The Canadian Mineralogist Vol. 41, pp. 1455-1462 (2003)

CRYSTAL CHEMISTRY OF URANYL MOLYBDATES. X. THE CRYSTAL STRUCTURE OF Ag₁₀[(UO₂)₈O₈(Mo₅O₂₀)]

SERGEY V. KRIVOVICHEV§ AND PETER C. BURNS

Department of Civil Engineering and Geological Sciences, University of Notre Dame, Notre Dame, Indiana 46556–0767, U.S.A.

Abstract

Crystals of a new silver uranyl molybdate, $Ag_{10}[(UO_2)_8O_8(Mo_5O_{20})]$, have been synthesized by high-temperature solid-state reaction. The structure [monoclinic, *C2/c*, *a* 24.672(2), *b* 23.401(2), *c* 6.7932(4) Å, β 94.985(2)°, *V* 3907.3(4) Å³, *Z* = 4] was solved by direct methods and refined to *R*1 = 0.049 (*wR*2 = 0.101) on the basis of 4317 unique observed reflections using a crystal twinned on (001). The twinning causes overlap of the reflections with *l* = 3*n*. The structure is based upon complex double sheets of *UrO*₅ pentagonal bipyramids and Mo polyhedra. The double sheets are parallel to (100) and consist of two [(UO₂)₂O₂(MoO₅)] sheets of *UrO*₅ bipyramids and MoO₆ octahedra. Within the [(UO₂)₂O₂(MoO₅)] sheets, *UrO*₅ bipyramids share edges to produce complex chains parallel to the *c* axis and linked *via* pairs of edge-sharing MoO₆ octahedra. The two [(UO₂)₂O₂(MoO₅)] sheets are linked into double [(UO₂)₈O₈(Mo₅O₂₀)] sheets *via* the Mo(3)O₄ tetrahedron located between the sheets. The MoO₄ tetrahedra share two corners with two MoO₆ octahedra of the sheet above and two corners with MoO₆ octahedra from the sheet below, so that Mo₅O₂₀ pentanuclear clusters are formed. The uranyl molybdate sheets found in the structure have not been previously observed in uranyl minerals and inorganic compounds. The Ag(2), Ag(3), Ag(6), Ag(7), and Ag(8) atoms are located within the double sheets, whereas the Ag(1), Ag(4), and Ag(5) are in between the double sheets.

Keywords: uranyl molybdate, crystal structure, silver.

Sommaire

Nous avons synthétisé des cristaux d'un nouveau molybdate uranylé d'argent, $Ag_{10}[(UO_2)_8O_8(Mo_5O_{20})]$, par réaction à l'état solide à température élevée. La structure [monoclinique, C2/c, a 24.672(2), b 23.401(2), c 6.7932(4) Å, β 94.985(2)°, V 3907.3(4) Å³, Z = 4] a été résolue par méthodes directes et affinée jusqu'à un résidu R1 de 0.049 (wR2 = 0.101) en utilisant 4317 réflexions uniques observées sur un cristal maclé selon (001). Les macles causent une surimposition de réflexions ayant l = 3n. La structure contient des feuillets doubles complexes de bipyramides pentagonales UrO_5 et de polyèdres contenant le Mo. Les feuillets doubles sont parallèles à (100) et sont faits de deux feuillets [(UO_2)₂ O_2 (MOO₅)] contenant des bipyramides UrO_5 et les octaèdres MOO₆. Dans ces feuillets les bipyramides UrO_5 partagent des arêtes pour former des chaînes complexes parallèles à l'axe c qui sont interliées par des paires d'ocatèdres partageant une arête. Les deux feuillets [(UO_2)₂ O_2 (MOO₅)] sont agencés en feuillets doubles [(UO_2)₈ $O_8(Mo_5O_{20})$] par un tétraèdre Mo(3)O₄ situé entre les feuillets. Ces tétraèdres MoO₄ partagent deux coins avec les octaèdres MoO₆ du feuillet supérieur et deux coins avec les octaèdres MoO₆ du feuillet supérieur et deux coins avec les octaèdres MoO₆ du feuillet supérieur et deux coins avec les octaèdres MoO₆ du feuillet supérieur et deux coins avec les octaèdres MoO₆ du feuillet supérieur deux coins avec les octaèdres MoO₆ du feuillet supérieur deux coins avec les octaèdres MoO₆ du feuillet supérieur et deux coins avec les octaèdres MoO₆ du feuillet inférieur, de sorte qu'il en résulte des groupements pentanucléaires de composition Mo₅ O_{20} . De tels feuillets de molybdate uranylé n' avaient pas été signalés dans la nature ou les produits de synthèse. Les atomes Ag(2), Ag(3), Ag(6), Ag(7), et Ag(8) sont situés au sein des feuillets doubles, tandis que Ag(1), Ag(4), et Ag(5) sont situés dans l'interf

(Traduit par la Rédaction)

Mots-clés: molybdate uranylé, structure cristalline, argent.

