REFINEMENT OF THE CRYSTAL STRUCTURE OF AMINOFFITE

DANIELLE M.C. HUMINICKI AND FRANK C. HAWTHORNE

Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada

ABSTRACT

Aminoffite, \(\text{Ca}_{2.95}\text{Mn}_{0.08}\text{Pb}_{0.01}\)\(\text{BeOH}\)\(\text{Si}_{2.95}\text{As}_{0.03}\)\(\text{O}_{10}\), is tetragonal, \(P4_2/n\), \(a = 9.809(1)\), \(c = 9.844(2)\) Å, \(V = 947.3(3)\) Å\(^3\), \(Z = 12\). The structure was refined to an \(R\) index of 2.9% based on 1265 observed \(|F_o| > 5\sigma F\) reflections measured with a four-circle single-crystal diffractometer and MoK\(\alpha\) X-radiation. There are two \(\text{Si}\) sites and one \(\text{Be}\) site in the structure of aminoffite, each coordinated by four anions in a tetrahedral arrangement. There are two distinct \(\text{Ca}\) sites, coordinated by six \(\text{O}\)-atoms, and one and two \((\text{OH})\) groups, respectively, with <\(\text{Ca}–\text{O}\)> distances of 2.467 and 2.436 Å. The single \(\text{H}\)-atom is part of an \((\text{OH})\) group that is part of the \((\text{BeO}_4)\) \((\phi: \text{unspecified anion})\) tetrahedron. The \((\text{SiO}_4)\) groups link to form linear \([\text{Si}_3\text{O}_{10}]\) trimers that are linked by \((\text{BeO}_4)\) groups to form a sheet of tetrahedra parallel to (001). These sheets stack in the [001] direction and are linked together by interstitial \(\text{Ca}\) atoms and by hydrogen bonding. Details of the sheet topologies in Be minerals with two-dimensional structural units are examined; \((\text{BeO}_4)\) tetrahedra show a marked preference for trivalent vertices in two-dimensional nets. Bond-valence considerations show that such \((\text{BeO}_4)\) tetrahedra must have a monovalent anion [usually \((\text{OH})\)] at one vertex, and hence most such structures have acid \{\(\text{BeO}_3(\text{OH})\)\} groups.

Keywords: aminoffite, crystal structure, electron-microprobe analysis, beryllium mineral, structure topology, bond valence.

SOMMAIRE

L’aminoffite, \(\text{Ca}_{2.95}\text{Mn}_{0.08}\text{Pb}_{0.01}\)\(\text{BeOH}\)\(\text{Si}_{2.95}\text{As}_{0.03}\)\(\text{O}_{10}\), est tétragonale, \(P4_2/n\), \(a = 9.809(1)\), \(c = 9.844(2)\) Å, \(V = 947.3(3)\) Å\(^3\), \(Z = 12\). Nous en avons affiné la structure jusqu’à un résidu \(R\) de 2.9% en utilisant 1265 réflexions observées \(|F_o| > 5\sigma F\) mesurées avec un diffractomètre à quatre cercles et un rayonnement MoK\(\alpha\). Il y a deux sites \(\text{Si}\) et un site \(\text{Be}\) dans la structure, chacun coordonné par quatre anions en agencement tétraédrique. Il y a deux sites \(\text{Ca}\) distincts, coordonnés par six \(\text{O}\)-atoms, et un et deux groupes \((\text{OH})\), respectivement, avec distances <\(\text{Ca}–\text{O}\)> de 2.467 et 2.436 Å. L’atome d’hydrogène, en une position cristallographiquement unique, fait partie du groupe \((\text{OH})\) des tétraèdres \((\text{BeO}_4)\) \((\phi: \text{anion non spécifié})\). Les groupes \((\text{SiO}_4)\) sont liés entre eux pour former des trimères linéaires \([\text{Si}_3\text{O}_{10}]\) rattachés par des groupes \((\text{BeO}_4)\) pour former un feuillet de tétraèdres parallèle à (001). Ces feuillots sont empilés le long de [001] et sont liés l’un à l’autre par des atomes de \(\text{Ca}\) interstitiels et par des liaisons hydrogène. Nous passons sous revue les détails topologiques des feuillots des minéraux de beryllium contenant des unités structurales à deux dimensions. Les tétraèdres \((\text{BeO}_4)\) montrent une préférence marquée pour des cations trivaux aux nœuds d’un réseau bidimensionnel. Une considération des valences de liaison montre que de tels tétraèdres \((\text{BeO}_4)\) doivent avoir un anion monovalent, \((\text{OH})\) en général, à un vertex, et donc la plupart de telles structures contiennent des groupes acides \{\(\text{BeO}_3(\text{OH})\)\}.

