NEW MINERALS

JOSEPH A. MANDARINO

94 Moore Avenue, Toronto, Ontario M4T 1V3, Canada

Alsakharovite-Zn

NaSrKZn(Ti,Nb)₄[Si₄O₁₂]₂(O,OH)₄•7H₂O

MONOCLINIC

Locality: Lepkhe–Nelm Mountain, Lovozero alkaline massif, Kola Peninsula, Russia.

Occurrence: A hydrothermal mineral in cavities of a eudialyte–aegirine–feldspar pegmatite. Associated minerals are: lamprophyllite, natrolite, halloysite, ranciéite, kuzmenkoite-Zn, tsepinite-Na, vinogradovite, etc.

General appearance: Coarse, flattened prismatic crystals (up to 8 × 20 × 0.5 mm).

Physical, chemical and crystallographic properties:

Luster: vitreous. Diaphaneity: translucent to transparent. Streak: white. Luminescence: nonfluorescent. Hardness: ~5. Tenacity: brittle. Cleavage: not observed. Fracture: uneven. Density: 2.90 g/cm³ (meas.), 2.94 g/cm³ (calc.). Crystallography: Monoclinic, Cm, a 14.495, b 13.945, c 7.838 Å, β 117.75°, V 1402 Å³, Z = 2, a:b:c = 1.0394:1:0.5621. Morphology: probably {100} and {001}; elongate along [010]. Twinning: microtwinning on (001) and (¯401). X-ray powder-diffraction data: 6.96(100) (020,001), 3.21(80)(402,421,400), 3.11(90)(041,022,240), 2.60(35)(151,241,202), 2.50(40)(441,403), 1.74(30)(080,004), 1.70(40)(463,443,461,442). Optical data: Biaxial (+), α 1.680, β 1.687, γ 1.787, 2V(meas.) 25°, 2V(calc.) 31°; dispersion not observed; nonpleochroic; Y = b. Chemical analytical data: Mean of eight sets of electron-microprobe data (with H₂O by TGA): Na₂O 2.04, K₂O 2.43, MgO 0.04, CaO 1.48, MnO 0.11, FeO 0.22, ZnO 5.02, SrO 4.49, BaO 3.65, Al₂O₃ 0.15, SiO₂ 39.23, TiO₂ 18.89, Nb₂O₅ 12.57, H₂O 11.10, Total 101.42 wt.%. Empirical formula: (Na₀.₆₈Ca₀.₃₂)₁₀.₀₀ (Si₄O₁₂)₂(O,OH)₄•7H₂O.

Relationship to other species: It is a member of the gutkovaite subgroup of the labuntsovite group.

Name: After Alëksey S. Sakharov (1910–1996), Russian geologist who actively studied the Lovozero alkaline massif.

Cavoite

\[\text{CaV}_3\text{O}_7 \]

Orthorhombic

Locality: Gambatesa mine, near Reppia, northern Appenines, Val Graveglia, Liguria, Italy.

Occurrence: In micro-cavities in massive bands of caryopilite + calcian rhodochrosite ± quartz. Another associated mineral is an unidentified silicate.

General appearance: Very rare radiating aggregates of strongly elongate prismatic to acicular crystals up to about 0.28 mm long.

Physical, chemical and crystallographic properties:
- **Luster:** vitreous to adamantine.
- **Diaphaneity:** transparent.
- **Color:** colorless to olive green-brown.
- **Streak:** near white.
- **Luminescence:** nonfluorescent.
- **Hardness:** could not be determined.
- **Tenacity:** brittle.
- **Cleavage:** not observed.
- **Fracture:** not mentioned.
- **Density:** could not be determined, 3.51 g/cm\(^3\) (calc.).

Crystallography: Orthorhombic, \(Pnam\), \(a\) 10.42, \(b\) 5.28, \(c\) 10.34 Å, \(V\) 568.2 Å\(^3\), \(Z\) = 4, \(a:b:c = 1.9735:1.9583\). Morphology: no forms were mentioned. Twinning: none observed. **X-ray powder-diffraction data:** 5.16(M)(200), 3.45(W)(211,112), 3.00(S)(212), 2.88(W)(013,203), 1.85(M)(024), 1.56(W)(612,033,216). **Optical data:** could not be determined, but a value of about 2 was measured roughly for the index of refraction.

Chemical analytical data: Means of ten sets of electron-microprobe data: K\(_2\)O 0.35, CaO 17.76, MnO 0.70, SiO\(_2\) 4.31, VO\(_2\) 76.80, Total 99.92 wt.%.

Empirical formula: \((\text{Ca}_{0.95}\text{Mn}_{0.03}\text{K}_{0.02})\Sigma_{1.00} (\text{V}_{2.79}\text{Si}_{0.22})\Sigma_{3.01}\text{O}_{7.00}\). **Relationship to other species:** It is the natural analogue of synthetic CaV\(_3\)O\(_7\).

Name: Recalls the chemical composition, calcium, vanadium, oxygen.

Comments: IMA No. 2001–024.

Ferrokentbrooksite

\[
\text{Na}_{15}\text{Ca}_{6}(\text{Fe},\text{Mn})_{3}\text{Zr}_{3}\text{NbSi}_{26}\text{O}_{73}(\text{OH},\text{H}_{2}\text{O})_{3}(\text{Cl,F,OH})_{2}
\]

Locality: Poudrette quarry, Mont Saint-Hilaire, Rouville County, Quebec, Canada. The mineral also has been found at the following localities: Narssârssuk pegmatite, Igaliko alkaline complex, southwestern Greenland; Langesundfjord area, Norway (at Brønnøya; Barkevik Strand; and the Bjørndalen quarry, Tvedalen); Kariåsen, Sandefjord area, Norway; the Burpala alkaline complex, Baikal area, Russia.

Occurrence: It is a primary but late-stage phase found in a small pegmatite dike in nepheline syenite. Associated minerals are: microcline, nepheline (partially altered to natrolite), fluorite, natrolite, gonnardite, rhodochrosite, aegirine, albite, calcite, sérandite, ancylite-(Ce) and catapleiite.

General appearance: Pseudo-octahedral crystals up to 1 cm in diameter, but much larger crystals and masses have been found in other dikes.

Physical, chemical and crystallographic properties:

- Luster: vitreous.
- Diaphaneity: transparent.
- Color: reddish brown to red.
- Streak: white.
- Hardness: 5 to 6.
- Tenacity: brittle.
- Fracture: uneven to conchoidal.
- Cleavage: none.
- Density: 3.06 g/cm\(^3\) (meas.), 3.06 g/cm\(^3\) (calc.).
- Physical data: Uniaxial (−).
- Empirical formula (based on 77.47 anions determined in the crystal structure with H\(_2\)O calculated by stoichiometry): (Na\(_{13.05}\)REEO\(_{0.99}\)K\(_{0.32}\)Ca\(_{0.23}\)Sr\(_{0.15}\))\(_{14.74}\) (Ca\(_{4.58}\)Mn\(_{1.24}\)V\(_{0.17}\))\(_{26.00}\) (Fe\(_{2.39}\)Mn\(_{0.61}\))\(_{23.00}\) (Zr\(_{1.25}\)O\(_{0.07}\))\(_{25.00}\)O\(_{73.00}\) (O,OH,H\(_2\)O)\(_{52.47}\)Cl\(_{0.89}\)F\(_{0.71}\)(OH)\(_{0.40}\)F\(_{2.00}\) - Relationship to other species: It is a member of the eudialyte group, specifically the Fe\(^{2+}\)-dominant analogue of kentbrooksite, Na\(_{15}\)Ca\(_{4}\)Mn\(_{2}\)Zr\(_{3}\)NbSi\(_{25}\)O\(_{74}\)F\(_{2}\).

