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ABSTRACT

We have studied the products of alteration of sulfides contained in the tailings of a former tungsten mine at Enguialès,
Aveyron, France. Most of these products are poorly crystalline and contain high concentrations of arsenic. A preliminary classi-
fication based on visual observations was carried out, and five products were distinguished according to their color and texture.
The data obtained by electron-microprobe analysis were submitted to different statistical approaches in order to discriminate
among the various materials and to test the efficiency of the visual classification. The statistics involved rely on logratios of the
chemical elements because the ratio of any two elements is independent of the perturbations caused by other elements, and
remains unchanged whatever the choice of subcompositional space. The statistical discrimination of the groups indicates that
log(Fe/As) and log(S/As) best express the chemical differences. Both of these logratios correspond to the system Fe–As–S. In this
study, the two approaches, visual observations and statistics, are complementary, and one method without the other could give
only partial information or misinterpretations. A hierarchical clustering applied to the whole dataset confirms the existence of five
groups, but visual and statistical classifications differ. On one hand, by using the logratio method, different subgroups with the
same color were identified. On the other hand, some groups with different colors correspond to the same mineral, which was
highlighted by Raman microspectrometry. These observations (concerning As-rich jarosite, for example) are explained mainly by
differences in composition.

Keywords: mining environment, As-bearing products, iron oxyhydroxides, Raman microspectroscopy, compositional data,
logratios, multivariate statistical analysis, Enguialès mine, France.

SOMMAIRE

Les haldes d’une ancienne mine de tungstène à Enguialès, Aveyron, en France, présentent des produits d’altération de sulfures,
pour l’essentiel faiblement cristallins, et contenant de fortes teneurs en arsenic. Ces produits d’altération ont été préalablement
classés de manière visuelle, c’est-à-dire en fonction de leur couleur et de leur texture, et cinq groupes ont été ainsi définis. Les
données d’analyses en microsonde électronique obtenues sur ces matériaux ont été soumises à différentes approches statistiques
dans le but de les discriminer de manière plus précise, et de tester l’efficacité de la classification visuelle. Les méthodes mises en
oeuvre utilisent le log des rapports entre éléments chimiques, car tout rapport de deux éléments est indépendant des perturbations
causées par les autres éléments, et demeure inchangé quelle que soit la sous-composition considérée. L’analyse discriminante des
groupes visuels a montré que ce sont log(Fe/As) et log(S/As) qui expriment le mieux les différences chimiques entre groupes. Ces
deux logs de rapports correspondent au système Fe–As–S. Dans cette étude, nous montrons que les deux approches (visuelle et
statistique) sont complémentaires, et qu’une méthode sans l’autre peut conduire à des interprétations partielles ou érronées. Une
classification hiérarchique réalisée sur l’ensemble des données a aussi mis en évidence l’existence de cinq groupes; cependant, les
classifications visuelle et statistique diffèrent. Différents sous-groupes de même couleur ont été différenciés de manière statistique,
tandis que certains groupes de couleurs différentes correspondraient en fait à un même minéral, ce qui a été confirmé par
microspectrométrie Raman. Ces observations (concernant la jarosite riche en As par exemple) s’expliquent en grande partie par
des différences de composition.

Mots-clés: environnement minier, produits arséniés, oxyhydroxydes de fer, microspectroscopie Raman, données de composition,
log de rapports, analyse statistique multivariée, mine d’Enguialès, France.
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INTRODUCTION

The characterization of minerals or phases is usu-
ally carried out via classical techniques, such as X-ray
diffraction (XRD), scanning electron microscopy
(SEM), electron microprobe (EMP) analysis. The
chemical data obtained by EMP allow geoscientists to
determine the precise composition and also provide in-
formation on the homogeneity (or lack thereof) of the
materials. However, several problems can be encoun-
tered with EMP analytical data depending on the choice
of subcompositional space, substitutions, solid solu-
tions, and even window dimensions that exceed crystal
size. Furthermore, simple consideration of the raw EMP
data is difficult in the case of amorphous or poorly crys-
talline products and unidentified minerals. Thus there
are problems in correctly interpreting EMP data.