(Traduit par la Rédaiction)

Mots-clés: aminoffite, structure cristalline, analyse à la microsonde électronique, minéral de beryllium, topologie de la structure, valences de liaison.

‡ E-mail address: frank_hawthorne@umanitoba.ca
Aminoffite, a beryllium silicate mineral from Långban, Sweden, was first described by Hurlbut (1937). It occurs as euhedral crystals in cavities in massive magnetite and goethite associated with calcite, fluorite and barite. The structure of aminoffite was determined by Coda et al. (1967), who reported a revised chemical formula, Ca₃(BeOH)₂Si₃O₁₀, but did not provide new compositional data to confirm the details of the formula. Using bond-valence arguments, they interpreted the O(5) anion as an (OH) group, with a hydrogen bond to the O(6) anion, on the basis of an O(5)–O(6) distance of 2.87 Å (Coda et al. 1967). As part of a general study of Be minerals (Hawthorne & Huminicki 2002), we have refined the crystal structure of aminoffite, revised the stereochemical details of the hydrogen bonding, and provide results of an electron-microprobe analysis.

EXPERIMENTAL

X-ray diffraction

The sample used in this work is from Långban, Sweden. The aminoffite crystals are transparent, pale yellow, subhedral, 300–400 µm across in massive magnetite with an iron oxide coating, and are associated with euhedral calcite crystals. The fragment used for analysis, with dimensions 0.10 × 0.10 × 0.20 mm, was taken from a dipyramidal crystal associated with iron oxide minerals. The unit-cell dimensions were determined using a Siemens P4 automated four-circle diffractometer with a graphite monochromator and a Mo Kα X-ray tube. Twenty-five reflections between 23° and 30° were centered, and a constrained tetragonal cell was determined from the setting angles and refined using a least-squares technique (Table 1). Single-crystal intensity data were measured from 4 to 60° over the range 0 ≤ h ≤ 13, 1 ≤ k ≤ 13, 1 ≤ l ≤ 13, with a scan range of 1.2° and scan-speeds from 2.5 to 29.3°/min. A total of 5829 intensities was measured over four asymmetric units. Psi-scan data were measured on 20 reflections out to 60° at increments of 5°; an absorption correction, with the crystal modeled as a triaxial ellipsoid, reduced R(azimuthal) from 3.8 to 1.6%. Intensities were corrected for Lorentz, polarization and background effects, and then refined to structure factors; of the 1385 unique reflections, 1265 were classed as observed (|Fo| > 5σ(Fo)).

Chemical analysis

The crystal used for X-ray diffraction was mounted in a 2.5 cm perspex disc, ground, polished with carbon and analyzed using a Cameca SX–50 electron microprobe. Aminoffite has the general formula Ca₃(BeOH)₂Si₃O₁₀. Energy-dispersion spectrometry (EDS) indicated the presence of Ca, Si, Mn, As and Pb. The crystal was analyzed for these elements, plus Al, Na and F. Ten points were analyzed in wavelength-dispersion mode with the following conditions: excitation voltage: 15 kV, specimen current: 20 nA, beam size: 5 µm, peak count-time: 20 s, background count-time: 10 s. The standards and crystals used for Kα X-ray lines were as follows: F: fluorine analogue of riebeckite, TAP; Al: andalusite, TAP; Si: diopside, TAP; Mn: spessartine, LiF; Na: albite, TAP; Ca: diopside, PET; As: cobaltite, TAP; and Pb: PbTe, PET. The chemical composition and unit formula are given in Table 2; the BeO and H₂O contents were calculated on the basis of stoichiometry: Be = 2 apfu (atoms per formula unit) and OH = 2 pfu.
THE CRYSTAL STRUCTURE OF AMINOFFITE

917

of the H position were determined. Full-matrix least-squares refinement of all variables, including H-atom coordinates with the soft constraint that \(\text{O–H} \approx 0.98 \text{ Å} \), converged to a final \(R \) index of 2.9\% for 1265 observed reflections. Final refined atom-parameters are listed in Table 3, and selected interatomic distances are given in Table 4. Observed and calculated structure-factors may be obtained from the Depository of Unpublished Data, CISTI, National Research Council of Canada, Ottawa, Ontario K1A 0S2, Canada.