Name: Recalls the relationship to kentbrooksite.

Comments: IMA No. 1999–046. The crystal structure has been solved.

JOHNSON, O., GRICE, J.D. (1999): The crystal chemistry of the eudialyte group. Canadian Mineralogist 37, 865-891 (crystal #2).
Goldquarryite

\[\text{CuCd}_2\text{Al}_3(\text{PO}_4)_4\text{F}_2(\text{H}_2\text{O})_{10}(\text{H}_2\text{O})_2 \]

Locality: Gold Quarry mine, 11 km northwest of Carlin, Eureka County, Nevada, USA.

Occurrence: In brecciated and hydrothermally rounded jasperoid fragments lightly cemented by late-stage silicification. Associated minerals are: opal, carbonate-fluorapatite and hewettite.

General appearance: Isolated clusters of radiating crystals and compact parallel aggregates of crystals. Maximum size of the crystals is 1.5 mm long by 0.1 mm in diameter.

Physical, chemical and crystallographic properties:
- **Luster**: vitreous.
- **Diaphaneity**: transparent, but aggregates are translucent.
- **Color**: very pale blue to blue-gray, masses are blue.
- **Streak**: white.
- **Luminescence**: nonfluorescent.
- **Hardness**: 3 to 4.
- **Tenacity**: brittle.
- **Cleavage**: none observed.
- **Fracture**: irregular.
- **Density**: 2.78 g/cm³ (meas.), 2.88 g/cm³ (calc.).
- **Crystallography**: Triclinic, \(P\bar{1} \), \(a = 6.787 \), \(b = 9.082 \), \(c = 10.113 \) Å, \(\alpha = 101.40 \), \(\beta = 104.27 \), \(\gamma = 102.51 \)°, \(V = 568.7 \) Å³, \(Z = 1 \), \(a:b:c = 0.7473:1:1.1135 \). Morphology: \(\{010\} \) and \(\{001\} \) dominant, \(\{100\} \) very minor. Twinning: multiple on \(\{001\} \).
- **Optical data**: Biaxial (+), \(\alpha = 1.570 \), \(\beta = 1.573 \), \(\gamma = 1.578 \), \(2V(\text{meas.}) = 30° \), \(2V(\text{calc.}) = 76° \); dispersion \(r < v \), strong; pleochroic, deep blue parallel to the elongation and very pale blue normal to the elongation; orientation not given.
- **Chemical analytical data**: Mean of five sets of electron-microprobe data (with \(\text{H}_2\text{O} \) calculated to give 26 \(\text{H} + \text{F} \)): \(\text{K}_2\text{O} = 0.17 \), \(\text{CaO} = 1.25 \), \(\text{NiO} = 0.23 \), \(\text{CuO} = 5.33 \), \(\text{ZnO} = 0.05 \), \(\text{CdO} = 26.24 \), \(\text{Al}_2\text{O}_3 = 15.22 \), \(\text{V}_2\text{O}_5 = 0.05 \), \(\text{P}_2\text{O}_5 = 28.04 \), \(\text{H}_2\text{O} = 22.19 \). F 3.63, sum (102.40), less O = F 1.53, Total (100.87) wt.%. Empirical formula: \(([\text{Cu}_{0.66}\text{Ni}_{0.03}\text{Zn}_{0.01}]\text{Cd}_{0.70}\text{Al}_{2.92}\text{V}_{0.01})\text{PO}_4_{1.87}\text{F}_{1.89}(\text{H}_2\text{O})_{12.06} \).
- **Relationship to other species**: None apparent.

Name: After the locality.

Comments: IMA No. 2001-058.

Kochite

Na$_2$(Na,Ca)$_4$Ca$_4$(Mn,Ca)$_2$Zr$_2$(Si$_2$O$_7$)$_4$(O,F)$_4$F$_4$

Triclinic

Locality: The northern side of Hvide Ryg in the mountain range of Werner Bjerge on the eastern coast of Greenland (Lat. 72° N, Long. 24° W).

Occurrence: In a loose block of nepheline syenite between the Sirius Glacier and Hvide Ryg. Associated minerals are: nepheline, alkali feldspar and låvenite.

General appearance: Lath-shaped to acicular grains in parallel to subparallel aggregates up to 0.3 × 1.0 mm.

Physical, chemical and crystallographic properties:

- **Luster:** vitreous.
- **Diaphaneity:** transparent.
- **Color:** pale brown.
- **Streak:** not given.
- **Luminescence:** not given.
- **Hardness:** 5.
- **Tenacity:** brittle.
- **Cleavage:** {100} perfect.
- **Fracture:** uneven.
- **Density:** 3.32 g/cm3 (meas.), 3.35 g/cm3 (calc.).
- **Crystallography:** Triclinic, P$ar{1}$, a 10.032, b 11.333, c 7.202 Å, α 90.192, β 100.334, γ 111.551°, V 747.1 Å3, Z = 1, a:b:c = 0.8852:1.0:0.6355. Morphology: no forms were observed; crystals are elongate along [010]. Twinning: none mentioned.
- **Optical data:** Biaxial (+), α 1.684, β 1.695, γ 1.718, 2V(meas.) 73°, 2V(calc.) 70°; dispersion not given; pleochroism weak with X colorless and Z pale yellow; X = c, Z // [100] ~20°.
- **Chemical analytical data:** Mean of four sets of electron-microprobe data: Na$_2$O 10.33, MgO 0.01, CaO 21.39, MnO 4.92, FeO 1.08, SrO 0.12, Al$_2$O$_3$ 0.05, V$_2$O$_5$ 0.03, Y$_2$O$_3$ 0.39, La$_2$O$_3$ 0.25, Ce$_2$O$_3$ 0.57, SiO$_2$ 31.55, TiO$_2$ 8.44, ZrO$_2$ 12.12, HF$_2$O$_2$ 0.09, Nb$_2$O$_5$ 1.86, Ta$_2$O$_5$ 0.02, F 6.83, sum 100.05, less O = F 2.88, Total 97.17 wt.%. Empirical formula: (Na$_1$Na$_{1.92}$Sr$_{0.02}$)$_{1.94}$ (Na$_{2.77}$Ca$_{1.23}$)$_{3.44}$ (Ca$_{3.52}$Na$_{0.48}$)$_{2.44}$ (Mn$_{0.07}$Ca$_{0.81}$Y$_{0.07}$Ce$_{0.05}$La$_{0.02}$)$_{2.20}$ (Zr$_{1.44}$Fe$_{0.23}$Ca$_{0.35}$Hf$_{0.01}$)$_{2.00}$ (Ti$_{1.64}$Nb$_{0.22}$Zr$_{0.11}$Al$_{0.02}$V$_{0.01}$)$_{2.20}$ (Si$_2$O$_7$)$_{4.07}$F$_4$O$_{0.47}$F$_{0.37}$O$_{1.94}$F$_{1.57}$F$_{2.35}$.

Relationship to other species: It is a member of the rosenbuschite group.

Name: After Lauge Koch (1892–1964), Danish geologist who made significant contributions to the knowledge of the geology of Greenland and mapped the geology of the type locality of this mineral.

Comments: IMA No. 2002-012.

Mallestigite

\[\text{Pb}_3\text{Sb(SO}_4\text{(AsO}_4\text{(OH)}_6\text{)}\cdot3\text{H}_2\text{O} } \]

Locality: The dump of a copper–lead–zinc mine, 1 km northwest of the Mallestiger Mittagskogel, Westkarawanken, Carinthia, Austria (Lat. 46° 31' 45" N, Long. 13° 52' 24" E, altitude 1200 m above sea level).