INTRODUCTION

Uranyl molybdates of monovalent cations show remarkable structural variability. Recently, Krivovichev & Burns (2002a) reported the synthesis and crystal structure of the first silver uranyl molybdate, Ag₆ [(UO_2)₃O(MOO_4)₅]: that compound is based upon a unique sheet consisting of triuranyl clusters $(UO_2)_3O$ and MoO₄ tetrahedra. Compared to known alkali metal, ammonium and thallium uranyl molybdates (Krivovichev & Burns 2001a, b, 2002b, c, d, 2003a, b, Krivovichev *et al.* 2002a, b, 2003, Obbade *et al.* 2003a, and references therein), the structure of Ag₆[(UO₂)₃ $O(MOO_4)_5$] is quite unusual as a consequence of the

[§] Permanent address: Department of Crystallography, St. Petersburg State University, University Emb. 7/9, RU-199034 St. Petersburg, Russia. E-mail address: skrivovi@mail.ru

small size of the Ag⁺ cation and features of its electronic configuration. Together with crystals of $Ag_6[(UO_2)_3$ $O(MOO_4)_5]$, we synthesized several crystals of another silver uranyl molybdate, $Ag_{10}[(UO_2)_8O_8(Mo_5O_{20})]$, the structure of which we report here. Its novel structure provides new important insights into crystal chemistry of uranyl molybdates and uranyl compounds in general.

EXPERIMENTAL

Synthesis

Crystals of $Ag_{10}[(UO_2)_8O_8(Mo_5O_{20})]$ were obtained by loading $AgNO_3$ (0.068 g), MoO_3 (0.058 g) and UO_3 (0.057 g) into a platinum crucible. The mixture was heated at 650°C for 5 h in air, followed by cooling to 300°C over 50 h and then to 50°C over 10 h. The product consisted of orange tabular transparent crystals of $Ag_6[(UO_2)_3O(MoO_4)_5]$ with several dark red plates of $Ag_{10}[(UO_2)_8O_8(Mo_5O_{20})]$.

X-ray data collection

A small crystal of $Ag_{10}[(UO_2)_8O_8(Mo_5O_{20})]$ was mounted on a Bruker three-circle diffractometer equipped with a SMART APEX CCD (charge-coupled device) detector with a crystal-to-detector distance of 4.67 cm. More than a hemisphere of data was collected using monochromated MoK α X-radiation and framewidths of 0.3° in ω . The unit-cell dimensions (Table 1) were refined using least-squares techniques. The threedimensional data were reduced and filtered for statistical outliers using the Bruker program SAINT. The data were corrected for Lorentz, polarization and background effects. An empirical absorption-correction was done for the crystal by modeling it as an ellipsoid, which lowered R_{int} from 9.6 to 4.4%. Additional information pertinent to the data collection is given in Table 1.

Structure solutions and refinements

Scattering curves for neutral atoms, together with anomalous-dispersion corrections, were taken from International Tables for X-Ray Crystallography, Vol. IV

TABLE 1. CRYSTALLOGRAPHIC DATA AND REFINEMENT PARAMETERS FOR Ag₁₀[(UO₂)₈O₈(Mo₅O₂₀)]

a (Å)	24.672(2)	D _{cale} (g/cm ³)	7.08
b (Å)	23.401(2)	Crystal size (mm)	0.10 x 0.04 x 0.02
c (Å)	6.7932(4)	Radiation	ΜοΚα
β (°)	94.985(2)	Total Ref.	21613
$V(Å^3)$	3907.3(4)	Unique Ref.	8009
Space group	C2/c	Unique $ F_0 \ge 4\sigma_F$	4317
F ₀₀₀	7072	R	0.049
Z	4	wR_2	0.101
μ (cm ⁻¹)	395.60	S	0.863

$$\begin{split} & \mu(\operatorname{cm}) \\ Note: \ R1 = \Sigma \|F_0\| - |F_c| |\nabla E|_{\mathcal{B}_1} | , \ wR2 = \Sigma [w(F_o^2 - F_c^2)^2] \Sigma [w(F_o^2)^2] \}^{1/2}, \\ & w = 1/[\sigma^2(F_o^2) + (aP)^2 + bP] \ where \ P = (F_o^2 + 2F_c^2)^2 (s = \{\Sigma [w(F_o^2 - F_c^2)] (n-p)\}^{1/2} \\ & where \ n \ is \ the \ number \ of \ reflections \ and \ p \ is \ the \ number \ of \ refined \ parameters. \end{split}$$

(Ibers & Hamilton 1974). The Bruker SHELXTL Version 5 system of programs was used for the determination and refinement of the structure. Initial attempts to solve the structure in the monoclinic system space. group C2/c, were unsuccessful. The positions of U and Mo atoms were located by direct methods, but large residual electron-density peaks were invariably present around the positions of the heavy cation. Lowering the symmetry to space group C1 did not improve the situation. We concluded that the crystals are twinned on (001), and inspection of the reciprocal space showed that reflections with l = 3n overlap (Fig. 1). This twinning can be described as being pseudo-merohedral, with the l = 3n reflections overlapped. Such twinning cannot be taken into account by simple application of the TWIN instruction in the current or previous versions of the SHELXTL system of programs. Thus, reflections with l = 3n and $l \neq 3n$ were placed in separate datasets. The structure was easily solved in the space group C2/c using only reflections with $l \neq 3n$. The structure was refined to R1 = 0.047 on the basis of 2878 unique observed reflections with $l \neq 3n$. The largest peak on the difference Fourier map was 4.80 e-. The model was further refined using all reflections to R1 of 0.056 on the basis of 4317 unique observed reflections. This model resulted in nine large peaks $(5.0-12.5 e^{-})$ in the difference-Fourier maps, close to the positions of the U, Mo and Ag atoms. The scale factors for the datasets with l =3n and $l \neq 3n$ were subsequently refined, and all data were adjusted to the same scale factor by multiplying F_{hkl}^2 by 0.8354 for the reflections with l = 3n, *i.e.*, reflections for which overlap in the reciprocal space has been observed (Fig. 1). The modified dataset was used in the final refinement that included the positional parameters of all atoms with an allowance for anisotropic displacement of cations, and a weighting scheme of the structure factors.