DESCRIPTION OF THE STRUCTURE

Cation polyhedra

There are two Si sites, \(\text{Si}(1) \) and \(\text{Si}(2) \), that are tetrahedrally coordinated by O atoms at mean distances of 1.631 and 1.630 Å, respectively (Table 4). These distances are in accord with the absence of Al in the chemical composition (Table 1). There is one Be site that is tetrahedrally coordinated by three O atoms and one \((\text{OH})\) group, and has a \(\langle \text{Be–O} \rangle \) distance of 1.645 Å, which is slightly larger than the grand \(\langle \text{Be–O} \rangle \) distance of 1.633 Å reported by Hawthorne & Huminicki (2002) for Be minerals. There are two Ca sites, \(\text{Ca}(1) \) and \(\text{Ca}(2) \), that are \([7]\)- and \([8]\)-coordinated, respectively, by six O atoms and one and two \((\text{OH})\) groups, respectively. The \(\langle \text{Ca–O} \rangle \) distances are 2.467 and 2.436 Å for \(\text{Ca}(1) \) and \(\text{Ca}(2) \), respectively. These values are rather curious, as \(\text{Ca}(1) \) is \([7]\)-coordinated and \(\text{Ca}(2) \) is \([8]\)-coordinated, and yet \(\langle \text{Ca}(1)–\text{O} \rangle \) at 2.467 Å is larger than \(\langle \text{Ca}(2)–\text{O} \rangle \) at 2.436 Å. It is significant that the equivalent isotropic-displacement factor at \(\text{Ca}(1) \), 0.0096(1), is significantly larger than the analogous value at \(\text{Ca}(2) \), 0.0070(2). This suggests a “rattling” of \(\text{Ca}(1) \) in a polyhedron that is slightly too large for its constituent-cation size, although the incident bond-valence sums at \(\text{Ca}(1) \) and \(\text{Ca}(2) \) (Table 5) suggest that the \(\langle \text{Ca}(2)–\text{O} \rangle \) distance is anomalously short, rather than \(\langle \text{Ca}(1)–\text{O} \rangle \) being anomalously long.

Hydrogen bonding

The O(5) atom is located at the apex of the \((\text{BeO}_{4})\) tetrahedron and bonds to two interstitial Ca atoms (in addition to H). Coda et al. (1967) assigned (OH) to the
anion on the basis of bond-strength sums and the short O(5)–O(6) bond distance: the bond-strength sum around O(5) from bonding to [7]- and [8]-coordinated Ca atoms and a [4]-coordinated Be atom is $1/2 + 2/7 + 2/8 = 1.04 \text{ vu}$; thus according to the valence-sum rule, the O(5) anion requires additional bond-valence from the H atom.

In the present refinement, the H-atom was located on a difference-Fourier map, ~1 Å from the donor atom, O(5). This result is in agreement with that of Coda et al. (1967) and is in accord with the calculated bond-valences (Table 5). The acceptor atom was determined to be the O(4) atom, on the basis of valence-sum rule and the bond lengths and angles associated with H and the O(4) anion (Table 4). The H–O(4) distance of 2.36 Å is typical for a weak hydrogen bond (Baur 1972), and the low incident bond-valence sum at O(4) from the Si atoms is also in accord with O(4) as a hydrogen-bond acceptor. The hydrogen bond is apparently bifurcated between two symmetrically equivalent O(4) atoms (Fig. 1), although the large U_{11} value for O(5) suggests either static disorder or, possibly, dynamic switching of a hydrogen bond between the two O(4) anions.