Occurrence: In narrow fractures of limestones, where it formed during weathering of primary galena and tetrahedrite. Associated minerals are: anglesite, brochantite, langite, linarite and schultenite.

General appearance: Idiomorphic to hypidiomorphic crystals up to 2 mm long and 0.4 mm thick. Also in radial aggregate up to 3 mm in diameter.

Physical, chemical and crystallographic properties:
- **Luster:** adamantine.
- **Diaphaneity:** transparent to translucent.
- **Color:** colorless.
- **Streak:** white.
- **Luminescence:** nonfluorescent.
- **Hardness:** VHN\(_{10}\) 176 kg/mm\(^2\), Mohs 4.
- **Tenacity:** brittle.
- **Cleavage:** none.
- **Fracture:** splintery.
- **Density:** could not be measured, 4.91 g/cm\(^3\) (calc.).
- **Crystallography:** Hexagonal, \(P6_3\), \(a = 8.938\) Å, \(c = 11.098\) Å, \(V = 767.8\) Å\(^3\), \(Z = 2\), \(c:a = 1.2417\). Morphology: \{100\} and \{101\}; elongate on \{001\}. Twinning: none observed. X-ray powder-diffraction data:
 - \(7.74(25)(100)\), \(6.35(44)(101)\), \(3.655(100)(201)\), \(3.481(80)(112)\), \(3.175(31)(202)\), \(2.675(62)(203)\), \(2.235(35)(220)\), \(1.741(24)(224)\).
- **Optical data:** Uniaxial (+), \(\alpha = 1.760\), \(\varepsilon = 1.801\), nonpleochroic.

Chemical analytical data: Mean of fourteen sets of electron-microprobe data (given as elements and converted here to oxides with H\(_2\)O calculated to give 12H): PbO 65.67, Sb\(_2\)O\(_5\) 14.68, As\(_2\)O\(_5\) 9.71, SO\(_3\) 8.64, H\(_2\)O (10.38), Total (109.08) wt. %. Empirical formula: \(\text{Pb}_{3.06}\text{Sb}_{0.95}\text{[(SO}_4\text{)]}_{1.12}\text{(AsO}_4\text{)]}_{0.88}\text{[OH]}_{5.99}\text{•3H}_2\text{O}\).

Name: After the locality.

Comments: IMA No. 1996–043. Only an extended abstract of this description has been published (see below), but Prof. Dr. Franz Walter (Universität Graz) kindly supplied additional information. The crystal structure has been solved.

WALTER, F. (2003): personal communication.
Niigataite

\[\text{CaSrAl}_3(\text{Si}_2\text{O}_7)(\text{SiO}_4)\text{O(OH)} \]

Locality: Miyabana seashore, Ohmi Town, Itoigawa–Ohmi district, Niigata Prefecture, Japan.

Occurrence: In a prehnite boulder. Associated minerals are: prehnite, diaspare and chlorite. Minor constituents are: zircon, galena, cinnabar and strontian clinozoisite.

General appearance: Subhedral grains 0.5 mm across.

Physical, chemical and crystallographic properties:
- **Luster:** vitreous.
- **Diaphaneity:** transparent.
- **Color:** pale gray with a yellowish green tint.
- **Streak:** white.
- **Luminescence:** nonfluorescent.
- **Hardness:** VHN\(_{100}\) 642 to 907 kg/mm\(^2\), 5 to 5½.
- **Tenacity:** brittle.
- **Cleavage:** perfect in one direction.
- **Fracture:** not given.
- **Density:** could not be measured, 3.64 g/cm\(^3\) (calc.).

Crystallography: Monoclinic, \(P2_1/m\), \(a\) 8.890, \(b\) 5.5878, \(c\) 10.211 Å, \(\beta\) 115.12°, \(V\) 459.3 Å\(^3\), \(Z\) = 2, \(a:b:c\) = 1.5910:1.18274. Morphology: no forms were observed. Twinning: none mentioned.

X-ray powder-diffraction data: 5.05(23)(102), 3.22(25)(201), 2.90(100)(113), 2.79(48)(020), 2.70(26)(013), 2.60(24)(311), 2.40(21)(313), 2.11(24)(221), .872(21)(22), 1.397(22)(040).

Optical data: Complete data could not be determined owing to the scarcity of material; indices of refraction are between 1.67 and 1.725. A violet anomalous interference-color was observed.

Chemical analytical data: Mean of nine sets of electron-microprobe data (with \(H_2O\) calculated to give 1 OH): \(\text{MgO}\) 0.07, \(\text{CaO}\) 14.09, \(\text{MnO}\) 0.22, \(\text{SrO}\) 14.75, \(\text{Al}_2\text{O}_3\) 24.86, \(\text{Fe}_2\text{O}_3\) 7.08, \(\text{SiO}_2\) 35.49, TiO\(_2\) 0.75, H\(_2\)O (1.77), Total (99.08) wt.%. Empirical formula: \(\text{Ca}_{1.00}(\text{Sr}_{0.72}\text{Ca}_{0.28})\text{Al}_{3}\text{Fe}_{0.45}\text{Ti}_{0.05}\text{Mn}_{0.02}\text{Mg}_{0.01})\text{Si}_3\text{O}_9\text{O}_2\text{O}(\text{OH})_1\).06.

Relationship to other species: It is a member of the epidote group, specifically, the strontium-dominant analogue of clinozoisite.

Name: After the locality.

Comments: IMA No. 2001–055.

Sewardite

\[
\text{CaFe}^{3+}{}_{2}\text{(AsO}_4\text{)}_2\text{(OH)}_2
\]

Locality: The 31st level of the Tsumeb mine, Tsumeb, Namibia (Lat. 19° S, Long. 18° E). Also from Mina Ojuela, Mapimi, Durango, Mexico.

Occurrence: Associated minerals are: ferrilotharmeyerite and another species that may be a cuprian zincian ferrilotharmeyerite or the Zn-dominant analogue of lukrahnite.

General appearance: Platy to compact anhedral to subhedral masses (up to 0.3 mm). Individual fragments are 50 to 100 \(\mu\)m.

Physical, chemical and crystallographic properties:
- **Luster:** given as vitreous but the optical properties indicate adamantine.
- **Diaphaneity:** translucent to transparent.
- **Color:** dark red to much lighter red to orange.
- **Streak:** reddish brown.
- **Luminescence:** nonfluorescent.
- **Hardness:** 3\(\frac{1}{2}\).
- **Tenacity:** brittle.
- **Cleavage:** \{100\} and \{011\} both imperfect.
- **Fracture:** splintery to uneven.
- **Density:** could not be measured, 4.17 g/cm\(^3\) (calc.).
- **Crystalllography:** Orthorhombic, \(\text{Ccmm}, a \ 16.436, b \ 7.425, c \ 12.116 \ \text{Å, } V = 1479 \ \text{Å}^3, Z = 8, a:b:c = 2.2136:1:1.6318\). Morphology: no forms were observed. Twinning: none observed. X-ray powder-diffraction data: 4.874(90)(202), 3.473(50)(113), 3.389(60)(220), 3.167(100)(022), 3.015(50)(510), 2.988(50)(313), 2.919(70)(511), 2.503(90)(422,314), 1.775(50)(533,026).
- **Optical data:** In reflected light: light bluish gray with weak, but measurable birefringence, no anisotropism, nonpleochroic. \(R_1, R_2: (10.04, 10.60\%) \ 470 \text{ nm}, (9.49, 10.06\%) \ 546 \text{ nm}, (9.27, 9.95\%) \ 589 \text{ nm}, (8.80, 9.49\%) \ 650 \text{ nm}. Indices of refraction calculated from reflectances in air at 589 nm are \(n_1 \ 1.87, \ n_2 \ 1.92\).
- **Chemical analytical data:** Mean of eight sets of electron-microprobe data (with H\(_2\)O calculated by stoichiometry): CaO 11.77, CuO 0.28, ZnO 1.68, Fe\(_2\)O\(_3\) 31.65, As\(_2\)O\(_5\) 48.81, H\(_2\)O (4.04), Total (98.23) wt.%. Empirical formula: \(\text{Ca}_{0.99}(\text{Fe}_{1.87}\text{Zn}_{0.10}\text{Cu}_{0.02})_2(\text{AsO}_4)_2(\text{OH})_2(\text{H}_2\text{O})_0\text{.16}\). \(\text{21.96}\). **Relationship to other species:** It is the calcium-dominant analogue of carminite, PbFe\(^{3+}\)\(_2\)(AsO\(_4\))\(_2\)(OH)\(_2\).

