measured, 5.81 g/cm3 (calc.).

Crystallography: Triclinic, $P\overline{1}$, a 9.156, b 6.148, c 9.338 Å, α 83.24°, β 70.56°, γ 86.91°, V 492.2 Å3, $Z = 2$, $abc = 1.4893:1:1.5189$. Morphology: {001}, {100}, "{011}“, rarely {201}; the form given as "{011}" could not be measured accurately and may be {143}. Twinning: none observed. **X-ray powder-diffraction data:** 8.757(55)(001), 3.752(100)(211,202,012), 3.552(55)(210), 3.507(44)(2¯11,2¯10), 2.901(96)(203), 2.750(39)(013), 2.667(72)(202), 2.531(41)(013). **Optical data:** Biaxial (−), α 2.02, β 2.09 (calc.), γ 2.12, $2V$(meas.) 65°, no distinct dispersion observed; pleochroism strong. X brown to opaque, Y yellow, Z pale yellow; ϕ and ρ relative to {010}: X −166° and 86°, Y −74° and 76°, Z 88° and 15°.

Chemical analytical data: Mean of fifteen sets of electron-microprobe data: CaO 0.32, NiO 1.61, CoO 5.47, CuO <0.05, ZnO 0.39, PbO 0.08, Al$_2$O$_3$ 0.07, Fe$_2$O$_3$ 10.90, Bi$_2$O$_3$ 51.54, P$_2$O$_5$ 0.43, As$_2$O$_3$ 25.91, H$_2$O 3.01, Total 99.73 wt.%. Empirical formula: (Bi$_{1.91}$Ca$_{0.05}$)$_{Z_1}$Fe$_{0.02}$($\text{Co}_{0.63}\text{Ni}_{0.17}$)Fe$_{0.16}Zn_{0.04}Al_{0.01}$)$_{Z_2}O_{4.00}$[HO(OH)$_2$]$_{2}O_{1.12}$[As$_{1.95}P_{0.05}$]$_{2.00}$. **Relationship to other species:** It is a member of the medenbachite group, specifically the Co$^{2+}$-dominant member.

Name: Reflects the relationship with neustädtelite.

Comments: IMA No. 2000–012.

Cronusite

\[
\text{Ca}_{0.2}(\text{H}_2\text{O})_2\text{CrS}_2
\]

Locality: Norton County meteorite (enstatite achondrite), which fell on February 18, 1948, in Nebraska, U.S.A.

Occurrence: Associated minerals are: enstatite, ferroan alabandite, troilite and daubréélite. Cronusite is a product of the terrestrial weathering of caswellsilverite, NaCrS₂.

General appearance: Grains up to 1 mm.

Physical, chemical and crystallographic properties:
- **Luster**: submetallic.
- **Diaphaneity**: opaque.
- **Color**: coal black.
- **Streak**: black.
- **Hardness**: VHN₁₀ 98 kg/mm², Mohs 1½.
- **Tenacity**: sectile.
- **Cleavage**: {001} perfect.
- **Fracture**: uneven.
- **Density**: 2.51 g/cm³ (meas.), 2.54 g/cm³ (calc.).
- **Crystallography**: Trigonal, \(R\overline{3}m \) or \(R\overline{3}2 \), \(a = 3.326 \), \(c = 33.29 \, \text{Å} \), \(V = 318.9 \, \text{Å}^3 \), \(Z = 3 \), \(c:a = 10.009 \). Morphology: no forms were observed. Twinning: none mentioned.
- **Optical data**: In reflected light: gray, strong anisotropism, strong bireflectance, pleochroic in gray colors. \(R_1 \), \(R_2 \): (14.5, 15.8%) 460 nm, (15.7, 17.6%) 540 nm, (16.2, 18.2%) 580 nm, (16.6, 18.6%) 660 nm.
- **Chemical analytical data**: Mean of six sets of electron-microprobe data: K 0.6, Ca 4.2, Cr 33.7, S 39.1, O 21, H (calc.) 2.65, Total 101.25 wt.%. Empirical formula (based on \(\text{Cr} + \text{S} = 3 \)): \(\text{Ca}_{0.17}\text{K}_{0.03}(\text{H}_2\text{O})_{2.11}\text{Cr}_{1.04}\text{S}_{1.96} \).
- **Relationship to other species**: None apparent.

Name: After Cronos, one of the Titans in Greek mythology, the son of Uranus and Gaea, alluding to the mixed meteoritic-terrestrial origin of the mineral.

Comments: IMA No. 1999–018.

Decrespignyite-(Y)

\[(Y,REE)_{4}Cu(CO_{3})_{4}Cl(OH)_{5}\cdot2H_{2}O\]

Locality: The Paratoo copper deposit, 30 km southwest of Yunta, Olary district, South Australia, Australia (Lat. 32° 41’ S, Long. 139° 20’ E).

Occurrence: A supergene mineral in narrow fissures of a fine-grained, inhomogeneous dolomitic slate. Associated minerals are: muscovite, caysichite-(Y), donnayite-(Y), kamphaugite-(Y), malachite, nontronite, “limonite” pseudomorphs after pyrite, calcite and gypsum. Other rare-earth minerals found in the deposit but not directly associated with decrespignyite-(Y) are: a Y-rich bastnäsite-(La), a Y-rich calcio-ancylite-(Nd) and a new Ca–La–Cu carbonate.

General appearance: Crusts (up to 5 mm thick), coatings and fillings in thin fissures. Less common are globular aggregates of thin pseudohexagonal crystals (10 to 50 μm in maximum dimension and <0.5 μm thick).

Physical, chemical and crystallographic properties:
- **Luster:** vitreous to pearly.
- **Diaphaneity:** transparent.
- **Color:** intense royal blue to turquoise-blue.
- **Streak:** pale blue.
- **Luminescence:** nonfluorescent.
- **Hardness:** aggregates 2, individual crystals estimated to be 4.
- **Tenacity:** not given.
- **Cleavage:** could not be observed, but if present, is {010}.
- **Fracture:** not given.
- **Density:** 3.64 g/cm³ (meas.), 3.82 g/cm³ (calc.). See Comments.
- **Crystallography:** Monoclinic, \(P_{2}, P_{2}/m\) or \(P_{2}/m\), \(a = 8.899\), \(b = 22.77\), \(c = 8.589\) Å, \(\beta = 120.06^\circ\), \(V = 1506.3\) Å³, \(Z = 4\), \(a:b:c = 0.3908:1:0.3772\). Morphology: no forms were mentioned. Twinning: none mentioned. X-ray powder-diffraction data: 22.79(30)(010), 7.463(30)(001), 7.086(50)(011), 6.241(100)(021), 4.216(30)(112), 3.530(40)(022), 3.336(30)(032), 2.143(30)(222, 401).
- **Optical data:** Biaxial (~), \(\alpha = 1.604\), \(\beta = 1.638\), 2\(V\) could not be measured but must be very small, dispersion could not be measured; pleochroism medium strong, \(X\) very pale bluish, \(Y\) and \(Z\) bluish with a greenish tint, \(Z \approx Y > X\); orientation not given.
- **Chemical analytical data:** Mean of seven sets of electron-microprobe data (H₂O and CO₂ by CHN analyzer): CaO 0.50, CuO 10.90, Y₂O₃ 42.20, La₂O₃ 0.30, Pr₂O₃ 0.10, Nd₂O₃ 1.30, Sm₂O₃ 1.00, Gd₂O₃ 4.80, Tb₂O₃ 0.40, Dy₂O₃ 3.70, Ho₂O₃ 2.60, Er₂O₃ 2.50, CO₂ 18.80, H₂O 10.80, Cl 3.00, sum 103.90, less O = Cl 0.68, Total 103.22 wt.%.
- **Empirical formula:** \((Y_{3.13}Gd_{0.22}Dy_{0.17}Ho_{0.12}Er_{0.11}Ca_{0.07}Nd_{0.06}Sm_{0.05}TB_{0.02}La_{0.02}Pr_{0.01})_{3.98}Cu_{1.15}(CO_{3})_{3.77}(OH)_{5.63}\cdot2H_{2}O\). See Comments.