In this study, the logratio statistical methods, devel-
oped by Aitchison (1986) for compositional data, are
applied to some by-products of mining. The alteration
of sulfides contained in the tailings can generate amor-
phous or poorly crystalline products that cannot be well
identified by direct methods of mineralogical charac-
terization. In previous studies of the alteration products
resulting from the weathering of tailings, we pointed out
problems concerning the precise definition of their com-
position (Courtin-Nomade et al. 2003, Courtin-Nomade
2001). These studies allowed us to distinguish products
of alteration according to visual criteria (e.g., color, tex-
ture). Electron-microprobe analyses indicated wide
chemical variations within a single visual object. Fur-
thermore, the analytical total generally never reaches
100% owing to a high degree of hydration. The aim of
this study is (i) to show the advantages of a statistical
approach applicable to compositional data of heteroge-
neous, amorphous or poorly crystalline products, (ii) to
provide more information on a previous visual classifi-
cation by testing the homogeneity of the different groups
according to the chemical composition of the micro-
metric products of alteration, and (iii) to give an over-
view of the links among these materials in their
evolution at the expense of the sulfide minerals.

MATERIALS AND METHODS

Characterization

Chemical analyses were carried out with a
CAMECA SX50 electron microprobe equipped with
four wavelength-dispersion spectrometers (WDS) and
an energy-dispersion spectroscopy system (EDS;
CAMPARIS, Paris). The acceleration voltage used was
15 kV, with a beam current of about 4 nA. The elements
sought were: As, Fe, S, Si, Al, K, Ca, Mn, Mg, and Na.
The materials were also characterized by Raman
microspectroscopy with a XY 800 Dilor instrument
(CRSCM, Orléans). As a source of radiation for Raman
spectroscopy, we used a green laser (� = 514.5 nm) with

a low output of energy, about 5 to 10 mW, to avoid lo-
cal heating of the sample. About 10% of the energy of
the laser reached the sample through an Olympus mi-
croscope using a �100 objective. The scans were usu-
ally collected from 60 to 1579 cm–1 and from 3000 to
3900 cm–1, with a scan time of 15 minutes (300 s per
window). These two methods provide complementary
information: EMP data for the chemical composition,
and Raman microspectroscopy for the precise mineral-
ogical identification of the species.

Materials

The materials studied are the result of the alteration
of sulfide-rich tailings from an abandoned tungsten mine
at Enguialès, Département de l’Aveyron, France. The
main sulfide minerals are pyrite and arsenopyrite. Five
different As- and Fe-rich products of alteration were
identified (Courtin-Nomade et al. 2003) according to
their color and luster: dark red (DRD), red (RED), fleecy
(FLE), yellow (YEL) and resinous (RES). That study
pointed out the heterogeneity of some of the species in
these groups, especially the red (goethite, lepidocrocite
or amorphous iron oxyhydroxides), the fleecy (jarosite
or clay minerals), and the yellow materials (goethite or
amorphous iron oxyhydroxides). The dark red materi-
als correspond to hematite, and the resinous materials,
to As-rich amorphous products with a well-defined
chemical composition, close to Fe7(AsO4)4(OH)9 as a
first approximation.

The data used in this study come from analyses car-
ried out on several thin sections. In the EMP analyses,
we detected no significant concentrations of Mn, Na,
Mg and Ca in the materials considered, or these con-
centrations were below the limit of detection. Therefore,
these elements were not taken into account in the fol-
lowing study. Concerning Si, it was very commonly
detected in high concentrations. However, the presence
of Si in our case is due to the presence of primary sili-
cate minerals, and the As–Fe-rich by-products we in-
tend to study invariably coat these silicates. Thus we
consider Si as a “pollutant” element, i.e., the measured
concentrations do not reflect the presence of Si in the
secondary products, but the beam used to analyze the
products is too wide or penetrates too deeply. Thus Si
measured only corresponds to the adjacent silicates. In
order to avoid the influence of Si on the data during the
statistical procedures, we chose to consider only the
subcomposition [As, S, Al, K, Fe], according to the
definition of Aitchison (1986), which represents 565
data. Among them, 21 were found to be very scattered
and far from the remaining values. These outliers were
discarded before carrying out the satistical analysis.

Statistical procedures

The particular nature of compositional data and the
statistical methods used in this study are presented here
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and summarized in Figure 1. The logratio transforma-
tions enable the use of standard multivariate methods
that all statistical packages contain: we employed S–
PLUS (Insightful Corp. 2002) for the clustering of all
the data, and SYSTAT® (SPSS 2000) in the other cases.
We also used some personal routines in MATLAB®

language (The MathWorks 2000) largely based on the
NEWCODA toolbox provided by Aitchison (2000).