Name: After Terry Maxwell Seward (b. 1940), Professor of Geochemistry at the Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland. He collected the mineral and recognized it as a potentially new species.

Comments: IMA No. 2001–054.

Tedhadleyite

Hg$^{2+}$Hg$^{1+}$O$_{4}$(Cl,Br)$_{2}$

Locality: A small prospect pit near the long-abandoned Clear Creek mercury mine, New Idria district, San Benito County, California, USA (Lat. 36° 22'59"N, Long. 120° 43'58"W).

Occurrence: In a quartz-lined vug of a centimeter-size quartz vein. Associated minerals found in adjacent vugs are: native mercury, calomel, cinnabar, eglestonite and montroydite. Less than 10 µg of the mineral was available for study.

General appearance: A somewhat elongate spheroidal mass, 0.3 mm in longest dimension and as several small anhedral masses within the same vug, which is 2 × 1.5 mm.

Physical, chemical and crystallographic properties: **Luster**: adamantine to submetallic. **Diaphaneity**: opaque but translucent on thin edges. **Color**: very dark red to black. **Teneacy**: brittle. **Cleavage**: {010} poor. **Fracture**: uneven. **Density**: could not be measured, 9.27 g/cm3 (calc.). **Crystallography**: Triclinic, $\overline{A}1$, a 7.014, b 11.855, c 12.601 Å, α 115.56°, β 82.57°, γ 100.57°, V 927.7 Å3, Z = 2, $a:b:c = 0.5916:1:1.0629$. Morphology: no forms were observed. Twinning: none observed. **X-ray powder-diffraction data**: 5.281(50)(020,111), 3.143(90)(131,222), 3.005(70)(122), 2.981(50)(211), 2.885(100)(113), 2.675(90)(233), 2.508(40)(213). **Optical data**: In reflected light: bluish white, moderate anisotropism, no bireflectance, nonpleochroic. $R_{1,2}$: 1.01. $R_{4,5}$: (27.20, 30.00; 13.20, 15.40%) 470 nm, (24.40, 27.60; 10.95, 13.30%) 546 nm, (22.80, 25.40; 9.83, 11.70%) 589 nm, (21.60, 23.90; 9.24, 10.70%) 650 nm. **Chemical analytical data**: Mean of seven sets of electron-microprobe data: Hg$_{0.98}$Hg$_{1.02}$O$_{3.71}$I$_{2.21}$(Cl$_{1.57}$Br$_{0.51}$)$_{2.06}$. **Relationship to other species**: None apparent.

Name: After Ted A. Hadley (b. 1961), of Sunnyvale, California, who helped collect the samples in which the mineral was discovered. He is a past-president of the Bay Area Mineralogists and a long-time mineral collector.

Comments: IMA No. 2001–035. Note that the structure has been determined.

References: ROBERTS, A.C., COOPER, M.A., HAWTHORNE, F.C., CRIDDLE, A.J., STIRLING, J.A.R. & DUNNING, G.E. (2002): Tedhadleyite, Hg$^{2+}$Hg$^{1+}$O$_{4}$(Cl,Br)$_{2}$, a new mineral species from the Clear Creek Claim, San Benito County, California. Canadian Mineralogist 40, 909-914.
Vajdakite

\[(\text{MoO}_2)_2(\text{H}_2\text{O})_2\text{As}^{3+2}\text{O}_5\cdot\text{H}_2\text{O}\]

Locality: The Geschieber vein on the 12th level of the Svornost mine, Jáchymov (St. Joachimsthal), approximately 20 km north of Karlovy Vary, northwestern Bohemia, Czech Republic.

Occurrence: On fractures near a vein approximately 5 cm thick. Associated minerals are: pyrite, marcasite, nickelskutterudite, löllingite, arsenic, arsenolite, scorodite, parascorodite, kaňkite, annabergite and köttigite.

General appearance: Acicular to lath-shaped crystals from 0.1 to 0.5 mm.

Physical, chemical and crystallographic properties:
- **Luster**: given as vitreous but the optical data indicate adamantine.
- **Diaphaneity**: translucent.
- **Color**: gray-green to grass-green; some aggregates are yellow-green.
- **Streak**: white to light gray-green.
- **Luminescence**: nonfluorescent.
- **Hardness**: could not be measured.
- **Tenacity**: brittle.
- **Cleavage**: {100} perfect, {010} good.
- **Fracture**: even.
- **Density**: 3.50 g/cm³ (meas.), 3.44 g/cm³ (calc.).
- **Crystallography**: Monoclinic, \(P_2_1/c\), \(a = 7.0515, b = 12.0908, c = 12.2190 \, \text{Å}, \beta = 101.268°, V = 1021.7 \, \text{Å}^3, Z = 4, a:b:c = 0.5832:1:1.0106\). Morphology: {100} and {010}, habit acicular to lath-like, elongate [001] and flattened on {100}. Twinning: none observed.
- **Optical data**: Biaxial (+), \(\alpha = 1.757, \beta = 1.778, \gamma = 2.04, 2V(\text{calc.}) = 35°\); dispersion not given; pleochroism \(X \approx Y\) light gray to light greenish gray, \(Z\) yellowish gray; \(X = b, Y = a, a = 1°\) in acute angle \(\beta, Z \cap c = 12°\) in obtuse angle \(\beta\).
- **Chemical analytical data**: Mean of three sets of electron-microprobe data: As\(_2\)O\(_3\) 36.59, MoO\(_3\) 53.09, H\(_2\)O 11.34, Total 101.02 wt.%. Empirical formula: \([(\text{MoO}_2)_{1.93}(\text{H}_2\text{O})_{2.00}(\text{As}_2\text{O}_5)_{0.97}]\cdot1.30\text{H}_2\text{O}\).

Relationship to other species: It is a diarsenite. Other diarsenites are paulmooreite, gebhardtite, fetiasite, leiteite and manganarsite.

Name: After Josef Vadjak (b. 1930), of Pequa Rare Minerals, Massapequa, New York, USA, who drew attention to the species, and in recognition of his significant contributions to mineralogical research on the Jáchymov ore district.

Comments: IMA No. 1998–031. Some of the data given here are taken from the original IMA proposal. Note that the crystal structure has been solved.