Relation to other species: Probably structurally related to kamphaugite-(Y).

Name: After Robert James Champion de Crespigny (b. 1950), Executive Chairman of Normandy Mining Limited, Chancellor of the University of Adelaide and Chairman of the South Australian Museum, in recognition of his contribution to the Australian mining industry and Australian education.

Comments: IMA No. 2001–027. The calculated density given in the paper is 3.645 g/cm³ rather than 3.82 g/cm³ given here. The empirical formula in the paper has subscripts that are somewhat different from those given here. Dr. Pring agrees with the calculated density and empirical formula presented here.

Feklichevite

\[\text{Na}_{11}\text{Ca}_9(\text{Fe}^{3+},\text{Fe}^{2+})_2\text{Zr}_3\text{Nb}[\text{Si}_{25}\text{O}_{73}](\text{OH},\text{H}_2\text{O},\text{Cl},\text{O})_5 \]

Locality: The Kovdor phlogopite mine, Kovdor alkaline-ultrabasic complex, Kola Peninsula, Russia.

Occurrence: Found in a pegmatitic vein of cancrinite syenite. Associated minerals are: K-feldspar, cancrinite, aegirine-diopside, pectolite, titanite, hematite and pyrrhotite.

General appearance: Equant to thick tabular crystals and grains (up to 2.5 cm).

Physical, chemical and crystallographic properties:
- **Luster:** vitreous.
- **Diaphaneity:** translucent.
- **Color:** dark brown.
- **Streak:** brownish.
- **Luminescence:** nonfluorescent.
- **Hardness:** 5½.
- **Tenacity:** brittle.
- **Cleavage:** {001} perfect.
- **Fracture:** stepped to rough.
- **Density:** 2.87 g/cm³ (meas.), 2.85 g/cm³ (calc.).
- **Crystallography:** Trigonal, \(R_3m \), \(a = 14.255, \ c = 30.170 \) Å, \(V = 5309.3 \) Å³, \(Z = 3, c:a = 2.1165 \). Morphology: {001}, {110}, {100}, {101}, {104}, {012}, {021} and {267}. Twinning: none mentioned. **X-ray powder-diffraction data:** 6.43(39){104}, 4.31(69){205}, 3.53(37){027}, 3.218(56){208}, 3.170(34){036,217}, 3.036(42){119,042}, 2.977(81){135}, 2.854(100){404}, 2.602(44){039}. **Optical data:** Uniaxial (+), \(\alpha = 1.616, \ \beta = 1.620 \), nonpleochroic. **Chemical analytical data:** Mean of twelve sets of electron-microprobe data (H₂O by Penfield method): \(\text{Na}_2\text{O} = 11.45 \), \(\text{CaO} = 15.55 \), \(\text{MnO} = 0.49 \), \(\text{FeO} = 2.08 \), \(\text{SrO} = 0.28 \), \(\text{Fe}_2\text{O}_3 = 3.20 \), \(\text{La}_2\text{O}_3 = 0.11 \), \(\text{Ce}_2\text{O}_3 = 0.16 \), \(\text{SiO}_2 = 50.35 \), \(\text{ZrO}_2 = 11.65 \), \(\text{H}_2\text{O} = 0.62 \), \(\text{TiO}_2 = 0.12 \), \(\text{Nb}_2\text{O}_5 = 2.41 \), \(\text{H}_2\text{O} = 1.72 \), \(\text{F} = 0.12 \), \(\text{Cl} = 0.61 \), sum 100.92, less O = F + Cl 0.19, Total 100.73 wt.%. Empirical formula: \(\text{Na}_{11.13} \) \((\text{Ca}_{8.55}\text{Mn}_{0.07}\text{Ca}_{0.10}\text{Sr}_{0.01}\text{La}_{0.02}\text{Ce}_{0.03} \) \(\text{Fe}^{3+}_{1.21}\text{Fe}^{2+}_{0.87}\) \(\text{Zr}_{2.85}\text{Hf}_{0.09}\text{Ti}_{0.05}\) \(\text{Nb}_{0.55} \) \(\text{Si}_{25.24}\text{O}_{73.00} \) \(\{\text{OH}_{2.41}\} \) \(\{\text{H}_2\text{O}_{1.87}\} \) \(\{\text{Cl}_{0.52}\} \) \(\{\text{F}_{0.19}\} \) \(\{\text{O}_{25.00}\} \). **Relationship to other species:** It is a member of the eudialyte group.

Name: After Vladimir Georgievich Feklichev (1933–1999), mineralogist and crystallographer, author of Diagnostic Constants of Minerals (1992).

Comments: IMA No. 2000–017.

PEKOV, I.V., EKIMENKOVA, I.A., CHUKANOV, N.V., RASTSVETAEVA, R.K., KONONKOVA, N.N., PEKOVA, N.A. & ZADOV, A.E. (2001): Feklichevite, \(\text{Na}_{11}\text{Ca}_9(\text{Fe}^{3+},\text{Fe}^{2+})_2\text{Zr}_3\text{Nb}[\text{Si}_{25}\text{O}_{73}](\text{OH},\text{H}_2\text{O},\text{Cl},\text{O})_5 \), a new mineral of the eudialyte group from the Kovdor massif, Kola Peninsula. Zapiski Vserossiyskogo Mineralogicheskogo Obshchestva 130(3), 55–65 (in Russ.).
Ferronordite-(La)

\[
\text{Na}_3\text{Sr(La,Ce)}\text{FeSi}_6\text{O}_{17}
\]

Locality: Mount Bol’shoi Punkaruaiv, Lovozero alkaline complex, Kola Peninsula, Russia.

Occurrence: Found in the ussingingite core of two hyperagpaitic pegmatites. Associated minerals are: aegirine, epistolite, sphalerite, steenstrupine-(Ce) and altered sérandite.