Nature of the compositional data. The compositional
data are closed; this mathematical dependence leads to
spurious correlations and makes covariance matrices
unexploitable (Aitchison 1986, Hinkle & Rayens 1995,
Pawlowsky-Glahn & Egozcue 2001). In fact, the true
characteristic of the compositional data is their scale
invariance (Aitchison 2001, Barceló-Vidal et al. 2001),
so that the data are still compositional even if their sum
is not constant. This may happen for analytical reasons
(hydration of the sample, incompatibility in modes of
measurement) or because of the choice of elements
(subcomposition). Normalization allows all composi-
tions to be represented on the same plane, the simplex.
Other drawbacks are the non-linear relationships in tri-
angular diagrams, squeezed data and skewed distribu-
tions near edges, and proportional errors (Aitchison
1986, 2001, Eynatten et al. 2002). Moreover, Euclidian
distances and linear methods are not valid in a simplex

because results may lie outside this closed space (Weltje
2002).

The logratio transformations. They offer several
benefits; distributions become more symmetrical, vari-
ances become independent of means, ratios become dif-
ferences, and proportional errors become additive.
Consequently, different scales of proportions can be
jointly used, so that major, minor, and trace elements
and their variances may be compared in a single analy-
sis. The mean of logs corresponds to the geometrical
mean of original proportions: it better describes the cen-
ter of a group than the arithmetic mean (Philip & Watson
1988). Only Euclidian and Mahalanobis distances cal-
culated after these transformations have the required
properties for compositional data (Martín-Fernández et
al. 1998). Three logratios matrices contain the same
information: the matrix Z of all pairwise logratios, the
matrix Y of additive logratios (ALR), and the matrix X
of centered logratios (CLR), with covariance matrices
�, �, and �, respectively. For example, from a four-ele-
ment composition [A, B, C, D], we get: Z = log([A/D,
B/D, C/D, A/C, B/C, A/B]), Y = log([A/D, B/D, C/D]),
X = log([A/g, B/g, C/g, D/g]), where g is the geometric
mean of [A, B, C, D]. The choice of the working matrix
depends on some properties like invariance, distances,
and inversibility (Aitchison 1986).

FIG. 1. Summary of the main statistical methods that can be used on the EMP data. The
methods chosen for this study are in bold.
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Exploratory methods. With Principal Component
Analysis (PCA), or Singular Value Decomposition
(SVD), compositions and logratios may then be dis-
played on a single “biplot” (Aitchison 1986, Aitchison
& Greenacre 2001). Such biplots are useful in the choice
of some ways to display the data, e.g., a triangular dia-
gram representation that best shows the variability in
the data. Here, Z and X give equivalent biplots, but X is
the working matrix; the CLR biplot only displays D
variables, and logratios are the links between the CLR
apices (Aitchison & Greenacre 2001). Biplots have been
applied, for example, to fluid variation in petroleum
(Whelan et al. 2001) and marine micropaleontology
(Kucera & Malmgren 1998). Hinkle & Rayens (1995)
extended the method to Partial Least-Squares Regres-
sion and applied it to organic chemistry and sedimen-
tology. Based on the example of olivine compositions,
Aitchison & Thomas (1998) have also shown the im-
portance of near-zero eigenvalues; they correspond to
almost-constant eigenvectors. Returning to proportions,
they can reveal typical relations between elements un-
der the form of pseudo-equilibrium constants (Aitchison
1999).

Methods of classification. No difficulty arises in us-
ing rules of classification found in standard statistical
packages; the Aitchison distance between compositions
is the Euclidian distance between CLR. The Ward
method of Hierarchical Clustering (HC) gives compact
clusters and clear hierarchies (Martín-Fernández et al.
1999, Martín-Fernández 2001). Pawlowsky-Glahn &
Buccianti (2002) applied cluster analysis to the chemi-
cal composition of a fumarole on the Island of Vulcano,
Italy. Mixture models also give excellent results, with
overlapping groups (Barceló-Vidal et al. 1999, Martín-
Fernández et al. 1997).