Ondruš, P., Škála, R., Císařová, I., Vešelovský, F., Frýda, J. & Čejka, J. (2002): Description and crystal structure of vajdakite, \([(\text{Mo}^{6+}\text{O}_2)_{2}(\text{H}_2\text{O})_2\text{As}^{3+2}\text{O}_5]\cdot\text{H}_2\text{O} – a new mineral from Jáchymov, Czech Republic. American Mineralogist 87, 983-990.
Walkerite

\[\text{Ca}_{16}(\text{Mg},\text{Li},\square)_{2}[\text{B}_{13}\text{O}_{17}(\text{OH})_{12}]_{4}\text{Cl}_{6}\cdot28\text{H}_{2}\text{O} \]

Locality: The Potash Corporation of Saskatchewan (New Brunswick Division) mine, 5 km east of Penobsquis, Sussex area, Cardwell Parish, Kings County, New Brunswick, Canada.

Occurrence: In halite drill-core. Associated minerals are: halite, hydroboracite, hilgardite, volkovskite, boracite, szaibelyite, a mica-group mineral and anhydrite.

General appearance: Bladed crystals elongated on [001] up to 2 × 0.05 mm and bundles of fibers up to 7 mm long.

Physical, chemical and crystallographic properties:
- **Luster:** vitreous.
- **Diaphaneity:** transparent to translucent.
- **Color:** colorless to white.
- **Streak:** white.
- **Luminescence:** nonfluorescent.
- **Hardness:** approximately 3.
- **Tenacity:** brittle.
- **Cleavage:** none apparent.
- **Fracture:** splintery.
- **Density:** 2.07 g/cm³ (meas.), 2.05 g/cm³ (calc.).
- **Crystallography:** Orthorhombic, \(P\overline{ba}2_1\), \(a = 15.52, b = 22.74, c = 8.761\) Å, \(V = 309.1\) Å³, \(Z = 1\), \(a:b:c = 0.6825:1:0.3853\). Morphology: \{100\}, \{010\} and \{001\}. Twinning: none observed.
- **Optical data:** Biaxial (+), \(\alpha = 1.516, \beta = 1.532, \gamma = 1.554\), \(2V(\text{meas.}) = 82°\), \(2V(\text{calc.}) = 82°\); no dispersion; nonpleochroic; orientation, \(X = a, Y = b, Z = c\).
- **Chemical analytical data:** Mean of eighteen sets of electron-microprobe data: Li₂O 0.12, Na₂O 0.13, K₂O 0.07, MgO 0.58, CaO 23.05, FeO 0.32, B₂O₃ 47.17, H₂O 25.48, Cl 4.91, sum 101.83, less O = Cl 1.11, Total 100.72 wt.%. Empirical formula: \(\text{(Ca}_{15.60}\text{Na}_{0.16}\text{K}_{0.06})\text{Li}_{1.82}\text{Mg}_{0.55}\text{Fe}_{0.17}\text{Cl}_{21.02}\text{B}_{51.43}\text{O}_{68.00}\text{(OH)}_{0.48}\text{Cl}_{26}\text{(OH)}_{0.74}\text{H}_{2}\text{O}_{56.00}\text{H}_{2}\text{O}_{28.00}\text{H}_{2}\text{O}\).

Relationship to other species: None apparent.

Name: After Thomas Leonard Walker (1867–1942), former Assistant Superintendent of the Geological Survey of India, Professor of Mineralogy and Petrography at the University of Toronto, and first Director of the Royal Ontario Museum of Mineralogy. He established the journal *Contributions to Canadian Mineralogy*, predecessor of *The Canadian Mineralogist*. Among the minerals he studied were borates from the same formation as that in which walkerite occurs.

Comments: IMA No. 2001–051. The crystal structure has been determined.

The Berdyashsky pluton of ovoid granites: its composition and geodynamic setting

D.A. VELIKOSLAVINSKY & S.D. VELIKOSLAVINSKY

The isotopic composition of Nd and Sr in the Urals granites as evidence for mantle–crust interaction

V.S. POPOV, A.V. TEVELEV, B.V. BELYATSKY, V.I. BOGATOV, A.YU. PETROVA, D.Z. ZHURAVLEV & T.A. OSIPOVA

The typomorphism of minerals and geologic–geometric models on endogenous ore deposits

I.I. KUPRIYANOVA, V.V. GAVRILENKO & E.G. PANAVA

New Minerals

Kukharenkoite-(La), Ba2(La,Ce)(CO3)3F, a new mineral from the Khibina massif, Kola Peninsula

I.V. PEKOV, N.V. CHUKANOV, N.N. KONONKOVA, A.E. ZADOV & S.V. KRIVOVICHEV

Mineralogical Crystallography

Cation frameworks in the structure of natural fluorcarbonates of barium and rare-earth elements: crystal structure of kukharenkoite-(La), Ba2(La,Ce)(CO3)3F

S.V. KRIVOVICHEV, T. ARMBRUSTER & I.V. PEKOV

Umohoite: new data on its mineralogy and crystal chemistry

Determination of kinetic parameters of growth of a diamond crystal by its inner morphology

A.I. GLAZOV & N.V. EZHAK

History of the Science

Ignacy Domeyko (1802–1889) – 200th anniversary of his birth

W. NAREMBSKI & Z. WÓYCIK

Minerals and Mineral Parageneses

Minerals of platinum-group metals from placer gold in the Adyan Kelyansky Creek (the middle Vitim River basin) and their possible primary source

D.A. ORSOEV, A.G. MIKONOV & N.S. KARMANOV

Bartonite from the Lovozero massif (Kola Peninsula)

I.V. PEKOV, D.K. SHICHERBACHEV, D.K. & N.N. KONONKOVA

Kosmochlor (NaCrSi2O6) from coastal sediments of the Tersky coast in the White sea, Kola Peninsula

D.R. ZOZULYA, B.V. GAVRILENKO & Y.E. SAVCHENKO

Variations in composition of tourmaline from the Berezovsky gold ore deposit, the Middle Urals

O.E. KUDRYAVTSEVA & I.A. BAKSHEEV

Potassio-pargasite from the Ilmenogorsky complex (southern Urals) – the first find in Russia

P.M. VALIZER, E.V. MEDEVDEVA, S.N. NIKANDROV & YU.S. KOBYASHEV

Plagioclase in the Urals emerald mines

Yu.L. MEIKSINA & M.D. EVDOKIMOV

Discussions, Criticism, Bibliography

About the book of L.K. Yakhontova and V.P. Zvereva “Fundamentals of Supergene Mineralogy”

M.I. NOVGORODOVA

Chronicles

The first Russian workshop on organic mineralogy

N.V. PLATONOVA, E.N. KOTEL’NIKOVA & S.K. FILATOV

* ЗАПИСКИ ВСЕРОССИЙСКОГО МИНЕРАЛОГИЧЕСКОГО ОБЩЕСТВА

From the Geological Society Publishing House

Special Publication 209: Fracture and In-Situ Stress Characterization of Hydrocarbon Reservoirs
Edited by M. S. Ameen

This publication introduces the newly developed, integrated discipline of fracture and in-situ stress characterization of hydrocarbon reservoirs, through 16 well-illustrated case studies. These cover a wide range of tools, from borehole scale (logs and cores) to reservoir scale (3D and 4D seismic). It also covers surface studies (outcrop and remote sensing). In addition, it addresses the impact of fractures and in-situ stresses on fluid flows and their simulation.

This book will be of interest to a broad range of readers from both academic and industrial institutes, who are researching and dealing with hydrocarbon reservoir characterization, simulation and management.

Special Publication 204: The Timing and Location of Major Ore Deposits in an Evolving Orogen
Edited by D. J. Blundell, F. Neubauer and A. von Quadt

As an outcome of the European Science Foundation scientific programme, GEODE, on geodynamics and ore deposit evolution, this book examines the underlying geodynamic processes that lead to the formation of ore deposits in order to discover what controls the timing and location of major ore deposits in an evolving orogen.