General appearance: Tabular crystals up to 8 × 5 × 1 mm and spherulites up to 1.5 cm in diameter.

Physical, chemical and crystallographic properties:
- **Luster**: vitreous.
- **Diaphaneity**: transparent.
- **Color**: colorless to pale brown.
- **Streak**: white.
- **Luminescence**: nonfluorescent.
- **Hardness**: 5.
- **Tenacity**: brittle.
- **Cleavage**: \{100\} perfect.
- **Fracture**: uneven.
- **Density**: \(\rho = 3.54 \text{ g/cm}^3\) (meas.), \(\rho = 3.58 \text{ g/cm}^3\) (calc.).
- **Optical data**: Biaxial \((-\sigma\), \(\alpha = 1.624, \beta = 1.637, \gamma = 1.644\), \(2\beta = 60°\), \(2\gamma = 72°\); dispersion \(r > v\), weak; nonpleochroic; orientation, \(X = a, Y = c, Z = b\).
- **Chemical analytical data**: Mean of four sets of electron-microprobe data: \(\text{Na}_2\text{O} = 11.23, \text{MgO} = 0.30, \text{CaO} = 0.53, \text{MnO} = 2.50, \text{FeO} = 3.75, \text{ZnO} = 2.29, \text{SrO} = 12.69, \text{BaO} = 0.36, \text{Al}_2\text{O}_3 = 0.14, \text{La}_2\text{O}_3 = 11.36, \text{Ce}_2\text{O}_3 = 8.21, \text{Pr}_2\text{O}_3 = 1.00, \text{Nd}_2\text{O}_3 = 0.89, \text{SiO}_2 = 44.06\), Total 99.31 wt.%. Empirical formula: \((\text{Na}_2\text{O})_{2.93}\text{CaO}_{0.08}\text{SrO}_{1.01}\text{FeO}_{0.42}\text{MnO}_{0.26}\text{ZnO}_{0.23}\text{MgO}_{0.06})(\text{Si}_{5.97}\text{AlO}_{0.03})_{3.94}\text{O}_{17.00}\).
- **Relationship to other species**: It is the La-dominant analogue of ferronordite-(Ce).

Name: Reflects the relationship with ferronordite-(Ce).

Comments: IMA No. 2000–015.

Pe’kov, I.V., Chirkanov, N.V., Turchkova, A.G. & Grishin, V.G. (2001): Ferronordite-(La), \(\text{Na}_3\text{Sr(La,Ce)}\text{FeSi}_6\text{O}_{17}\), a new mineral of the nordite group from the Lovozero massif, Kola Peninsula. *Zapiski Vserossiyskogo Mineralogicheskogo Obshchestva* 130(2), 53-58 (in Russ.).

NEW MINERALS

1537

LOCALITY: Mount Bol’shoi Punkaruaiv, Lovozero alkaline complex, Kola Peninsula, Russia.

OCURRENCE: Found in the ussingingite core of two hyperagpaitic pegmatites. Associated minerals are: aegirine, epistolite, sphalerite, steenstrupine-(Ce) and altered sérandite.

GENERAL APPEARANCE: Tabular crystals up to 8 × 5 × 1 mm and spherulites up to 1.5 cm in diameter.

PHYSICAL, CHEMICAL AND CRYSTALLOGRAPHIC PROPERTIES:
- **Luster**: vitreous.
- **Diaphaneity**: transparent.
- **Color**: colorless to pale brown.
- **Streak**: white.
- **Luminescence**: nonfluorescent.
- **Hardness**: 5.
- **Tenacity**: brittle.
- **Cleavage**: \{100\} perfect.
- **Fracture**: uneven.
- **Density**: \(\rho = 3.54 \text{ g/cm}^3\) (meas.), \(\rho = 3.58 \text{ g/cm}^3\) (calc.).
- **Optical data**: Biaxial \((-\sigma\), \(\alpha = 1.624, \beta = 1.637, \gamma = 1.644\), \(2\beta = 60°\), \(2\gamma = 72°\); dispersion \(r > v\), weak; nonpleochroic; orientation, \(X = a, Y = c, Z = b\).
- **Chemical analytical data**: Mean of four sets of electron-microprobe data: \(\text{Na}_2\text{O} = 11.23, \text{MgO} = 0.30, \text{CaO} = 0.53, \text{MnO} = 2.50, \text{FeO} = 3.75, \text{ZnO} = 2.29, \text{SrO} = 12.69, \text{BaO} = 0.36, \text{Al}_2\text{O}_3 = 0.14, \text{La}_2\text{O}_3 = 11.36, \text{Ce}_2\text{O}_3 = 8.21, \text{Pr}_2\text{O}_3 = 1.00, \text{Nd}_2\text{O}_3 = 0.89, \text{SiO}_2 = 44.06\), Total 99.31 wt.%. Empirical formula: \((\text{Na}_2\text{O})_{2.93}\text{CaO}_{0.08}\text{SrO}_{1.01}\text{FeO}_{0.42}\text{MnO}_{0.26}\text{ZnO}_{0.23}\text{MgO}_{0.06})(\text{Si}_{5.97}\text{AlO}_{0.03})_{3.94}\text{O}_{17.00}\).
- **Relationship to other species**: It is the La-dominant analogue of ferronordite-(Ce).

Name: Reflects the relationship with ferronordite-(Ce).

Comments: IMA No. 2000–015.

Pe’kov, I.V., Chirkanov, N.V., Turchkova, A.G. & Grishin, V.G. (2001): Ferronordite-(La), \(\text{Na}_3\text{Sr(La,Ce)}\text{FeSi}_6\text{O}_{17}\), a new mineral of the nordite group from the Lovozero massif, Kola Peninsula. *Zapiski Vserossiyskogo Mineralogicheskogo Obshchestva* 130(2), 53-58 (in Russ.).
Gmelinite-K

(K,Na,Ca)$_6$[Al$_7$Si$_{17}$O$_{48}$]•22H$_2$O

Locality: Mount Alluaiv, Lovozero alkaline complex, Kola Peninsula, Russia.

Occurrence: Found in cavities within brecciated pegmatite. Associated minerals are: K-feldspar, nepheline, sodalite, cancrinite, amphibole, pyroxene and other minerals.

General appearance: Granular and radial aggregates of columnar to acicular crystals (up to 0.1 x 3 mm).