The refinement of anisotropic parameters of anions resulted in physically unrealistic parameters for some of the O atoms, most likely due to the effects of twinning: the reciprocal lattices of the two twin components do not completely overlap in reciprocal space, and their separation cannot be achieved perfectly. On the basis of the structure refinement, the chemical formula of the compound was determined to be Ag₁₀[(UO₂)₈O₈ (Mo₅O₂₀)]. The final refinement converged to an agreement index (R1) of 0.049, calculated for the 4317 unique observed reflections ($F_0 > 4\sigma_{F_0}$), with a goodness-of-fit (S) of 0.863. In the final refinement, the largest residue in the difference-Fourier map was 2.3 e⁻. Final positional and displacement parameters of the atoms, and selected interatomic distances, are reported in Tables 2 and 3, respectively. Observed and calculated structurefactors for each compound are available from the Depository of Unpublished Data, CISTI, National Research Council, Ottawa, Ontario K1A 0S2, Canada.

RESULTS

Cation polyhedra

There are four symmetrically independent U⁶⁺ cations in the structure, each of which is strongly bonded to two O atoms, forming approximately linear uranyl ions with U–O_{Ur} bond lengths of ~1.8 Å. Uranyl ions are coordinated by five anions arranged at the vertices of UrO₅ pentagonal bipyramids. It is interesting that some of the U⁶⁺–O bonds in the uranyl ions are essentially longer than 1.8 Å. This can be explained as a result of external influence of Ag⁺ cations that form relatively strong Ag⁺–O bonds to the O atoms of the uranyl ions. For instance, the relatively long U(2)–O(2) bond, 1.90(1) Å, is probably a result of formation of two short Ag(2)–O(2) and Ag(3)–O(2) bonds (2.47 and 2.48 Å, respectively) and one longer Ag(3)–O(2) bond (2.62 Å). There are three symmetrically independent Mo^{6+} cations in the structure. The Mo(1) and Mo(2) are each coordinated by six O atoms in strongly distorted octahedral arrangements. The Mo(1)O₆ and Mo(2)O₆ coordination polyhedra each consist of two short (1.68–1.77 Å), two intermediate (1.83–1.88 Å) and two long (2.23–2.36 Å) Mo⁶⁺–O bonds. A similarly distorted octahedral coordination of the Mo⁶⁺ cations occurs in the structures of umohoite, iriginite, and a low hydrate analogue of iriginite (Krivovichev & Burns 2000a, b, 2002b). The Mo(3) atom is tetrahedrally coordinated by four O atoms with a <Mo(3)–O> bond of 1.73 Å.

There are eight symmetrically independent Ag sites in the structure, of which Ag(5) and Ag(8) are partially occupied. The Ag(4), Ag(5), and Ag(8) atoms are coordinated by six anions each, whereas the Ag(1), Ag(2), Ag(3), Ag(6), and Ag(7) are coordinated by eight anions each. The <Ag–O> average bond-lengths are in the range of 2.60 to 2.73 Å.

TABLE 2. ATOMIC COORDINATES	AND DISPLACEMENT PARAMETERS F	$R Ag_{10}[(UO_2)_8O_8(Mo_5O_{20})]$
-----------------------------	-------------------------------	--------------------------------------