A collection of 19 research papers examines various aspects of ore genesis in the context of the geodynamic processes occurring within an evolving orogen. Although the majority of papers relate to Europe, their findings have a global significance for metallogenesis.

Industrial Minerals and Extractive Industry Geology
Edited by P. W. Scott and C. M. Bristow

Industrial minerals, including construction raw materials, provide the bulk of the solid minerals required by most developed countries, both in tonnage and value. In other countries, the discovery and extraction of industrial minerals is an essential stage in economic development. This book contains a comprehensive coverage of the subjects that occupy professional geoscientists working in industrial minerals and the extractive industry. It includes descriptions of the geology of many deposits, country and regional reviews of industrial minerals, mineral economics, case histories of extraction, techniques for exploration and evaluation, examples of quarry and pit design, risk management, minerals planning/permitting and legislation, the environmental impact of mineral extraction, and mine waste and by-product utilization.

Postal: UK: £3.00 per order Europe: +15% (£7.50 minimum) Rest of world: +15% (£10.00 minimum). This applies to all books advertised on this page.

Please post or fax your order to: Geological Society Publishing House, Unit 7 Brassmill Enterprise Centre, Brassmill Lane, Bath BA1 3JN, UK Fax: +44 (0)1225 442836
Enquiries: Tel: +44(0)1225 445046 Email: sales@geolsoc.org.uk

For full details see the Online Bookshop: http://bookshop.geolsoc.org.uk
A new online service from the
Mineralogical Society of Great Britain & Ireland

Goes live from January 2004

Free test version available until the end of 2003. See www.minabs.com or
go to www.minersoc.org and follow the links

This e-journal is edited by Prof. R.A. Howie and Dr J.G. MacDonald

The service provides a vital low-cost data source and research tool for accessing
mineralogical, crystallographic and petrological data as well as providing entry to
a host of geochemical and environmental literature. The service via CrossRef links
you electronically to many full-text scientific papers. The service will initially
comprise a vast database of abstracts going back as far as 1982 and will be
updated with the abstracts of new papers as soon as they become available to our
team of abstractors.

Forget expensive catch-all abstracting services and use this dedicated service
aimed at both academic researchers and other professional practitioners working
in the Mineral Sciences*. Founded on over 70 years of experience in providing key
data to the science.
*Covering the fields of mineralogy, crystallography, petrology, geochemistry and
environmental geology amongst others.

ADVANTAGES
• All major journals and many less accessible journals abstracted
• Abstracts include key data from papers (not always included by authors)
• Includes books notices, abstracts from books and special publications
• Abstracts included date back to 1982
• Linked to CrossRef (providing onward links to full-text papers)
• Access is quick and easy to set up
• Intuitive user interface and search mechanism
• Ability to download “hits” in a format which suits you

SUBSCRIBE NOW
Subscribe now and get access as soon as the journal goes on-line. All
Mineralogical Society Members will gain access free of charge.

ORDER NOW
Contact us at E-mail: info@minersoc.org
NOW AVAILABLE
Special Publication 6
Mineral Species
Discovered in Canada
and Species Named after
Canadians
by László Horváth

This annotated and illustrated compendium focuses on the 206 mineral species discovered in Canada or redefined from Canadian localities in the last 222 years. It also highlights 30 minerals named after Canadians but discovered outside Canada, and includes a section on obsolete names of mineral species first described from Canadian localities.

The book also gives a brief historical overview of works documenting mineralogy in Canada from its beginnings in 1752 to the present. Appendices providing the chronology of mineral discoveries, individual type-localities, type-mineral specimens and their repositories, chemical classification of type minerals, an author index, and general references complete the book.

SP-6, hardcover, 23.5 x 17 cm, 382 pages
plus a 16-page colour insert, 2003
US$45 (outside Canada) CDN$45 (in Canada)
(Member Price US$36/CAN$36)

Please send____copy(ies) of Mineral Species Discovered in Canada $45* each

* $ CDN in Canada. Other countries $US.
-20% discount for members

Total

Method of payment

Prices include shipping by surface mail and handling

☐ Cheque ☐ Money order ☐ Credit card

I authorize the Mineralogical Association of Canada to charge the TOTAL AMOUNT DUE to my: ☐ Visa ☐ MasterCard ☐ EuroCard

<table>
<thead>
<tr>
<th>Number</th>
<th>/</th>
<th>/</th>
<th>Expiry Date</th>
<th>/</th>
<th>/</th>
<th>Membership #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>/</td>
<td>/</td>
<td>Total $</td>
<td></td>
<td></td>
<td>Signature</td>
</tr>
<tr>
<td>Name</td>
<td></td>
<td></td>
<td>Institution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>City</td>
<td></td>
<td></td>
<td>Prov./State</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postal/Zip Code</td>
<td>Tel. ()</td>
<td>Fax ()</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-mail</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ORDER ONLINE www.mineralogicalassociation.ca
Synchrotron Radiation Earth, Environmental and Materials Sciences Applications

Editors Grant S. Henderson and Don R. Baker

This short-course volume presents what synchrotron radiation is, what the latest techniques are, what types of Earth, environmental and materials science problems can be investigated using synchrotron techniques, what the Canadian Light Source can do, how one gains access to the CLS and other sources, and how data is reduced and analyzed for specific techniques.

Most of the material will be at a level of understanding for most upper undergraduate and graduate students although recent results and ideas presented throughout the lectures will appeal to both pure and applied researchers working on Earth, environmental and materials sciences.

Table of contents

Synchrotron Radiation: An Overview T.K. Sham
The Canadian Light Source: Progress, and Opportunities for Earth, Environmental and Materials Science Applications G.M. Bancroft and E.L. Hallin
Powder and Single Crystal Diffraction Using Synchrotron Radiation J.S. Tse
X-Ray Absorption Fine Structure Spectroscopy De-Tong Jiang
The Hard X-ray Microprobe D.R. Baker
Interpretation of X-Ray Photoelectron Spectra with Applications to Mineralogy and Geochemistry H.W. Nesbitt
The Application of Synchrotron Radiation to Amorphous Materials G.S. Henderson

2002, 178 pages
ISBN 0-921294-30-1
Only US$40 (outside Canada) CAN$40 (in Canada)

Please send ______ copy(ies) of Short-Course Volume 30 at $40* each

* $ CDN in Canada. Other countries $US.

-20% discount for members

Total

Method of payment

Cheque Money order Credit card

I authorize the Mineralogical Association of Canada to charge the TOTAL AMOUNT DUE to my: Visa MasterCard EuroCard

Number / / / / Expiry Date / / Membership #

Date / / Total $ Signature

Name Institution

Address

City Prov./State Country

Postal/Zip Code Tel. () Fax ()

E-mail

ORDER ONLINE www.mineralogicalassociation.ca
ORDER YOUR COPY NOW

Short-Course Volume 31
Environmental Aspects of Mine Wastes
Editors: J.L. Jambar, D.W. Blowes and A.I.M. Ritchie

Covers a wide spectrum of environmental issues dealing with mine-waste solids and effluents: mine-waste geology, hydrology, mineralogy, geochemistry, microbiology, drainage prediction, remediation, advances in ARD modeling, and case studies. The volume provides entry-level familiarization with the various topics of primary concern in studies of mining-related wastes, but also highlights the advances that have been made in these and related fields over the past decade.