Physical, chemical and crystallographic properties:

- **Luster:** Vitreous.
- **Diaphaneity:** Transparent.
- **Color:** Colorless to brownish.
- **Streak:** White.
- **Luminescence:** Nonfluorescent.
- **Hardness:** VHN$_{30}$ 258 kg/mm2, Mohs 4.
- **Tenacity:** Brittle.
- **Cleavage:** Not observed.
- **Density:** 2.00 g/cm3 (meas.), 2.04 g/cm3 (calc.).
- **Crystallography:** Hexagonal, $P_{6}3/mmc$, $a = 13.696$, $c = 10.203$ Å, $V = 1657.5$ Å3, $Z = 1$, $c/a = 0.7450$. Morphology: {100}, {101} and {001}. Twinning: none mentioned.
- **X-ray powder-diffraction data:**
 - 11.9(80)(010), 5.16(70)(021,002), 4.11(100)(121,112), 3.27(70)(130,013), 2.97(80)(040), 2.85(80)(041,222), 2.71(100)(123).
- **Optical data:** Uniaxial (−), $\omega = 1.477$, $\epsilon = 1.471$, nonpleochroic.

Chemical analytical data:

Mean of four sets of electron-microprobe data (recalculated to 100.00 wt.%): Na$_2$O 2.63, K$_2$O 7.54, CaO 1.56, Al$_2$O$_3$ 18.53, SiO$_2$ 50.54, H$_2$O 19.20, Total 100.00 wt.%. Empirical formula: (K$_{3.25}$Na$_{1.73}$Ca$_{0.57}$)$_{5.55}$[(Al$_{7.39}$Si$_{17.10}$)$_{24.49}$O$_{48.34}$]•21.66H$_2$O.

Relationship to other species: It is a member of the zeolite group and the K-dominant member of the gmelinite series.

Name: Reflects the relationship to the other members of the gmelinite series.

Comments: IMA No. 1999–039.

New Minerals

Kanonerovite

\[\text{MnNa}_3\text{P}_3\text{O}_{10} \cdot 12\text{H}_2\text{O} \]

Monoclinic

Locality: Kazennitsa pegmatite vein, Alabashka pegmatite field, Middle Urals, Russia (Lat. 57° 47' N, Long. 61° 03' E).

Occurrence: Found in cavities of a muscovite-bearing granitic pegmatite that cuts biotite granite-gneisses and porphyritic granites. Associated minerals are: muscovite, quartz, elbaite, topaz, milarite, calcite, chabazite, stilbite–stellerite, rutile, fluorite, pyrrhotite, sphalerite and pyrite.

General appearance: As a crust (0.1 to 1.2 mm) on quartz, topaz and cassiterite crystals. Individual crystals have dimensions of a few tenths of millimeters.

Physical, chemical and crystallographic properties:
- **Luster:** vitreous.
- **Diaphaneity:** transparent.
- **Color:** colorless.
- **Streak:** white.
- **Luminescence:** nonfluorescent.
- **Hardness:** 2½ to 3.
- **Tenacity:** brittle.
- **Cleavage:** \{010\} poor.
- **Fracture:** uneven.
- **Density:** 1.91 g/cm\(^3\) (meas.), 1.88 g/cm\(^3\) (calc.).
- **Crystallography:** Monoclinic, \(P2_1/n\), \(a = 14.71\) Å, \(b = 9.33\) Å, \(c = 15.13\) Å, \(\beta = 89.8^\circ\). \(V = 2075\) Å\(^3\), \(Z = 4\), \(a:b:c = 1.5766:1:1.6217\). Morphology: \{100\}, \{001\}, \{010\}, \{023\}, \{423\} and \{210\}; habit platy on \{100\} and elongate on \{001\}. Twinning: none mentioned. **X-ray powder-diffraction data:** 10.50(75) \(101,101\), 7.36(100)\(200\), 6.95(90)\(111,111\), 3.316 (60)\(411,411,123,321,321,313\), 3.162(50)\(214,214\), 2.889(60)\(420,124,032\), 2.391(48)\(225,206,206\). **Optical data:** Biaxial (−), \(\alpha = 1.453\), \(\beta = 1.459\), \(\gamma\) could not be determined, 2\(V\) could not be determined, dispersion not observed; nonpleochroic; \(X = c = 0\) to 7°.

Chemical analytical data: Mean of eighteen sets of electron-microprobe data (with H\(_2\)O calculated to give 12H\(_2\)O): Na\(_2\)O 14.80, K\(_2\)O 0.05, MgO 0.14, CaO 0.20, MnO 11.20, FeO 0.15, P\(_2\)O\(_5\) 35.23, H\(_2\)O (36.46), Total (98.23) wt.%.

Empirical formula: \((\text{Mn}_{0.95}\text{Mg}_{0.02}\text{Fe}_{0.01})_{0.98}(\text{Na}_{2.86}\text{Ca}_{0.02}\text{K}_{0.01})_{2.89}\text{P}_{2.98}\text{O}_{9.85} \cdot 12.13\text{H}_2\text{O}\). **Relationship to other species:** It is the natural equivalent of the synthetic triphosphate.

Name: After Aleksandr Anatol’evich Kanonerov (b. 1955), mining historian at the Nizhnii Tagil Museum of Mining Industry of the Middle Urals, and mineral collector who first collected the mineral in 1995.

Comments: IMA No. 1997–016.

Laflammeite
$\text{Pd}_3\text{Pb}_2\text{S}_2$

Locality: The Kirakkajuppura PGE deposit in the Penikat layered complex, Finland.

Occurrence: Found in altered pyroxenite. Associated minerals are: actinolite, clinoclase, chromite, vysotskite, zvyagintsevite, cuprorhodsote – ferorhodsite – malanite, laurite–erlichmanite, irarsite, keithconnite, Pb–Pd-rich thiospinels of Cu, Fe, Rh and Ir, unnamed Pd$_3$PbO$_{10}$ and Rh(Ni,Fe,Cu)$_2$S$_3$, palladian gold, chalcoprite, bornite and millerite.

General appearance: Commonly as individual subhedral platelets (up to 150 μm) and as intergrowths with members of the vysotskite–braggite series. The largest subhedral crystal is 0.3 mm.

Physical, chemical and crystallographic properties:
- **Luster:** metallic.
- **Diaphaneity:** opaque.
- **Color:** megascopic color unknown.
- **Streak:** dark gray.
- **Hardness:** VHN$_{50}$ 171 kg/mm2, Mohs 3½.
- **Tenacity:** quite brittle.
- **Cleavage:** inferred to be {010} perfect.
- **Fracture:** not given.
- **Density:** could not be determined, 9.41 g/cm3 (calc.).
- **Crystallography:** Monoclinic, by analogy with other parkerite-type phases probably C$_2$/m, a 11.521, b 8.294, c 8.321 Å, β 134.38°, V 568.3 Å3, Z = 4, $a:b:c$ = 1.3891:1:1.0033. Morphology: no forms were observed. Twinning: finely twinned. **X-ray powder-diffraction data:** 5.953(6)(001), 4.144(10)(020), 3.379(4)(021), 2.917(9)$(\overline{2}20)$, 2.413(8)(022), 2.365(7)$(\overline{4}22)$, 2.082(5)(040).
- **Optical data:** In reflected light: cream with a brownish tint, weak anisotropism from brownish gray to grayish brown, weak bireflectance, nonpleochroic. R_1, R_2, μR_1, μR_2: (45.3, 46.2; 31.55, 32.45%) 470 nm, (46.5, 47.55; 32.6, 33.75%) 546 nm, (47.2, 48.8; 33.9, 55.05%) 589 nm, (49.6, 50.0; 36.0, 36.3%) 650 nm. **Chemical analytical data:** Mean of twenty-six sets of electron-microprobe data: Pd 39.16, Ir 1.08, Pb 52.01, S 7.90, Total 100.15 wt.%. Empirical formula: $(\text{Pd}_{2.96}\text{Ir}_{0.05})\Sigma 3.01\text{Pb}_{2.02}\text{S}_{1.98}$. **Relationship to other species:** Possibly isostructural with parkerite, Ni$_3$(Bi,Pb)$_2$S$_2$.