Analysis of Variance (ANOVA) and Linear Discrimi-
nant Analysis (LDA). Y is the working matrix and pro-
duces identical results whatever the choice of the
reference element (Aitchison 1986). In most cases, a
major element or oxide is chosen as the reference, e.g.,
SiO2 (Clarke et al. 1989, Verrucchi & Minissale 1995).
Ridenour (1999) applied these methods to hydrology,
and Guitart et al. (1999) made biochemical comparisons
of two marine vertebrates. Only multivariate tests must
be considered, because individual tests only concern the
corresponding binary subcompositions. As a conse-
quence, the selection of variables must be replaced by a
choice of subcomposition. This choice was done using
discriminant biplots. The correlations between the vari-
ables (here the CLR) and the discriminant factors are
superimposed on the compositional plot. The best rep-
resented CLR on the correlation circle are candidates
for formation of a discriminant subcomposition.

Confidence regions (CR). A recent review covers
this subject extensively (Weltje 2002). CR can be drawn
from Y by using multivariate normal models (Weltje
2002) or kernel estimates (Aitchison & Lauder 1985,
Aitchison 1986). For a three-element subcomposition,

the CR can be displayed in a triangular diagram using
the inverse ALR transformation (Weltje 2002).
Pawlowsky-Glahn & Buccianti (2002) used this repre-
sentation with data on fumaroles.

RESULTS

Bulk compositions

The first attempt was to compare visual and statisti-
cal classifications based on electron-microprobe data.
Unlike Linear Discriminant Analysis (LDA), Hierarchi-
cal Clustering (HC) is not based on a predefined classi-
fication. It is an adequate method of evaluation if some
“natural” populations can be distinguished, without pre-
conceived ideas. Euclidian distances between composi-
tions were calculated following the Ward method in
S–PLUS from the five centered logratios X = CLR(S,
As, Al, K, Fe), and used to construct the dendrogram in
Figure 2. A distance equal to 17 enabled the creation of
five clusters that were compared with the five predefined
visual groups by cross-tabulation (Table 1a). It seemed
first that the three visually most important groups, FLE,
RED and RES, were split into several clusters. This in-
dicates that the one color may correspond to many
chemical entities, and that the homogeneity of visually
recognized groups has to be verified. Cluster 1, an iron-
rich composition, groups together DRD, the greatest part
of RED and a small part of FLE. Cluster 4 groups to-
gether another major part of RED and FLE, which seems
to correspond to As-rich compositions.

The second stage was to determine the most discri-
minant ratios as well as the most discriminant triangu-
lar diagram with the help of LDA and of a discriminant
biplot. The variables involved for LDA are the four
logratios Y = ALR(S, As, Al, K, Fe), whereas the corre-
lations between the CLR X and the discriminant factors
(scores) are calculated and superimposed to form the
biplot (Fig. 3a). The links S–As and As–Fe are nearly

FIG. 2. Hierarchical clustering of the 544 EMP data (using
Ward method and Euclidian distance on the five centered
logratios). The dotted line defines five clusters.
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orthogonal in As and best express the variance between
the groups. In this way, we have considered the orthogo-
nal logratios log(S/As) and log(Fe/As) (Fig. 3b), and the
corresponding triangular diagram Fe–As–S (Fig. 3c).
The subcomposition [S, As, Fe] best explains the visual
classification. The Ward method applied to the three
centered logratios X = CLR(S, As, Fe) shows that the
RES group is highly distinct from the others (Table 1b).

This visual classification, which seemed satisfactory
on the whole as a first approach, remains too imprecise.
The presence of very different groups having the same
color is now clearly observed. This is the case for two
of the five groups: the YEL and the RED groups. Two
sets could be identified for each of them: YEL1 and
YEL2, and RED1 and RED2, respectively. A clustering
carried out on these sets confirmed this first observa-
tion (Fig. 4). Furthermore, with the five visually defined
groups, this global approach allows one to identify two
main end-members, an “iron” and an “arsenic” one.
According to these previous results the RED2, YEL2 and
DRD can already be classified in the “iron” end-mem-
ber, whereas the RED1, YEL1, FLE and RES belong to
the “arsenic” end-member.

Group-by-group analysis

The “iron” end-member. ANOVA and tests use the
ALR matrix Y, as does LDA (Table 2a). Considering
all the variables, the chemical identity of the three sub-
groups RED2, YEL2 and DRD was confirmed: all dif-
ferences were found to be significant. However, RED2
and YEL2 are not significantly different, considering the
subcomposition [As, S, Fe] (Table 2b). The LDA of the
three groups (not shown here) indicates that the link As–
Fe is the most discriminant variable, and that the sec-
ond factor corresponds to the variation of K/S and Al/S
logratios in YEL2. A second test was performed, but this
time only with the binary composition [As, Fe], i.e., with