SC31, 436 pages, 2003
US$50 (outside Canada) CDNS50 (in Canada)
(Member Price US$40/CANS40)

Please send ________ copy(ies) of Environmental Aspects of Mine Wastes, $50 each

* CDN$ in Canada. Other countries US$.

-20% discount for members

Total

Method of payment

Prices include shipping by surface mail and handling

☐ Cheque ☐ Money order ☐ Credit card

I authorize the Mineralogical Association of Canada to charge the TOTAL AMOUNT DUE to my: ☐ Visa ☐ MasterCard ☐ EuroCard

<table>
<thead>
<tr>
<th>Number</th>
<th>/</th>
<th>/</th>
<th>Expiry Date</th>
<th>/</th>
<th>Membership #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>/</td>
<td>/</td>
<td>Total $</td>
<td>Signature</td>
<td></td>
</tr>
</tbody>
</table>

Name

Institution

Address

City

Prov./State

Country

Postal/Zip Code

Tel. ()

Fax ()

E-mail

ORDER ONLINE www.mineralogicalassociation.ca
ORDER YOUR COPY NOW

Short-Course Volume 32

Fluid Inclusions: Analysis and Interpretation

Editors: Iain Samson, Alan Anderson and Dan Marshall

COVERS all the basic and many advanced aspects of the analysis and interpretation of fluid inclusions:

• what information and data can be obtained from fluid inclusions
• what approaches and techniques can be used to analyze them
• how data are processed and interpreted
• where the limitations and pitfalls of the various techniques lie.

The accompanying CD-ROM includes fluid inclusion modelling software and figures from the short-course volume.

ISBN 0-921294-32-8
SC32, approx. 300 pages, 2003
US$45 (outside Canada) CD$45 (in Canada)
(Member Price US$36/CAN$36)

Please send___ copy(ies) of Fluid Inclusions: Analysis and Interpretation, $45* each
CD$ in Canada. Other countries $.
-20% discount for members

Method of payment

Prices include shipping by surface mail and handling

☐ Cheque ☐ Money order ☐ Credit card

I authorize the Mineralogical Association of Canada to charge the TOTAL AMOUNT DUE to my: ☐ Visa ☐ MasterCard ☐ EuroCard

Number / / / / / Expiry Date / / Membership # /

Date / / Total $ Signature

Name__________________________

Address__________________________

City_________________Prov./State_________Country

Postal/Zip Code__________________________Tel. () Fax ()

E-mail__________________________

ORDER ONLINE www.mineralogicalassociation.ca
Mineralogical Association of Canada

Publication Order Form 2004

You can send your order by mail, fax or e-mail. You can also order online. Please read the following instructions carefully.

Prices

The prices quoted are in Canadian dollars for orders shipped within Canada and in US dollars for orders shipped in the USA and overseas. This difference in price allows us to cover the extra costs of shipping international orders by surface mail. Postage and handling charges are included.

Shipping Options Available

All orders will be shipped by surface mail unless requested otherwise.
Airmail shipping available at an additional cost of $10 for up to 1 kg plus $10 for each additional kg of weight.
Courier shipping available with customers account

Customer account number ____________________________
Name of courier ____________________________

A. The Canadian Mineralogist Thematic Issues

<table>
<thead>
<tr>
<th>Title</th>
<th>Qty</th>
<th>Price</th>
<th>Member</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>TI 40-2 The Cabri Issue</td>
<td>1</td>
<td>$40</td>
<td>$32.00</td>
<td></td>
</tr>
<tr>
<td>TI 39-2 Phase Equilibria in Basaltic Systems & Ore-forming Processes...</td>
<td>1</td>
<td>$38</td>
<td>$30.40</td>
<td></td>
</tr>
<tr>
<td>TI 38-2 Tectonometamorphic Studies in the Canadian Shield – Part II</td>
<td>1</td>
<td>$38</td>
<td>$30.40</td>
<td></td>
</tr>
<tr>
<td>TI 37-2 Mineral Scale Processes in Met. Pet.: The Kretz Volume</td>
<td>1</td>
<td>$38</td>
<td>$30.40</td>
<td></td>
</tr>
<tr>
<td>TI 36-6 XRD and Electron-Microscopy Investigations of Layer Silicates</td>
<td>1</td>
<td>$38</td>
<td>$30.40</td>
<td></td>
</tr>
<tr>
<td>TI 36-2 Granitic Pegmatites: The Cerron-Virdo Volume</td>
<td>1</td>
<td>$38</td>
<td>$30.40</td>
<td></td>
</tr>
<tr>
<td>TI 35-2 Tectonometamorphic Studies in the Canadian Shield – Part I</td>
<td>1</td>
<td>$38</td>
<td>$30.40</td>
<td></td>
</tr>
<tr>
<td>TI 35-1 Nature and Origin of Primitive Magmas...</td>
<td>1</td>
<td>$38</td>
<td>$30.40</td>
<td></td>
</tr>
<tr>
<td>TI 34-2 Alkaline Rocks: Petrology and Mineralogy</td>
<td>1</td>
<td>$38</td>
<td>$30.40</td>
<td></td>
</tr>
<tr>
<td>TI 33-2 Microbeam Techniques in the Earth Sciences</td>
<td>1</td>
<td>$38</td>
<td>$30.40</td>
<td></td>
</tr>
<tr>
<td>TI 30-3 Granitic Pegmatites</td>
<td>1</td>
<td>$38</td>
<td>$30.40</td>
<td></td>
</tr>
<tr>
<td>TI 29-4 Quantitative Methods in Petrology</td>
<td>1</td>
<td>$38</td>
<td>$30.40</td>
<td></td>
</tr>
<tr>
<td>TI 28-3 Advances in the Study of Platinum-Group Elements</td>
<td>1</td>
<td>$38</td>
<td>$30.40</td>
<td></td>
</tr>
<tr>
<td>TI 26-3 Sea-floor Hydrothermal Mineralization</td>
<td>1</td>
<td>$32</td>
<td>$25.60</td>
<td></td>
</tr>
<tr>
<td>TI 22-1 Ore Deposits and Related Petrology of Mafic - Ultramafic Suites</td>
<td>1</td>
<td>$11</td>
<td>$8.80</td>
<td></td>
</tr>
<tr>
<td>TI 21-2 Crystal Chemistry of Amphiboles</td>
<td>1</td>
<td>$11</td>
<td>$8.80</td>
<td></td>
</tr>
<tr>
<td>TI 20-3 High-Grade Metamorphism</td>
<td>1</td>
<td>$9</td>
<td>$7.20</td>
<td></td>
</tr>
</tbody>
</table>

Total A $ ____________

B. Special Publications Series

<table>
<thead>
<tr>
<th>Title</th>
<th>Qty</th>
<th>Price</th>
<th>Member</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP-6 Mineral Species Discovered in Canada by Ludio Horváth</td>
<td>1</td>
<td>$45</td>
<td>$36</td>
<td></td>
</tr>
<tr>
<td>SP-5 The Health Effects of Chrysotile Asbestos, R.P. Nolan et al.(ed.)</td>
<td>1</td>
<td>$38</td>
<td>$30.40</td>
<td></td>
</tr>
<tr>
<td>SP-4 New Minerals, 1995-1999, J.A. Mandarino</td>
<td>1</td>
<td>$22</td>
<td>$17.60</td>
<td></td>
</tr>
<tr>
<td>SP-3 Atlas of Micromorphology of mineral alterations and Weathering, J. Delvigne US</td>
<td>1</td>
<td>$125</td>
<td>$100</td>
<td></td>
</tr>
<tr>
<td>SP-2 Glossary of Mineral Synonyms, J. de Fourestier</td>
<td>1</td>
<td>$50</td>
<td>$40</td>
<td></td>
</tr>
<tr>
<td>SP-1 Encyclopedia of Mineral Names, W.H. Blackburn & W.H. Dennen</td>
<td>1</td>
<td>$40</td>
<td>$32</td>
<td></td>
</tr>
</tbody>
</table>