Name: After J.H. Gilles Laflamme (b. 1947), Mining and Mineral Sciences Laboratories, Canada Centre for Mineral and Energy Technology, Ottawa, Canada, specialist in the micro-analysis of platinum-group minerals.

Comments: IMA No. 2000–014.

Manganvesuvianite

\[\text{Ca}_{19}\text{Mn}^{3+}(\text{Al},\text{Mn}^{3+},\text{Fe}^{3+})_{10}(\text{Mg},\text{Mn}^{2+})_{2}\text{Si}_{18}\text{O}_{69}(\text{OH})_{9} \]

\[\text{Tetragonal} \]

Locality: The Wessels mine and the N’Chwaning II mine, Kalahari manganese fields, Republic of South Africa.

Occurrence: Crystals filling veins and vugs. At the N’Chwaning II mine, it is a rock-forming mineral intergrown with manganese-poor gorskular or xonotlite and calcite in lenticular calc-silicate bodies within manganese ore beds. Additional associated minerals are: calcite, sérandite–pectolite, strontiopiemontite–tweddillite, mozartite and hydrogrossular–henritermierite.

General appearance: Long prismatic crystals (up to 1.5 cm).

Physical, chemical and crystallographic properties:

- **Luster:** vitreous.
- **Diaphaneity:** small crystals transparent, large crystals opaque.
- **Color:** small crystals red to lilac, large crystals nearly black. **Streak:** white. **Luminiscence:** not mentioned. **Hardness:** 6 to 7. **Tenacity:** brittle. **Cleavage:** not observed. **Fracture:** subconchoidal. **Density:** not measured because of strong chemical zoning. 3.40 g/cm³ (calc.).

Crystallography: Tetragonal, \(P_{4}/n \), \(a = 15.575 \), \(c = 11.824 \) Å, \(V = 2868.5 \) Å³, \(Z = 2 \), \(c:a = 0.7592 \). Morphology: \{100\} dominant, \{110\} minor, \{101\}. Twinning: none mentioned. **X-ray powder-diffraction data:** not given because of the strong chemical zoning.

Optical data: Uniaxial (−), \(\omega = 1.731 \), \(\varepsilon = 1.719 \), pleochroism strong. O dark red, E yellowish. See Comments. **Chemical analytical data:** Mean of nineteen sets of electron-microprobe data: \(\text{Na}_2\text{O} 0.02, \text{MgO} 2.35, \text{CaO} 35.73, \text{CuO} 0.02, \text{SrO} 0.11, \text{Al}_2\text{O}_3 14.73, \text{Mn}_2\text{O}_3 6.79, \text{Fe}_2\text{O}_3 1.12, \text{SiO}_2 36.15, \text{H}_2\text{O} 2.67, \text{F} 0.06, \text{Cl} 0.01 \), sum 99.76, less O = F + Cl 0.03, Total 99.73 wt.%. Empirical formula: \((\text{Ca}_{18.87}\text{Sr}_{0.03}\text{Na}_{0.02})_{18.92}\text{Mn}^{3+}1.00(\text{Al}_{8.38}\text{Mn}^{3+}1.20\text{Fe}^{3+}0.42)_{10.00}(\text{Mg}_{1.73}\text{Mn}_0.35)_{2.08}(\text{Si}_{17.82}\text{Al}_{0.18})_{18.00}\text{O}_{69.12}[(\text{OH})_{8.78}\text{F}_{0.09}\text{Cl}_{0.01}]_{8.88} \). See Comments. **Relationship to other species:** It is a member of the vesuvianite group.

Name: Reflects the chemical relationship to vesuvianite.

Comments: IMA No. 2000–040. The symbols \(\omega \) and \(\varepsilon \) are interchanged for 589 nm in the paper. No empirical formula is given in the paper, but the abstracter has produced the one given here. The crystal drawing was produced here from the information given in the paper and was approved by Prof. Armbruster.

Menshikovite
\[\text{Pd}_3\text{Ni}_2\text{As}_3 \]

Hexagonal

Locality: (1) The Vostok deposit, Lukkulaisvaara layered complex, northern Karelia, Russia, and (2) the Chiney layered lopolith in the Kodar–Udokan horst, western Aldan Shield, Chita region, Siberia, Russia. A small grain has been identified also from the Oktyabr’ deposit, Noril’sk complex, northern Siberia, Russia.

Occurrence: (1) In an altered gabbronorite associated mainly with chalcopyrite, pentlandite, violarite, actinolite and clinochlore; several other PGM species also occur here. (2) In mineralized quartz–feldspar sandstones associated mainly with biotite, amphibole and chlorite; numerous other PGM species and other sulfides also occur here.

General appearance: Anhedral grains (<5 μm to 0.2 mm).

Physical, chemical and crystallographic properties:
- **Luster:** Metallic.
- **Diaphaneity:** Opaque.
- **Color:** Megascopic color not given.
- **Streak:** Not given.
- **Hardness:** VHN_{40,50,65} 517.1 kg/mm², Mohs 5.
- **Tenacity:** Brittle.
- **Cleavage:** Not observed.
- **Fracture:** Not given.
- **Density:** Could not be determined, 5.32 g/cm³ (calc.) for \(Z = 2 \) and 10.65 g/cm³ (calc.) for \(Z = 4 \). **Crystallography:** Hexagonal, \(\text{P}_6_3/m \), \(\text{P}_6_3 \) or \(\text{P}_6_322 \), \(a = 8.406 \), \(c = 6.740 \) Å, \(V = 412.4 \) Å³, \(Z = 2 \) or 4, \(c/a = 0.8018 \). **Morphology:** No forms were mentioned. Twinning: Fine twins are present. **X-ray powder-diffraction data:** 2.626(10)(112), 2.477(10)(202), 2.429(8)(300), 2.283(7)(301), 1.978(7)(113), 1.818(7)(400), 1.781(7)(222). **Optical data:** In reflected light: pink, locally with a slight grayish tint, weak anisotropism from light gray to brownish gray, no birefringence, pleochroism not mentioned. \(R_1, R_2 \); \(\text{im}R_1, \text{im}R_2 \): (48.4, 50.2; 38.5, 39.3%) 470 nm, (51.2, 53.2; 41.0, 41.8%) 546 nm, (53.2, 55.3; 42.3, 43.3%) 589 nm, (56.6, 58.7, 46.6, 47.8%) 650 nm. **Chemical analytical data:** Mean of ninety-eight sets of electron-microprobe data: Ni 17.77, Fe 0.07, As 33.91, Pd 48.18, Pt 0.07, Total 100.00 wt.%. Empirical formula: \(\text{Pd}_2.99\text{Ni}_{2.00}\text{Fe}_{0.01}\text{As}_{2.99} \).