Table 5. Bond-Valence Table* (vu) for Aminooffite

Atom	Ca(1)	Ca(2)	Si(1)	Si(2)	Be	H	I
O(1)	0.36	0.24±1	0.99	0.47	2.06		
O(2)	0.29	0.24±1	0.97	0.48	1.98		
O(3)	0.17		1.01±1	0.49	2.01		
O(5)	0.34			0.03±1	1.96		
O(4)	0.94	0.95±1			0.03±1	1.96	
E	1.91	2.26	3.93	3.94	1.97	1.98	

* Bond valences from the curves of Brown & Altermatt (1985).

Fig. 1. Perspective view of bond lengths and angles for the hydrogen position. The hydrogen bond is bifurcated between two symmetrically equivalent O(4) atoms. Green circles: Be atoms; blue circles: Si atoms; orange circles: O atoms; small black circles: H atoms; hydrogen bonds are shown as dotted lines.
Bond Topology

In aminoffite, \((\text{SiO}_4)\) groups form linear \([\text{Si}_3 \text{O}_{10}]\) trimers that are linked by \((\text{BeO}_4)\) groups into a sheet of tetrahedra parallel to \((001)\) (Fig. 2). The central \((\text{SiO}_4)\) group of each \([\text{Si}_3 \text{O}_{10}]\) trimer, \(\text{Si}(2)\), is four-connected, whereas all other \((\text{SiO}_4)\) and \((\text{BeO}_4)\) tetrahedra of the sheet are three-connected, that is, they each have one anion that does not bridge between tetrahedra (Fig. 2). There are four-membered rings of alternating \((\text{BeO}_4)\) and \((\text{SiO}_4)\) tetrahedra, and these are linked through the four-connected \((\text{SiO}_4)\) tetrahedra to form six-membered rings of tetrahedra. The four-membered rings connect in rows such that their apices alternate point in the \(+c\) and \(−c\) directions. The sheets of tetrahedra stack in the \([001]\) direction (Fig. 3), and are linked together by interstitial Ca atoms and by hydrogen bonding between donor O(5) and acceptor O(4) anions of adjacent sheets (Fig. 1).

Chemical Formula of Aminoffite

The unit formula derived from the results of electron-microprobe analysis shows that Pb, Mn and As are incorporated into the ideal \(\text{Ca}_3\text{Be(OH)}_2\text{Si}_3\text{O}_{10}\) structure (Table 2). There is minor compositional zoning in the crystal, with Pb and As varying sympathetically. The data are in reasonable accord with the minor substitutions \(\text{Pb}^{2+} \rightarrow \text{Ca}, \text{Mn}^{2+} \rightarrow \text{Ca}\) and \(\text{As}^{5+} \rightarrow \text{Si}\), although the charge-balance mechanism for the last substitution is not apparent.

Sheet topologies in beryllium minerals

Figure 4 shows graphs of the \((\text{BeO}_4)–(\text{Td}_4)\) sheets in minerals, arranged in terms of increasing complexity, i.e., number of distinct vertices and size of the constituent circuits. We will refer to these graphs as “nets” to accord with common usage (e.g., Smith 1977).
is one net with just one type of vertex, the \((4.8^2)\) net in herderite. The portrayal of this net \((1)\) in Figure 4 does not resemble the usual representations of this net (e.g., Hawthorne & Smith 1988) as we have retained the geometrical arrangement of the polyhedra in the original sheet. However, the Schäffli-type symbol of the net makes this correspondence clear, as the net is actually a graph, and its geometrical characteristics are of no significance. Net \((2)\) is found in leucophanite and has two types of vertices in the ratio of \(1:2\), \((5^4)(5^3)_2\); it is made up of pentagons. Ideal pentagons cannot form a planar two-dimensional net, and the pentagons show significant angular distortion from their holosymmetric form. Net \((3)\) occurs in asbecasite and has two types of vertices in the ratio \(3:2\), \((12^3)_3(12^3)_2\); it is the only net with a two-connected vertex, and is made up of a stellate form of dodecagon. This is an extremely unusual net, but seems somewhat less exotic when one realizes that it can also be described as a \(6^3\) net with one-sixth of the vertices omitted (Hawthorne & Huminicki 2002). Net \((4)\) occurs in aminoffite; it has two types of vertices in the ratio \(1:4\), \((6^4)(4.6^4)_4\), and consists of squares and hexagons.