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<u> </u>
U(1) 0.87540(2) 0.12838(3) 0.50536(8) 0.0082(1) 0.0147(3) 0.0044(3) 0.0058(3) -0.0001(2) 0.0029(2) -0.0001(2) U(2) 0.87310(3) -0.03357(3) 0.54066(9) 0.0087(1) 0.0148(3) 0.0061(3) 0.0055(2) 0.0004(2) 0.0019(2) 0.0000(2) U(3) 0.62419(2) -0.12832(3) 0.59042(8) 0.0081(1) 0.0142(3) 0.0036(3) 0.0064(3) -0.0003(2) 0.0008(2) -0.0002(2)	n –
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2
$U(3) \qquad 0.62419(2) - 0.12832(3) \qquad 0.59042(8) \qquad 0.0081(1) \qquad 0.0142(3) \qquad 0.0036(3) \qquad 0.0064(3) \qquad -0.0003(2) \qquad 0.0008(2) \qquad -0.0002(2) \qquad -0.002(2) \qquad -0.002(2) \qquad -0.002(2) \qquad -0.002(2) \qquad -0.002(2) \qquad -0.002$)
	Э —
U(4) 0.62692(3) 0.03342(3) 0.62694(8) 0.0081(1) 0.0140(3) 0.0055(3) 0.0050(2) -0.0007(2) 0.0017(2) -0.0004(2)	9
Ag(1) 0.74727(7) -0.04640(7) 0.8264(2) 0.0245(3) 0.0240(8) 0.0250(8) 0.0250(8) 0.0022(6) 0.0041(6) 0.0022(6))
Ag(2) 0 -0.10751(10) -¼ 0.0244(5) 0.0275(12) 0.0183(11) 0.0292(11) 0 0.0126(9) 0	
Ag(3) 0 -0.04924(10) ¼ 0.0256(5) 0.0280(12) 0.0253(12) 0.0231(11) 0 -0.0011(9) 0	
Ag(4) 0.75459(6) -0.11720(7) 0.3144(2) 0.0236(3) 0.0244(8) 0.0179(8) 0.0281(8) 0.0004(6) -0.0005(6) 0.0021(6) 0.0021(6) 0.0004(6) -0.0005(6) 0.0021(6) 0.0004(6) -0.0005(6) 0.0004(6) 0.0004(6) -0.0005(6) 0.0004(6) 0.0004(6) -0.0005(6) 0.0004(6) 0.0004(6) -0.0005(6) -0.0005(6) -0.005(6) -0)
$Ag(5)^* 0.75897(9) -0.28430(10) 0.2190(3) 0.0321(5) 0.0290(12) 0.0267(12) 0.0419(12) 0.0094(10) 0.0111(10) 0.0128(9) 0.011(10) 0.0128(9) 0.011(10) 0.0128(9) 0.011(10) 0.0128(9) 0.011(10) 0.0128(9) 0.011(10) 0.01(10) 0.01(10) 0.01(10) 0.01(10) 0.01(10) 0.01(10) 0.01($	9
Ag(6) ¹ / ₂ -0.10711(10) ¹ / ₄ 0.0252(5) 0.0281(12) 0.0175(11) 0.0286(11) 0 -0.0051(9) 0	
Ag(7) ½ -0.04981(10) ¾ 0.0236(5) 0.0239(11) 0.0211(11) 0.0270(11) 0 0.0087(9) 0	
Ag(8)** 0 -0.2022(4) ½ 0.073(2) 0.077(5) 0.089(7) 0.056(4) 0 0.020(4) 0	
Mo(1) 0.63527(6) -0.20220(6) 0.1194(2) 0.0087(3) 0.0144(7) 0.0046(6) 0.0075(6) 0.0004(5) 0.0032(5) -0.0003(5)	5)
Mo(2) 0.63392(6) -0.29817(6) 0.4749(2) 0.0083(3) 0.0141(7) 0.0041(6) 0.0066(6) 0.0004(4) 0.0001(5) 0.0009(5))
Mo(3) 0 -0.25144(10) -1/4 0.0181(5) 0.0075(9) 0.0134(11) 0.0327(12) 0 -0.0020(9) 0	
O(1) 0.7985(6) -0.0386(6) 0.5160(19) 0.023(3)	
O(2) 0.9504(6) -0.0297(6) 0.5684(19) 0.022(3)	
O(3) 0.8024(5) 0.1342(6) 0.4889(18) 0.019(3)	
O(4) 0.6968(5) -0.1336(6) 0.6191(18) 0.022(3)	
O(5) 0.6244(4) -0.2191(5) 0.4365(15) 0.009(2)	
O(6) 0.7005(6) 0.0394(6) 0.6482(20) 0.026(3)	
O(7) 0.5494(5) 0.0310(6) 0.6070(18) 0.021(3)	
O(8) 0.9509(5) 0.1252(6) 0.5294(17) 0.019(3)	
O(9) 0.7032(6) -0.3004(6) 0.5031(19) 0.026(3)	
O(10) 0.5473(5) -0.1265(6) 0.5646(18) 0.024(3)	
O(11) 0.7035(6) -0.2016(6) 0.1387(19) 0.027(3)	
O(12) 0.6163(5) -0.3090(6) 0.7190(17) 0.017(3)	
O(13) 0.6247(5) -0.2813(6) 0.1480(16) 0.015(2)	
O(14) 0.9616(6) -0.2088(7) -0.4137(21) 0.033(4)	
O(15) 0.8766(5) -0.0631(6) 0.2357(18) 0.024(3)	
O(16) 0.6231(5) -0.0625(6) 0.8199(18) 0.019(3)	
O(17) 0.6192(5) -0.1898(6) -0.1353(17) 0.018(3)	
O(18) 0.9585(5) -0.2949(6) -0.1226(19) 0.024(3)	
O(19) 0.8720(5) -0.0441(6) 0.8581(18) 0.017(3)	
O(20) 0.6215(5) -0.1318(6) 0.2206(16) 0.015(2)	
O(21) 0.6246(7) 0.0468(7) 0.9422(23) 0.037(4)	
O(22) 0.6148(6) -0.3684(7) 0.3623(20) 0.030(3)	

* s.o.f. = 0.75. ** s.o.f. = 0.50.