Relationship to other species: None apparent. It may form a solid-solution series with majakite, PdNiAs.

Name: After Yuri P. Men’shikov (b. 1934), Geological Institute of the Kola Science Center, Russian Academy of Sciences, Apatity, Russia.

Comments: IMA No. 1993–057.

Nabesite

Na$_2$BeSi$_4$O$_{10}$•$4\text{H}_2\text{O}$

Orthorhombic

Locality: On the Kvanefjeld Plateau, in the northwesternmost part of the Illimaussaq alkaline complex, South Greenland.

Occurrence: Found in tugtupite-bearing albite. Associated minerals are: aegirine, analcime, beryllite, bertrandite, chalcolite, epistolite, galena, manganooan pectolite, microcline, Na-komarovite, neptunite, pyrochlore, sphalerite and tugtupite. Crystal-lined cavities contain albite, nabesite, gmelinite, neptunite, analcime, gonnardite, lovdarite, an unidentified phase presumed to be trona, and possibly opal.

General appearance: Crystals range from 0.05×0.5×0.5 to 0.2×5×5 mm and occur as aggregates (up to 5×10×10 mm) of thin platy crystals in parallel or subparallel orientation.

Physical, chemical and crystallographic properties:
- **Luster:** vitreous.
- **Diaphaneity:** transparent.
- **Color:** colorless.
- **Streak:** white.
- **Luminescence:** nonfluorescent.
- **Hardness:** 5 to 6.
- **Tenacity:** brittle.
- **Cleavage:** {110} and {001} good.
- **Fracture:** uneven.
- **Density:** 2.16 g/cm3 (meas.), 2.22 g/cm3 (calc.).
- **Crystallography:** Orthorhombic, $P2_12_12_1$, a 9.722, b 10.142, c 12.030 Å, V 1186.2 Å3, Z = 4, $abc = 0.9586:1:1.1862$. Morphology: {100}, {010}, {111} and {111}; platy on {001}. Twinning: none mentioned.
- **X-ray powder-diffraction data:** 6.11B(80)(111), 5.97(100)(002), 5.07(35)(020), 3.46(45)(113), 3.09D(70)(310,131), 3.06(50)(222,004), 2.988D(60)(311) [B: broad, D: double].
- **Optical data:** Biaxial (−), α 1.499, β 1.507, γ 1.511, 2V(meas.) 65°, 2V(calc.) 70°; no dispersion; no pleochroism; orientation, X = a, Y = c, Z = b.
- **Chemical analytical data:** Mean of three sets of electron-microprobe data (Na$_2$O by SEM–EDS, BeO and H$_2$O calculated from the ideal formula derived by crystal-structure analysis): Na$_2$O 13.8, K$_2$O 0.34, BeO (6.26), CaO 0.13, SiO$_2$ 62.4, H$_2$O (18.05), Total (100.98) wt.%. Empirical formula: [Na$_{1.75}$K$_{0.03}$Ca$_{0.01}$Si$_{1.79}$Be$_{0.98}$Si$_{4.09}$O$_{10.06}$•$3.94\text{H}_2\text{O}$].

Relationship to other species: It is a member of the zeolite group and is related to weinebeneite, CaBe$_3$(PO$_4$)$_2$(OH)$_4$•$3\text{H}_2\text{O}$.

Name: Reflects the chemical composition: Na, Be and Si.

Comments: IMA No. 2000–024.

Neustädtelite

\[\text{Bi}_2\text{Fe}^{3+}\text{Fe}^{3+}\text{O}_2(\text{OH})_2(\text{AsO}_4)_2 \]

Locality: The dumps of the Güldener Falk mine near Schneeberg–Neustädtel, Schneeberg area, Saxony, Germany. It also has been found on the dumps of other mines in the area: Siebenschlecken, Junge Kalbe, Friedefirst and Peter und Paul.

Occurrence: Associated minerals are: quartz, cobaltneustädtelite, preisingerite and goethite; rarely with mixite, zeunerite and bismutite.

General appearance: Crystal aggregates (up to 0.3 mm) and as very small tabular crystals, usually <0.1 mm thick.

Physical, chemical and crystallographic properties:
- **Luster**: adamantine.
- **Diaphaneity**: transparent to translucent.
- **Color**: brown.
- **Streak**: light brown.
- **Luminescence**: nonfluorescent.
- **Hardness**: 4.5–5.5.
- **Tenacity**: brittle.
- **Cleavage**: {001} good on some crystals.
- **Fracture**: conchoidal.
- **Density**: could not be measured, 5.81 g/cm³ (calc.).
- **Crystallography**: Triclinic, \(P \bar{1} \), \(a = 4.556 \), \(b = 6.153 \), \(c = 8.984 \) Å, \(\alpha = 95.43^\circ \), \(\beta = 99.20^\circ \), \(\gamma = 92.95^\circ \), \(V = 246.9 \) Å³, \(Z = 1 \), \(a:b:c = 0.7405:1:1 \). Morphology: \{001\}, \{101\} and {011}; the latter form could not be measured accurately and may be {153}. Twinning: none observed.
- **Optical data**: Biaxial (−), \(\alpha = 2.02 \), \(\beta = 2.09 \) (calc.), \(\gamma = 2.12 \), \(2V(\text{meas.}) = 65^\circ \), no distinct dispersion observed; pleochroism strong, \(X \) brown to opaque, \(Y \) yellow, \(Z \) pale yellow; \(\phi \) and \(\rho \) relative to \{010\} \(X = -3^\circ \) and \(79^\circ \), \(Y = -107^\circ \) and \(37^\circ \), \(Z = 95^\circ \) and \(55^\circ \). Chemical analytical data: Mean of thirteen sets of electron-microprobe data: CaO 0.15, NiO 0.34, CoO 3.35, CuO 0.07, ZnO 0.09, PbO 0.08, Al₂O₃ 0.29, Fe₂O₃ 13.92, Bi₂O₃ 52.58, P₅O₁₅ 0.23, As₂O₅ 26.82, H₂O 2.56, Total 100.48 wt.%. Empirical formula: \(\text{Bi}_1.94\text{Ca}_0.02\{\text{Fe}_{1.00}\{\text{Fe}_{0.50}\text{Co}_{0.38}\text{Al}_{0.05}\text{Ni}_{0.04}\text{Zn}_{0.01}\text{Cu}_{0.01}\}\}_{20.79}\{\text{OH}_{2.24}\text{O}_{1.40}\}_{23.84}\{\text{AsO}_4\}_{2.01}\{\text{PO}_4\}_{0.03}\}_{22.04} \).