Net \((5)\) occurs in harstigite and has three types of vertices in the ratio \(1:3:1\); it has the symbol \((4.5^2)(5^2.8)_1\) \((4.5.8.5)\). It consists of squares, pentagons and octagons, and \((\text{Be}6\text{a})\) tetrahedra occupy the \((4.5^2)\) and \((5^2.8)\) vertices. Net \((6)\) of semenovite is also \((4.5^2)(5.8^2)_1\) \((4.5.8.5)\), but is colored differently from net \((5)\) [i.e., the \((\text{Be}6\text{a})\) and \((7\text{b}a)\) tetrahedra correspond to different sets of vertices]. Net \((7)\) of uralolite has four types of vertices in the ratio \(2:2:2:1\), and consists of triangles, squares and octagons. In the structure of uralolite, the corresponding sheet is quite corrugated in order to maintain reasonable anion–anion distances between tetrahedra. Net \((8)\) of ehrleite has four types of vertices in the ratio \(1:2:1:1\), and consists of squares and dodecagons. Net \((9)\) of samfowlerite has six types of vertices in the ratio \(2:1:5:1:2:1\), and consists of squares, pentagons and octagons.

In Table 6, we have indicated which vertices correspond to \((\text{Be}6\text{a})\) tetrahedra and which vertices correspond to other \((7\text{b}a)\) tetrahedra. In most of the nets, \((\text{Be}6\text{a})\) tetrahedra occupy trivalent vertices; only in nets \((7)\) and \((8)\) do they occupy tetravalent vertices. On the other hand, the \((7\text{b}a)\) tetrahedra occupy divalent, trivalent and tetravalent vertices (in the proportions \(2:12:8\)). Hence we may conclude that \((\text{Be}6\text{a})\) tetrahedra have a strong preference for trivalent vertices in two-dimensional nets. This has very interesting crystal-chemical consequences for the identities of the anions coordinating \(\text{Be}\). For those anions that bridge tetrahedra in a net, the sum of the incident bond-valences from the net cations is \(0.50\) (from \(\text{Be}\)) + \(1.00\) (from \(\text{Si}\)) or \(1.25\) (from \(\text{As}\) or \(\text{P}\)) = \(1.50\) or \(1.75\) \(\text{vu}\). The remaining bond-valence required is easily supplied from the interstitial cations. However, for that anion that does not bridge tetrahedra in a net (i.e., for a trivalent vertex, there is one per tetrahedron), the sum of the bond valence incident from the net cations is only \(0.50\) \(\text{vu}\) (from \(\text{Be}\)).
Fig. 4. Graphical representations of (Be\(_4\))-(T\(_4\)) sheets in Be-bearing minerals; black vertices represent (Be\(_4\)) tetrahedra, and white vertices represent other (T\(_4\)) tetrahedra.
The 1.50 \text{vu} required by the anion cannot be supplied solely by the interstitial cations as they do not have sufficiently high Lewis acidities to do so. Hence this anion must be monovalent, i.e., (OH) or a halogen. Thus in most of the structures of Table 6, the (BeO$_3$(OH)) groups are actually acid \{BeO$_3$(OH)\} groups (e.g., see Table 5 for aminoffite). This type of subtle interaction between structure topology and chemical composition is an area that needs much more extensive investigation.

ACKNOWLEDGEMENTS

We thank the Department of Earth Sciences of the Royal Ontario Museum for loan of the aminoffite specimen, M106916, and Sergey Krivovichev, Associate Editor Peter Burns, Technical Editor Robert T. Downs and Editor Robert F. Martin for their comments on this manuscript. Financial support was provided by Natural Sciences and Engineering Research Council of Canada Grants to FCH.

REFERENCES

Smith, J.V. (1977): Enumeration of 4-connected 3-dimensional nets and classification of framework silicates. Combination of zigzag and saw chains with 6\4, 3.12\3, 4.8\2, 4.6.12 and (5.8\2) nets. *Z. Kristallogr.* **183**, 213-231.

Received May 19, 2001, revised manuscript accepted March 15, 2002.