log(Fe/As) variable. Tukey pairwise comparisons were
used in this univariate case (Table 2c), allowing a re-
covery between the RED2 and YEL2 groups to be ob-
served; RED2 and YEL2 show no difference, whereas
the test is significant in comparison to DRD. This re-
covery can be explained in mineralogical terms. Analy-
ses by Raman microspectroscopy show that RED2 and
YEL2 both correspond to goethite (�-FeOOH) (Fig. 5a),
whereas the DRD group corresponds to hematite (�-
Fe2O3; spectrum not shown). These results indicate that
two compounds can have the same mineralogy, a close
chemical composition, but a different color. The main
chemical difference between the RED2 and YEL2
groups is due to K/S and Al/S variations, whereas the
main difference among the three groups of the “iron”
end-member is explained by variations in Fe/As.

The “arsenic” end-member. This end-member com-
prises distinct populations, each of which contains vari-
ous amounts of arsenic. RES and YEL1 groups seem
homogeneous and well defined if we consider the
subcomposition [As, S, Fe] (Fig. 3a). These groups are
also the richest in arsenic. However, YEL1 and also
RED1 are superimposed on the remaining and widely
dispersed group FLE. Thus the major questions involve
the homogeneity of FLE and its relation to RED1 and
YEL1. Mineralogical studies indicate that both RED1
and YEL1 correspond to Fe-amorphous products en-
riched in As (am-FeOOH ± As). However, they are
chemically very different (Table 3). An average of their
composition in terms of iron and arsenic content, the
main components of these two groups, can be estimated
by their Fe/As values, which indicate, respectively, for
RED1 and YEL1: Fe/As ≈ 10.43 (geometric mean As(g)
≈ 7.24% in the composition [Al, K, S, As, Fe]) and Fe/
As ≈ 4.08 (As(g) ≈ 18.46%) (Table 4). Thus the main
difference between RED1 and YEL1 is chemical and not
mineralogical, which can be explained by two different
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components from distinct sources. RED1 is probably a
result of the alteration of pyrite, whereas YEL1 comes
from the alteration of arsenopyrite.

The dispersion of the FLE group was analyzed by
clustering. The dendrogram obtained for this group
clearly shows four subgroups (Fig. 6), and the PCA
enables the main axes of variation (Fig. 7) to be deter-
mined. The two major subgroups FLE1a and FLE1b are
noted, whereas the less important are FLE2 and FLE3.

FIG. 4. Cluster tree of (a) the YEL (yellow) group indicating
the presence of two subgroups, and (b) the RED (red) group
showing also a division into two subgroups.

FIG. 3. (a) Linear Discriminant Analysis (LDA) biplot of the
five visual groups FLE (fleecy), YEL (yellow), RED (red),
DRD (dark red), and RES (resinous), with 80% normal
confidence region. LDA is based on additive logratios,
whereas elements are displayed as correlations between
centered logratios and discriminant factors. (b) Represen-
tation of the logratios log(S/As) / log(Fe/As), with 80%
kernel confidence region. (c) Corresponding triangular dia-
gram Fe–As–S.
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The subgroup FLE1 shows a slight dispersion, which
essentially reflects a chemical variation due to As con-
centrations. FLE1a and FLE1b correspond to two end-
members, one rich in As, with the As geometric mean
As(g) ≈ 8.3% (FLE1b), and an other with smaller amounts
of As, with As(g) ≈ 6.0% (FLE1a) (Fig. 7, Table 4). Min-
eralogically, according to Raman microspectroscopy,
we determined that FLE1a and FLE1b both correspond
to jarosite (Fig. 5b) that contains adsorbed or copre-
cipitated As (substitution of AsO4 for SO4 can easily
occur in the structure of jarosite: Paktunc & Dutrizac
2003). No Raman spectra were obtained for the second
subgroup, FLE2, involving poorly crystalline (e.g., clay
minerals) or non-crystalline (amorphous) products. Ac-
cording to a previous study (e.g., XRD), the FLE2 sub-
group corresponds to clay minerals; they are known to
have an affinity for As, as is observed here with an av-
erage concentration of As(g) ≈ 9.9% (Table 4). Finally,
the FLE3 subgroup corresponds to misclassified data and
could preferentially be classified with the YEL1 group.

The test indicates no significant differences between
these two groups (Table 3).

Statistical observations carried out on the FLE group
allow three different subgroups to be clearly identified,
whereas the visual classification does not distinguish
them. Furthermore, the cluster analysis performed on
the RED1, YEL1 and FLE (1, 2 and 3) groups indicates
that they are well classified except for the RED1, which
could easily be confused with the FLE1 group (Table 5).
However, a visual classification enabled discrimination
between these two groups. Thus visual classification
appears essential in this case. The study of these three
groups shows the complementarity of the two ap-
proaches (statistical and visual); one method without the
other would likely give partial interpretations or misin-
terpretations.

Contrary to the two previous groups, RES is, after
YEL1, the least scattered group in terms of the [As, S,

FIG. 5. Raman spectrum of (a) the YEL2 (yellow subgroup 2)
and the RED2 (red subgroup 2) products, both correspond-
ing to goethite; (b) the FLE1a,b (fleecy subgroup 1) product
identified as jarosite, more or less enriched in arsenic.

FIG. 6. Cluster tree on the FLE (fleecy) group. The subdivi-
sion defines four subgroups.
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Fe] subcomposition (Fig. 3). This fact is confirmed by
PCA (or SVD) analysis of the group. There is no evi-
dence for a subgroup structure in spite of the chemical
variations due to Al and K.

A principal component analysis reveals a near-zero
eigenvalue (the last one), which corresponds to an al-
most constant eigenvector with equal contributions of
As and Fe (Table 5) and a negligible contribution of S.
Following Aitchison (1999), we deduce that the ratio
Fe/As is the fundamental characteristic of this group.
RES is the richest in arsenic, with an average Fe/As ra-
tio of 1.9 (Table 4); RES is also the only group of the
“arsenic” end-member where S varies independently of
As (and Fe). This characteristic is better displayed with
a centered triangular diagram, which prevents a large
part of the data squeeze near the triangle edges (Fig. 8).
This transformation retains straight lines (Eynatten et
al. 2002).

Evolutionary model

The precise definition of all of these groups enables
us to identify their source components, pyrite or arse-
nopyrite. It is well known that these minerals can gen-
erate secondary products such as jarosite, goethite and
poorly crystalline materials, such as ferrihydrite
(Blowes et al. 1994, Jambor & Dutrizac 1998, Savage
et al. 2000). All of these products have greater or lesser
affinities with arsenic and can trap it (adsorption or
coprecipitation: Manceau 1995, Waychunas et al. 1995,
Lumsdon et al. 2001). A statistical analysis coupled with
a microspectroscopy technique allow us to evaluate the
alteration of the primary minerals and to specify what
type of secondary products are generated.

From the previous results, we contend that the FLE1a
and RED1 subgroups correspond to the first products of
alteration of pyrite, whereas the FLE1b, YEL1 and RES
groups (“arsenic” end-member) result from the primary

stage of alteration of arsenopyrite (Fig. 9). Furthermore,
these products have themselves been altered and have
generated more “evolved” materials, which represent
the “iron” end-member corresponding to crystalline end-
products. Thus this evolution indicates a subsequent
release of As with time and degree of alteration.

FIG. 7. Principal Component Analysis (PCA) covariance
biplot of the FLE (fleecy) group, with representation of the
four subgroups defined by Hierarchical Clustering and their
corresponding 80% normal confidence regions. The four
subgroups are therefore well identified: FLE1a,b, FLE2 and
FLE3. Clusters: • FLE3, � FLE1b, + FLE1a, � FLE2.
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CONCLUSIONS

In this study, we have shown that a preliminary vi-
sual classification of the materials is necessary to sepa-
rate the major products of alteration. Nevertheless, a
statistical analysis enables this classification to be re-
fined in order to obtain more homogeneous chemical
and mineralogical groups. This approach is validated by
confirming some of the groups identified using special-
ized techniques of characterization such as Raman
microspectroscopy. The complementarity of the two
approaches is remarkable: only the visual classification
allows one to define the YEL1 and the RED1 groups
(both corresponding to am-FeOOH but with different
concentrations of As), which are chemically very close
to some other minerals groups. A statistical analysis
easily allows us to differentiate some groups with the
same color and to detect the presence of misclassified
individuals.

As already observed in some other studies,
Aitchison’s logratio method appears to be very efficient.
This model allows most of the usual methods of statis-
tical analysis to be used, provided that all kinds of lin-
ear relationships between proportions are forgotten. It
allows a general model of the different As-bearing prod-
ucts of evolution to be established and a discrimination
of the precursor minerals (arsenopyrite and pyrite).
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