Relationship to other species: It is a member of the medenbachite group, specifically the \(\text{Fe}^{3+} \)-dominant member.

Name: After the locality.

Comments: IMA No. 1998–016.

Nickelschneebergite

BiNi$_2$(AsO$_4$)$_2$[(H$_2$O)(OH)]

Locality: The mining area known as "Am Roten Berg", approximately 4.8 km southwest of the center of Schneeberg, Saxony, Germany.

Occurrence: Found in small vugs of coarse quartz with no other associated minerals. On other specimens of schneebergite–nickelschneebergite, the associated minerals are: Co- or Ni-bearing ferrilotharmeyerite, cobaltlotharmeyerite, nickellotharmeyerite, preisingerite, waylandite and zeunerite.

General appearance: Aggregates (up to 1 mm) and tabular elongate crystals (≤0.5 mm).

Physical, chemical and crystallographic properties:
- **Luster:** adamantine.
- **Diaphaneity:** transparent.
- **Color:** brown to beige.
- **Streak:** light brown to nearly white.
- **Luminescence:** nonfluorescent.
- **Hardness:** VHN$_{15}$ 250 kg/mm2, Mohs 4 to 4½.
- **Tenacity:** brittle.
- **Cleavage:** none observed.
- **Fracture:** conchoidal.
- **Density:** could not be measured, 5.23 g/cm3 (calc.).
- **Optical data:** Biaxial (-), α 1.92 (calc.), β 1.95, γ 1.97, 2V(meas.) 77°, dispersion not determined; pleochroism weak, Y light brown, X and Z pale yellow; X ≈ c, Y = b, Z ∩ a = 25° in obtuse angle β. Chemical analytical data:
- Mean of seven sets of electron-microprobe data: CaO 2.68, NiO 14.75, CoO 7.98, ZnO 0.09, PbO 0.09, Fe$_2$O$_3$ 2.19, Bi$_2$O$_3$ 28.54, P$_2$O$_5$ 0.08, As$_2$O$_3$ 38.26, H$_2$O 4.72, Total 99.64 wt.%. Empirical formula: (Bi$_{0.7}$_Ca$_{0.2}$Pb$_{0.1}$)$_2$(Ni$_{1.18}$Co$_{0.64}$Fe$_{0.16}$)$_2$O$_{12}$[[(AsO$_4$)$_1.99$(PO$_4$)$_{0.01}$]$_2$(H$_2$O)$_1$10(OH)$_{0.92}$]$_2$ O$_{3}$. Relationship to other species:** It is a member of the tsumcorite group, specifically the Bi-dominant analogue of nickellotharmeyerite.

Name: Reflects its relationship with schneebergite.

Comments: IMA No. 1999–028. Dr. Krause kindly supplied the SHAPE data for the drawing produced here.

Schneebergite

$\text{BiCo}_2(\text{AsO}_4)_2[(\text{H}_2\text{O})(\text{OH})]$

Locality: The mining area known as "Am Roten Berg", approximately 4.8 km southwest of the center of Schneeberg, Saxony, Germany.

Occurrence: Found in small vugs of coarse quartz associated with scorodite and barium-pharmacosiderite. On other specimens or schneebergite–nickelschneebergite, the associated minerals are: Co- or Ni-bearing ferrilotharmeyerite, cobaltlotharmeyerite, nickellotharmeyerite, preisingerite, waylandite, and zeunerite.

General appearance: Aggregates (up to 1 mm) and tabular elongated crystals (≤ 0.5 mm).

Optical data: Biaxial (+), α 1.93 (calc.), β 1.95, γ 1.98. $2V$(meas.) 85$^\circ$, dispersion not determined; pleochroism distinct, Y brown, X and Z pale yellow; $X \approx c$, $Y = b$, $Z \approx a = 25^\circ$ in obtuse angle β.

Chemical analytical data: Mean of twelve sets of electron-microprobe data: CaO 2.72, NiO 9.35, CoO 13.31, PbO 0.11, Fe$_2$O$_3$ 2.95, Bi$_2$O$_3$ 29.01, As$_2$O$_3$ 38.42, SO$_3$ 0.11, H$_2$O 4.40, Total 100.38 wt.%. Empirical formula: (Bi$_{0.74}$Ca$_{0.29}$)$_{\Sigma 1.03}$Co$_{1.06}$Ni$_{0.75}$Fe$_{0.22}$)$_{\Sigma 2.03}$[As$_{2.99}$]$\Sigma 3.32$[SO$_{4.07}$]$\Sigma 2.00$[(H$_2$O)$_{0.91}$OH$_{1.09}$]$\Sigma 2.00$. **Relationship to other species**: It is a member of the tsumcorite group, specifically the Bi-dominant analogue of cobaltlotharmeyerite.

Name: After the locality. The name was used long ago for a mineral shown to be roméite, and now has been approved by the CNMMN IMA for the present use.

Comments: IMA No. 1999–027. Dr. Krause kindly supplied the SHAPE data for the drawing produced here.

Thomsonite-Sr

$$(\text{Sr, Ca})_2\text{Na}[\text{Al}_5\text{Si}_5\text{O}_{20}] \cdot 6-7\text{H}_2\text{O}$$

Orthorhombic

Locality: Mount Rasvumchorr and Mount Yuksporr, Khibina alkaline complex, Kola Peninsula, Russia.

Occurrence: At Rasvumchorr, in veinlets cross-cutting natrolite of risschorrite pegmatite; associated minerals are: microcline, aegirine, annite, astrophyllite, magnetite, fluorapatite, pyrophanite, thomsonite-Ca, etc. At Yuksporr, in a veinlet cross-cutting urtite, as zones in thomsonite-Ca; associated minerals are: calcite, fluorapatophyllite, tobermorite, thaumasite and barite.

General appearance: Euhedral crystals up to 0.2 × 0.2 mm (Rasvumchorr) and zones up to 0.02 mm (Yuksporr).

Physical, chemical and crystallographic properties:

- **Luster:** vitreous.
- **Diaphaneity:** transparent.
- **Color:** colorless.
- **Streak:** white.
- **Luminescence:** nonfluorescent.
- **Hardness:** 5.
- **Tenacity:** brittle.
- **Cleavage:** {100} perfect, {010} good. **Fracture:** uneven.
- **Density:** 2.47 g/cm3 (meas.), 2.62 g/cm3 (calc.).
- **Crystallography:** Orthorhombic, Pmn, $a = 13.050$, $b = 13.123$, $c = 13.241$ Å, $V = 2268$ Å3, $Z = 4$, $a:b:c = 0.9944:1:1.0090$. **Morphology:** {100}, {010}, {001}, {110}, {101}, {011}. Twinning: none observed. **X-ray powder-diffraction data:** 6.63(7)(002), 4.66(8)(020,220), 3.49(9)(312,321), 3.19(8)(223,232,322), 2.960(10)(024,204,042), 2.860(10)(142,241,412), 2.691(10)(242), 2.186(7)(244,060,600). **Optical data:** Biaxial (+), $\alpha = 1.528$, $\beta = 1.532$, $\gamma = 1.540$. 2V(meas.) 62°, 2V(calc.) 71°; dispersion $r > v$, weak; nonpleochroic; orientation, $X = a$, $Y = c$, $Z = b$.