The Nomenclature of Minerals: A Compilation of IMA Reports | 1 | $15 | $12 |

Total B $ ____________

C. Short-Course Volumes

<table>
<thead>
<tr>
<th>Title</th>
<th>Qty</th>
<th>Price</th>
<th>Member</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC 32 Fluid Inclusions, L. Samson et al. (eds.)</td>
<td>1</td>
<td>$45</td>
<td>$36.00</td>
<td></td>
</tr>
<tr>
<td>SC 31 Environmental Aspects of Mine Wastes, J.L. Isambor (ed.)</td>
<td>1</td>
<td>$50</td>
<td>$40.00</td>
<td></td>
</tr>
<tr>
<td>SC 30 Synchrotron Radiation, G.S. Henderson & D.R. Baker (eds.)</td>
<td>1</td>
<td>$40</td>
<td>$32.00</td>
<td></td>
</tr>
<tr>
<td>SC 29 Laser Ablation-ICPMS in the Earth Sciences, P. Sylvester (ed.)</td>
<td>1</td>
<td>$38</td>
<td>$30.40</td>
<td></td>
</tr>
<tr>
<td>SC 28 Fluids and Basin Evolution, K. Kyser (ed.)</td>
<td>1</td>
<td>$38</td>
<td>$30.40</td>
<td></td>
</tr>
<tr>
<td>SC 27 Ore and Environmental Mineralogy, J.J. Cabri & D.J. Vaughan (eds.)</td>
<td>1</td>
<td>$38</td>
<td>$30.40</td>
<td></td>
</tr>
<tr>
<td>SC 26 Mineralized Intrusion-related Skarn Systems..., D.R. Lentz (ed.)</td>
<td>1</td>
<td>$48</td>
<td>$38.40</td>
<td></td>
</tr>
<tr>
<td>SC 25 Biological-Mineralogical Interactions, J.M. McIntosh & L.A. Groat (eds.)</td>
<td>1</td>
<td>$38</td>
<td>$30.40</td>
<td></td>
</tr>
<tr>
<td>SC 24 Undersaturated Alkaline Rocks..., R.H. Mitchel (ed.)</td>
<td>1</td>
<td>$38</td>
<td>$30.40</td>
<td></td>
</tr>
<tr>
<td>SC 23 Experiments at High Pressure and Applications...,</td>
<td>1</td>
<td>$27</td>
<td>$21.60</td>
<td></td>
</tr>
<tr>
<td>SC 22 Low Temperature Thermochemistry...</td>
<td>1</td>
<td>$27</td>
<td>$21.60</td>
<td></td>
</tr>
<tr>
<td>SC 21 Applications of Radiogenic Isotope Systems...</td>
<td>1</td>
<td>$27</td>
<td>$21.60</td>
<td></td>
</tr>
<tr>
<td>SC 20 Fluids in Tectonically Active Regimes of the Continental Crust</td>
<td>1</td>
<td>$27</td>
<td>$21.60</td>
<td></td>
</tr>
<tr>
<td>SC 19 Image Analysis Applied...</td>
<td>1</td>
<td>$16</td>
<td>$12.80</td>
<td></td>
</tr>
<tr>
<td>SC 18 Heat, Metamorphism and Tectonics</td>
<td>1</td>
<td>$22</td>
<td>$17.60</td>
<td></td>
</tr>
<tr>
<td>SC 17 Stable Isotope Geochemistry of Low Temperature Fluids</td>
<td>1</td>
<td>$22</td>
<td>$17.60</td>
<td></td>
</tr>
<tr>
<td>SC 16 Silicate Melts</td>
<td>1</td>
<td>$16</td>
<td>$12.80</td>
<td></td>
</tr>
<tr>
<td>SC 15 Applications of Electron Microscopy in the Earth Sciences</td>
<td>1</td>
<td>$16</td>
<td>$12.80</td>
<td></td>
</tr>
<tr>
<td>SC 9 Sediment-Hosted Stratabound Lead-Zinc Deposits</td>
<td>1</td>
<td>$16</td>
<td>$12.80</td>
<td></td>
</tr>
<tr>
<td>SC 5 Neutron Activation Analysis in the Geosciences</td>
<td>1</td>
<td>$16</td>
<td>$12.80</td>
<td></td>
</tr>
<tr>
<td>SC 4 Mineralogical Techniques of Asbestos Determination</td>
<td>1</td>
<td>$11</td>
<td>$8.80</td>
<td></td>
</tr>
<tr>
<td>SC 2 Application of Thermodynamics to Petrology and Ore Deposits</td>
<td>1</td>
<td>$11</td>
<td>$8.80</td>
<td></td>
</tr>
</tbody>
</table>

Total C $ ____________

Complete shipping information at back.

Total A Thematic Issues
Total B Special Publications Series
Total C Short-Course Volumes

PUBLICATIONS – GRAND TOTAL $ ____________
Mineralogical Association of Canada
Membership Application or Renewal Form 2004

MEMBERSHIP

- Ordinary membership $90
- Student membership* $30
- Retired membership $30
- Life membership $1,800

Canada: CAN$ funds;
Outside Canada: US$ funds or equivalent
Includes printed version and electronic access

INSTITUTIONAL MEMBERSHIP corp./libraries

- Printed version and site-license electronic access $390

Canada: CAN$ funds;
Outside Canada: US$ funds or equivalent

Membership dues 2004

Back dues for year(s) _______ (at current annual rate)

Abstracts CD-ROM
volume GAC-MAC ($10)

I enclose a donation to the
MAC Foundation
(Official receipt will be issued)

PUBLICATIONS – Grand total

TOTAL

If you do not wish to receive the printed
version of the journal, check here

A password is needed to access the online version.
Passwords issued in 2003 will be automatically
renewed when your renewal is processed.

To request a password, send an email message to
mac.amc1@sympatico.ca

* Student status certified by:

Name __

Department ______________________________________

Signature _______________________________________

Membership fee includes:
- Six issues of The Canadian Mineralogist, including a timely thematic issue.
- Free electronic access to The Canadian Mineralogist.
- Three Newsletters a year.
- 20% discount on our short-course volumes and special publications.
- Special discount on registration fee at our annual meeting, held jointly with the Geological Association of Canada.

Renewal membership # _______

New application

PLEASE COMPLETE INFORMATION

Name (first name – initials – surname)

Institution/Company

Mail/Address

City

Prov./State Country Postal code

Telephone Fax

E-mail

METHOD OF PAYMENT

Mail or fax to (613) 226-4651
Canadian funds for Canadian orders, US funds for non-Canadian orders.

- Cheque
- Money order
- Credit card

For payment by bank draft, contact the business office.

CREDIT CARD: All credit card charges will be in Canadian
(or Canadian equivalent) funds.

I authorize the Mineralogical Association of Canada to charge
the TOTAL AMOUNT DUE __________________

to my: VISA MasterCard EuroCard

Number ___________________________ Expiry Date ______/______

Name _______________________________________

Signature ____________________________________

Payable to: Mineralogical Association of Canada
Postal Box Number 78087,
Merivale Postal Outlet,
1460 Merivale Road, Ottawa, Ontario,
CANADA K2E 1B1
E-mail: canmin.mac.ottawa@sympatico.ca
Phone and fax : (613) 226-4651

Order online: www.mineralogicalassociation.ca