THE CANADIAN MINERALOGIST

FIG. 1. Schematic representation of the overlap of reciprocal lattices of two twin components (orange and blue lattices) of the crystal of $Ag_{10}[(UO_2)_8O_8(Mo_5O_{20})]$ twinned on (001). The overlapped lattice points are marked by red circles. The overlap occurs for the reflections with l = 3n.

FIG. 2. The crystal structure of $Ag_{10}[(UO_2)_8O_8(Mo_5O_{20})]$ projected along the *c* axis. Legend: U polyhedra are yellow, Mo polyhedra are green, Ag^+ cations are lavender.

l=4

l = 3

l = 2

l = 1

l = 0

FIG. 3. The single uranyl molybdate sheet in the structure of $Ag_{10}[(UO_2)_8O_8(Mo_5O_{20})]$ (a) and its anion topology (b), presented according to the method by Burns *et al.* (1996). Legend: U polyhedra are yellow, Mo polyhedra are green.

FIG. 4. Diagram demonstrating linkage of two adjacent uranyl molybdate sheets into double sheet via Mo(3)O₄ tetrahedron (a), and Mo₅O₂₀ cluster shown in polyhedral (b) and ball-and-stick representations. Legend: U polyhedra are yellow, Mo polyhedra are green, Mo atoms are green spheres, and O atoms are red spheres.

FIG. 5. Anion topology of uranyl molybdate sheet in the structure of $Ag_{10}[(UO_2)_8 O_8(Mo_5O_{20})]$ (a) and its construction from chains of polygons (b).

Bond-valence analysis

The bond-valence sums for the atoms in the structures were calculated using parameters given by Burns *et al.* (1997) for U⁶⁺–O bonds and by Brown (2002) for Ag⁺–O and Mo⁶⁺–O bonds. The calculated bond-valence sums for hexavalent cations are 5.98, 5.92, 6.01, 5.91, 6.35, 6.05, and 6.54 vu (valence units) for U(1), U(2), U(3), U(4), Mo(1), Mo(2), and Mo(3), respectively. The bond-valence sums for Ag atoms are in the range of 0.61–1.05 vu (the lowest bond-valence sums correspond to partially occupied Ag sites). The bondvalence sums for the O atoms are in the range of 1.61–2.26 vu.

Description of the structure

The structure of $Ag_{10}[(UO_2)_8O_8(Mo_5O_{20})]$ (Fig. 2) contains complex double sheets of UrO_5 pentagonal bipyramids and Mo polyhedra. The double sheets are parallel to (100) and consist of two sheets of composition $[(UO_2)_2O_2(MOO_5)]$ that contain UrO_5 bipyramids and MoO₆ octahedra (Fig. 3a). Within these sheets, UrO_5 bipyramids share equatorial edges, resulting in

IN THE STRUCTURE OF $Ag_{10}[(UO_2)_8O_8(Mo_3O_{20})]$							
U(1)-O(3)	1.80(1)	Ag(1)-O(1)	2.56(1)				
U(1)-O(8)	1.86(1)	Ag(1)-O(6)a	2.56(1)				
U(1)-O(15)a	2.19(1)	Ag(1)-O(6)	2.57(1)				
U(1)-O(19)b	2.21(1)	Ag(1)-O(1)a	2.63(1)				
U(1)-O(13)c	2.36(1)	Ag(1)-O(3)a	2.65(1)				
U(1)-O(12)d	2.37(1)	$A_{0}(1) = O(4)$	2.72(1)				
U(1)=O(22)c	2.53(1)	$A_{g}(1) = O(19)$	3.07(1)				
<u(1) 0=""></u(1)>	2.33(1)	$A_{g}(1) = O(16)$	3.08(1)				
<0(1)-002	1.92	$\Delta \alpha(1) O >$	2 73				
<0(1)-0eq-	1.05	-/1g(1)-0+	2.75				
U(2)-O(1)	1.84(1)	Ag(2)-O(8)j,k	2.38(1) 2x				
U(2)-O(2)	1.90(1)	Ag(2)-O(2)l,q	2.47(1) 2x				
U(2)-O(19)	2.17(1)	Ag(2)-O(14)h,i	2.75(2) 2x				
U(2)-O(15)	2.19(1)	Ag(2)-O(22)m,n	2.93(1) 2x				
U(2)-O(19)b	2.20(1)	<ag(2)-o></ag(2)-o>	2.63				
U(2)-O(22)e	2.40(1)						
U(2)-O(15)a	2.62(1)	Ag(3)-O(2)o,k	2.48(1) 2x				
$\langle U(2) \cdot O_{\mu} \rangle$	2.32	Ag(3)-O(8)k.o	2.56(1) 2x				
<u(2)-0></u(2)-0>	1.87	Ag(3)-O(2)h.g	2.62(1) 2x				
.0(2) Old.	1.07	Ag(3)-O(15)h.a	3.06(1) 2x				
LI(3)-O(4)	1.79(1)	<ag(3)=o></ag(3)=o>	2.68				
U(3) - O(10)	1.89(1)	4.8(5) 0.	2.00				
U(3) - O(10)	2.16(2)	1 a(4) O(6)b	2.47(1)				
U(3) - O(21)0	2.10(2)	$A_{\alpha}(4) = O(0)0$	2.47(1)				
U(3)-U(10)	2.19(1)	$A_{=}(4) - O(3)e$	2.47(1)				
U(3) - U(1/)r	2.37(1)	Ag(4)-O(1)	2.49(1)				
U(3)-U(5)	2.37(1)	Ag(4)-O(11)	2.58(2)				
U(3)-O(20)	2.51(1)	Ag(4)-O(3)b	2.63(1)				
$< U(3) - O_{Ur} >$	1.84	Ag(4)-O(4)	2.64(1)				
<u(3)-o<sub>eq></u(3)-o<sub>	2.32	<ag(4)-o></ag(4)-o>	2.55				
U(4)-O(6)	1.81(1)	Ag(5)-O(11)	2,41(2)				
U(4)-O(7)	1.91(1)	Ag(5)-O(4)e	2.42(1)				
U(4) - O(21)	2.17(2)	Ag(5)-Q(9)	2.50(1)				
U(4) O(16)b	2.17(2)	Ag(5)-O(11)g	2.70(1)				
U(4) O(21)b	2.15(1)	$A_{g(5)} - O(3)_{p}$	2.75(1)				
U(4) - O(21)0 U(4) - O(20)n	2.20(2)	Ag(5)-O(9)e	2.75(1) 2.84(1)				
U(4) - O(20)a U(4) - O(16)	2.40(1)	Ag(3)=O(3)c	2.64(1)				
U(4)-U(10)	2.01(1)	<ag(3)-0></ag(3)-0>	2.00				
<u(4)-u(></u(4)-u(>	1.80	1 (0 0(10)	2 20(1) 2				
<u(4)-u<sub>eq></u(4)-u<sub>	2.33	Ag(6)-O(10),q	2.39(1) 2x				
		Ag(6)-O(7)o,b	2.41(1) 2x				
Mo(1)-O(11)	1.68(1)	Ag(6)-O(18)r,g	2.68(1) 2x				
Mo(1)-O(17)	1.77(1)	Ag(6)-O(20),q	3.08(1) 2x				
Mo(1)-O(20)	1.83(1)	<ag(6)-o></ag(6)-o>	2.68				
Mo(1)-O(13)	1.88(1)						
Mo(1)-O(5)	2.23(1)	Ag(7)-O(7),s	2.49(1) 2x				
Mo(1)-O(18)_\$20	2.32(1)	Ag(7)-O(10),s	2.54(1) 2x				
<mo(1)-o></mo(1)-o>	1.95	Ag(7)-O(7)a,o	2.65(1) 2x				
		Ag(7)-O(16),s	3.05(1) 2x				
Mo(2)-O(9)	1.71(1)	<ag(7)-o></ag(7)-o>	2.64				
Mo(2)-O(12)	1.77(1)						
Mo(2)-O(22)	1.86(2)	Ag(8)-O(14)t,i	2.55(1) 2x				
Mo(2)-O(5)	1.88(1)	Ag(8)-Q(8)o.k	2.58(1) 2x				
Mo(2)-O(13)	2.25(1)	Ag(8)-O(12)n,u	2.91(1) 2x				
Mo(2)=O(14)g	2 36(2)	<ap(8)-o></ap(8)-o>	2.68				
MO(2)-O(1+)g	1.97	-118(0) 0-	2.00				
<ivi0(2)-07< td=""><td>1.57</td><td></td><td></td></ivi0(2)-07<>	1.57						
Mo(3)-O(14)h.i	1.72(2) 2x						
Mo(3)=O(18)h i	1.73(1).2x						
<mo(3) ()=""></mo(3)>	1.73						
a - x u = ±1/2 b	N. 7-1/2: 0 -	x+3/2 $y+1/2 = +1/2$					
a = x, -y, z = 1/2; b = x, d = x + 2/2 = 1/2 = -1/2	-y, 2-1/2; c = -	$1/2, y \pm 1/2, -2 \pm 1/2;$ $1/2, -2 \pm 1/2;$	÷1•				
$u = -x \pm 5/2, y \pm 1/2, -z \pm 5/2; v = -x \pm 5/2, -y \pm 1/2, -z \pm 1; 1 = x, y, z \pm 1;$							
g = -x + 5/2, $-y - 1/2$, $-z$; $n = x - 1$, y , z ; $n = -x + 1$, y , $-z - 1/2$; $j = -x + 1$, $-y$, $-z$;							
$\mathbf{K} = x - 1, -y, z - 1/2; 1 = x - 1, y, z - 1; 11 = -x + 1/2, -y - 1/2, -z;$ $\mathbf{n} = x - 1/2, -y - 1/2; z - 1/2; \mathbf{n} = -x + 1, -y, -z + 1; \mathbf{n} = -x + 3/2, -z + 1/2;$							
q = -x+1, v, -z+1/2; r = x-1/2, -v-1/2, z+1/2; s = -x+1, v, -z+3/2;							
$q = -x^{-1}$, $y, -2^{-1}/2$, $i = x^{-1}/2$, $-y^{-1}/2$, $z^{-1}/2$, $s = -x^{-1}$, $y, -2^{+}/2$, $t = x^{-1}$, v, z^{+1} , $u = -x^{+1}/2$, $-y^{-1}/2$, $-z^{+1}$.							
, , , ,	,,, _,, _						

TABLE 3. SELECTED BOND LENGTHS	(A)
IN THE STRUCTURE OF Ag10[(UO2)8O8(MC	05O20)]

Two [(UO₂)₂O₂(MoO₅)] sheets are linked into double sheets of composition [(UO₂)₈O₈(Mo₅O₂₀)] by sharing vertices with the Mo(3)O₄ tetrahedron, located between the sheets (Fig. 4a). The MoO₄ tetrahedron shares two corners with two MoO₆ octahedra in the sheet above, and two with MoO₆ octahedra of the sheet below. Thus four MoO₆ octahedra and a MoO₄ tetrahedron form pentanuclear clusters of composition Mo₅O₂₀, as shown in Figures 4b and 4c. The structure can be described as based upon chains of edge-sharing UrO5 pentagonal bipyramids that are joined into double sheets by linkages to Mo₅O₂₀ clusters.

The Ag(2), Ag(3), Ag(6), Ag(7), and Ag(8) atoms are located within the double sheets, whereas the Ag(1), Ag(4), and Ag(5) are located in between the double sheets (Fig. 2).

DISCUSSION

Miller et al. (1996) introduced the concept of aniontopologies, in the description of sheets, as stacking sequences of one-dimensional chains of polygons, and this approach was extended by Burns (1999). This approach is advantageous because it provides a means to compare complex topologies, as only a small number of chain types is required to construct topologies that differ mainly in the sequences of the chains. The novel anion-topology in the structure of $Ag_{10}[(UO_2)_8O_8]$ (Mo₅O₂₀)] can also be described as stacking sequence of chains of polygons (Fig. 5). Construction of the anion topology requires the previously known P, D, and U chains (Miller et al. 1996), and T_R and T_L chains that are introduced here for the first time. The P chains are chains of edge-sharing pentagons, whereas D and U chains are based upon edge-sharing pentagons and triangles with two possible orientations, either up (\mathbf{U}) or down (**D**). The new T_R and T_L chains consist of cornersharing squares and triangles with two possible orientations, either right (R) or left (L) (Fig. 5). The anion topology has the repeat \dots **DPDT**_R**T**_L**UPUT**_L**T**_R \dots

As was mentioned above, the single $[(UO_2)_2O_2]$ (MoO_5)] sheets in Ag₁₀[$(UO_2)_8O_8(Mo_5O_{20})$] can also be described as consisting of complex chains of UrO₅ bipyramids linked by sharing edges and vertices with pairs of edge-sharing MoO₆ octahedra. It is interesting that structurally similar chains of UrO₅ bipyramids have been observed recently in the structures of uranyl iodates of composition $M[(UO_2)_2(IO_3)_2O_2](H_2O), M = Ba$, Sr, Pb (Bean et al. 2001, Bean & Albrecht-Schmitt 2001). In these compounds, however, these chains are surrounded by IO₃ trigonal pyramids and, as a result, form one-dimensional $[(UO_2)_2(IO_3)_2O_2]^{2-}$ complex anionic chains.

It should be noted that the structure of $Ag_{10}[(UO_2)_8]$ O8(Mo5O20)] reported here is closely related to the structure of Na₁₀(UO₂)₈(W₅O₂₀)O₈ (Obbade et al. 2003b). The close relationships between these structures demonstrate

edge-sharing MoO₆ octahedra.

ganic compounds.

complex chains parallel to the c axis. The chains are

linked by a sharing of edges and vertices with pairs of

derived using method of Burns et al. (1996), is depicted

in Figure 3b. It consists of pentagons, squares and tri-

angles. The pentagons and squares are populated by U

and Mo atoms, respectively, whereas triangles are

empty. This sheet is novel in uranyl minerals and inor-

The anion-topology of the $[(UO_2)_2O_2(MoO_5)]$ sheet,

similarity of uranyl tungstates and uranyl molybdates with octahedral coordination of hexavalent cations.

Acknowledgements

We thank Thomas Albrecht-Schmitt, an anonymous referee, and Robert F. Martin, for useful comments on the manuscript. The work was supported by the Environmental Management Sciences Program of the United States Department of Energy, grant DE–FG07–97ER 14820. S.V.K. thanks the Alexander von Humboldt Foundation for partial financial support.

References

- BEAN, A.C. & ALBRECHT-SCHMITT, T.E. (2001): Cation effects on the formation of the one-dimensional uranyl iodates $A_2[(UO_2)_3(IO_3)_4O_2]$ (A = K, Rb, Tl) and $AE[(UO_2)_2$ $(IO_3)_2O_2](H_2O)$ (AE = Sr, Ba, Pb). J. Solid State Chem. **161**, 416-423.
- _____, RUF, M. & ALBRECHT-SCHMITT, T.E. (2001): Excision of uranium oxide chains and ribbons in the novel onedimensional uranyl iodates K₂[(UO₂)₃(IO₃)₄O₂] and Ba[(UO₂)₂(IO₃)₂O₂](H₂O). *Inorg. Chem.* 40, 3959-3963.
- BROWN, I.D. (2002): The Chemical Bond in Inorganic Chemistry. The Bond Valence Model. Oxford University Press, Oxford, U.K.
- BURNS, P.C. (1999): The crystal chemistry of uranium. *In* Uranium: Mineralogy, Geochemistry and the Environment (P.C. Burns & R. Finch, eds.). *Rev. Mineral.* 38, 23-90.
- _____, EWING, R.C. & HAWTHORNE, F.C. (1997): The crystal chemistry of hexavalent uranium: polyhedral geometries, bond-valence parameters, and polymerization of polyhedra. *Can. Mineral.* **35**, 1551-1570.
- _____, MILLER, M.L. & EWING, R.C. (1996): U⁶⁺ minerals and inorganic phases: a comparison and hierarchy of structures. *Can. Mineral.* 34, 845-880.
- IBERS, J.A. & HAMILTON, W.C., eds. (1974): International Tables for X-ray Crystallography, IV. The Kynoch Press, Birmingham, U.K.
- KRIVOVICHEV, S.V. & BURNS, P.C. (2000a): Crystal chemistry of uranyl molybdates. I. The structure and formula of umohoite. *Can. Mineral.* 38, 717-726.
- & _____ (2000b): The crystal chemistry of uranyl molybdates. II. The crystal structure of iriginite. *Can. Mineral.* **38**, 847-851.
- & _____ (2001a): Crystal chemistry of uranyl molybdates. III. New structural themes in Na₆[(UO₂)₂ O(MoO₄)₄], Na₆[(UO₂)(MoO₄)₄] and K₆[(UO₂)₂O(MoO₄)₄]. *Can. Mineral.* **39**, 197-206.
- _____ & _____ (2001b): Crystal chemistry of uranyl molybdates. IV. The structures of $M_2[(UO_2)_6(MoO_4)_7$ (H₂O)₂] (*M* = Cs, NH₄). *Can. Mineral.* **39**, 207-214.

- <u> $Ag_6[(UO_2)_3O(MoO_4)_5]$:</u> a novel sheet of triuranyl clusters and MoO₄ tetrahedra. *Inorg. Chem.* **41**, 4108-4110.
- & _____ (2002b): Crystal chemistry of uranyl molybdates. VII. An iriginite-type sheet of polyhedra in the structure of (UO₂)Mo₂O₇(H₂O)₂. *Can. Mineral.* **40**, 1571-1577.
- & (2002c): Crystal chemistry of uranyl molybdates. VI. New uranyl molybdate units in the structures of Cs₄[(UO₂)₃O(MoO₄)₂(MoO₅)] and Cs₆[(UO₂) (MoO₄)₄]. *Can. Mineral.* **40**, 201-210.
- & (2002d): Crystal chemistry of rubidium uranyl molybdates: crystal structures of Rb₆(UO₂) (MoO₄)₄, Rb₆(UO₂)₂O(MoO₄)₄, Rb₂(UO₂)(MoO₄)₂, Rb₂(UO₂)₂(MoO₄)₃ and Rb₂(UO₂)₆(MoO₄)₇(H₂O)₂. J. Solid State Chem. **168**, 245-258.
- $\underbrace{ \begin{array}{c} & & \\ &$
- & ______ (2003b): Crystal chemistry of uranyl molybdates. IX. A novel uranyl molybdate sheet in the structure of Tl₂[(UO₂)₂O(MoO₅)]. *Can. Mineral.* **41**, 1225-1231.
- _____, CAHILL, C.L. & BURNS, P.C. (2002a): Syntheses and crystal structures of two topologically related modifications of Cs₂[(UO₂)₂(MOO₄)₃]. *Inorg. Chem.* **41**, 34-39.
- _____, ____& ____(2003): A novel open framework uranyl molybdate: synthesis and structure of (NH₄)₄[(UO₂)₅ (MoO₄)₇](H₂O)₅. *Inorg. Chem.* **42**, 2459-2464.
- _____, FINCH, R. & BURNS, P.C. (2002b): Crystal chemistry of uranyl molybdates. V. Topologically different uranyl dimolybdate sheets in the structures of Na₂[(UO₂)(MoO₄)₂] and K₂[(UO₂) (MoO₄)₂](H₂O). *Can. Mineral.* **40**, 193-200.
- MILLER, M.L., FINCH, R.J., BURNS, P.C., & EWING, R.C. (1996): Description and classification of uranium oxide hydrate sheet topologies. J. Mater. Res. 11, 3048-3056.
- OBBADE, S., DION, C., BEKAERT, E., YAGOUBI, S., SAADI, M. & ABRAHAM, F. (2003b): Synthesis and crystal structure of new uranyl tungstates $M_2(\text{UO}_2)(\text{W}_2\text{O}_8)$ (M = Na, K), $M_2(\text{UO}_2)_2(\text{WO}_5)\text{O}$ (M = K, Rb), and $\text{Na}_{10}(\text{UO}_2)_8$ (W₅O₂₀)O₈. J. Solid State Chem. **172**, 305-318.
- _____, YAGOUBI, S., DION, C., SAADI, M. & ABRAHAM, F. (2003a): Synthesis, crystal structure and electrical characterization of two new potassium uranyl molybdates K₂(UO₂)₂(MoO₄)O₂ and K₈(UO₂)₈(MoO₅)₃O₆. J. Solid State Chem. **174**, 19-31.
- Received April 19, 2003, revised manuscript accepted November 16, 2003.