Chemical analytical data: Mean of ten sets of electron-microprobe data: Na$_2$O 3.22, K$_2$O 0.14, CaO 3.85, SrO 16.27, BaO 0.24, Al$_2$O$_3$ 27.65, Fe$_2$O$_3$ 0.03, SiO$_2$ 33.51, H$_2$O 14.10. Total 99.01 wt.%. Empirical formula: $(\text{Sr}_{1.42}\text{Ca}_{0.62}\text{Ba}_{0.01})\cdot(\text{Na}_{0.94}\text{K}_{0.03})\cdot(\text{H}_{0.97}\text{O}_{0.97})\cdot[\text{Si}_{5.03}\text{Al}_{4.89}\text{O}_{19.94}] \cdot 7.06\text{H}_2\text{O}$. **Relationship to other species:** It is a member of the zeolite group, specifically the thomsonite series.

Name: Reflects the relationship to other members of the thomsonite series.

Comments: IMA No. 2000–025.
Tischendorfite

Pd$_8$Hg$_3$Se$_9$

Orthorhombic

Locality: The Eskaboner Stollen (Eskeborn adit), at the 60-meter level, 5 meters north of the blind shaft IV, near Tilkerode, Harz Mountains, Germany.

Occurrence: Found in telethermal selenide veins. Associated minerals are: chrisstanleyite, tiemannite, clausthalite, stibiopalladinite, gold, ankerite and calcite.

General appearance: Anhedral to subhedral grains (up to 100 μm).

Physical, chemical and crystallographic properties:
- **Luster**: metallic.
- **Diaphaneity**: opaque.
- **Color**: megascopic color unknown.
- **Streak**: black.
- **Hardness**: could not be determined because of complex intergrowth with other minerals, but it has a polishing hardness similar to that of chrisstanleyite, greater than that of tiemannite and clausthalite, but lower than that of stibiopalladinite.
- **Tenacity**: brittle.
- **Cleavage**: not given.
- **Fracture**: uneven.
- **Density**: could not be measured, 9.13 g/cm3 (calc.).

Crystallography: Orthorhombic, Pmmn, P2$_1$mn or Pm2$_1$n, a 7.219, b 16.782, c 6.467 Å, V 783.6 Å3, Z = 2, a:b:c = 0.4302:1:0.3854. Morphology: no forms were mentioned. Twinning: none observed. **X-ray powder-diffraction data**: 4.819(40)(101), 4.373(40)(130), 2.797(60)(032,122), 2.743(100)(151,231,240), 2.325(40)(052), 2.116(40)(062), 2.091(100)(261).

Optical data: In reflected light: cream or slightly beige, weak anisotropism, weak bireflectance, nonpleochroic. R$_1$, R$_2$; imR$_1$, imR$_2$; (46.8, 51.3; 33.9, 38.3%) 470 nm, (49.4, 53.1; 35.9, 39.5%) 546 nm, (49.9, 53.25; 36.5, 39.9%) 589 nm, (48.95, 52.55; 35.7, 39.6%) 650 nm.

Chemical analytical data: Mean of four sets of electron-microprobe data: Cu 0.2, Se 32.0, Pd 39.4, Pt 0.1, Ag 1.0, Hg 24.9, Pb 1.4, Total 99.0 wt.%. Empirical formula: (Pd$_{8.05}$Pt$_{0.01}$)$_2$Se$_{8.82}$. **Relationship to other species**: None apparent.

Name: After Gerhard Tischendorf (b. 1927), formerly at GeoForschungsZentrum, Potsdam, Germany, for his many contributions to mineralogy and geochemistry, and particularly his studies of the formation of selenide deposits of the Harz Mountains.

Comments: IMA No. 2001–061.

Tweddillite

CaSr(Mn$^{3+}$,Fe$^{3+}$)$_2$Al[Si$_3$O$_{12}$](OH)

Locality: The Wessels mine, Kalahari manganese field, Republic of South Africa.

Occurrence: Found in calc-silicate rocks formed by hydrothermal alteration of primary sedimentary manganese ore. Associated minerals are: sérandite–pectolite and braunite.

General appearance: “Suns” of very thin (~0.02 mm) radiating blades (up to 0.5 mm long).

Physical, chemical and crystallographic properties:
- **Luster:** given as vitreous, but the optical data indicate adamantine.
- **Diaphaneity:** not given but probably translucent. **Color:** deep dark red.
- **Streak:** brownish red. **Luminescence:** not given. **Hardness:** 6 to 7. **Tenacity:** brittle.
- **Cleavage:** {001} perfect. **Fracture:** subconchoidal. **Density:** not measured because of strong chemical zoning, 3.89 g/cm3 (calc.).
- **Crystallography:** Monoclinic, $P2_1/m$, a 8.934, b 5.718, c 10.325 Å, β 114.54$^\circ$, V 479.8 Å3, Z = 2, $a:b:c = 1.5624:1:1.8057$.
- **Morphology:** {001} elongate parallel to [010]. Twinning: on (100).
- **Optical data:** Biaxial (+), average n 1.825, $2V$ could not be measured, dispersion not given; pleochroism strong, within the (001) blades dark red parallel to b and orange-yellow parallel to a, whereas perpendicular to (001), the blades appear magenta to red; orientation could not be determined.
- **Chemical analytical data:** Four sets of electron-microprobe data are given. The data for material with the lowest Al content (H_2O calculated): Na$_2$O 0.01, K$_2$O 0.01, CaO 9.78, SrO 18.18, BaO 0.10, PbO 1.42, Al$_2$O$_3$ 9.35, Mn$_2$O$_3$ 21.32, Fe$_2$O$_3$ 5.80, SiO$_2$ 32.50, H_2O (1.48), Cl 0.01, sum 99.96, less O = Cl 0.00, Total (99.96) wt.%. Empirical formula: [(Ca$_{0.98}$Pb$_{0.04}$)$_{\Sigma1.02}$Sr$_{0.95}$Mn$^{3+}_{1.52}$Fe$^{3+}_{0.41}$)$_{\Sigma2.93}$Al$_{1.03}$Si$_{3.04}$O$_{12.10}$](OH)$_{0.92}$. **Relationship to other species:** It is a member of the epidote group.

Name: After Samuel Milbourn Tweddill, FGS, first curator of the Museum of the Geological Survey, Pretoria, Republic of South Africa. He ran the museum from 1897 to 1916.

Comments: IMA No. 2001–014.

References: