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VOLUME CHANGES IN FLUID INCLUSIONS PRODUCED BY HEATING
AND PRESSURIZATION: AN ASSESSMENT BY FINITE ELEMENT MODELING
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ABSTRACT

Recent advances in using the hydrothermal diamond anvil cell (HDAC) to measure homogenization temperatures of inclu-
sions trapped at high pressure have created a need to better understand changes in elastic volume of fluid inclusions experiencing
high internal and external pressures. We have used finite element modeling to explore volume changes of fluid inclusions as a
function of shape and distance from the free surface at a sample’s edge as an aid in understanding their behavior in HDAC studies.
We have modeled a variety of oblate and prolate ellipsoids, as well as a disk that has the same cross-section as a negative crystal
in quartz and two right cylinders. All of our models have an axisymmetric geometry and assume linear isotropic elasticity. We
find that the percent change in volume of an inclusion is primarily a function of the aspect ratio of the inclusion. The presence or
absence of corners and the sharpness of internal corners also affect the volume change, but to a lesser extent. Distance to a free
surface is only significant for inclusions that are very close to the free surface. This effect is most pronounced for an oblate
ellipsoid oriented with its long dimensions parallel to the free surface. For microthermometric studies of fluid inclusions at 1 atm,
the changes in elastic volume due to increases in internal pressure are negligible. However, for HDAC studies, where the appli-
cation of confining pressure allows more extreme conditions to be obtained, changes in elastic volume can be significant, but can
be predicted using finite element models.
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SOMMAIRE

Les progrès récents dus à l’utilisation d’une cellule hydrothermale à enclume de diamant (HDAC) pour mesurer les
températures d’homogénéisation d’inclusions piégées à pression élevée requierrent une meilleure compréhension des changements
en volume élastique des inclusions fluides subissant des pressions internes et externes élevées. Nous avons utilisé des modèles à
éléments finis afin d’explorer les changements en volume élastique des inclusions fluides en fonction de leur forme et de la
distance d’une surface libre en bordure d’un échantillon, pour mieux comprendre leur comportement dans les études HDAC.
Nous avons adopté comme modèles une variété d’ellipsoïdes aplatis et allongés, de même qu’un disque ayant la même coupe
transversale qu’un cristal négatif dans le quartz, et deux cylindres droits. Tous les modèles possèdent une géométrie axisymétrique
et supposent une élasticité linéaire isotrope. Le changement en volume d’une inclusion est surtout une fonction du rapport des
dimensions de l’inclusion. La présence ou l’absence de coins et l’acuité des coins internes influencent aussi le changement en
volume, mais à un degré moindre. La distance séparant l’inclusion d’une surface libre est seulement importante dans le cas
d’inclusions qui sont très près de cette surface. Cet effet serait plus prononcé pour un ellipsoïde aplati orienté avec l’axe principal
parallèle à cette surface. Pour des applications microthermométriques à des inclusions fluides à un atmosphère, les changements
en volume élastique dus à l’augmentation de la pression interne sont négligeables. Par contre, dans le contexte d’études HDAC,
où l’application de la pression de confinement permet d’atteindre des conditions plus extrêmes, les changements en volume
élastique peuvent être importants, et on peut les prédire en utilisant les modèles à éléments finis.

(Traduit par la Rédaction)

Mots-clés: inclusion fluide, modèles à éléments finis, changements en volume élastique.
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INTRODUCTION

Temperatures of freezing and homogenization deter-
mined from fluid inclusions are widely used to estimate
pressure and temperature conditions at which fluids
were trapped during mineral growth, recrystallization
or fracture healing. These estimates rely on the assump-
tion that the fluid inclusions have maintained a constant
volume (Roedder 1984). However, some fluid inclu-
sions can generate internal pressures that are high
enough to cause the inclusions to decrepitate, leak or
stretch before homogenization measurements can be
made [see Vityk et al. (2000) and references therein].
Until recently, decrepitation and stretching have been
significant issues in studies that explore fluid composi-
tions in high-grade metamorphic terranes, or use syn-
thetic inclusions to determine isochores and phase
equilibria in systems where the vapor pressure at ho-
mogenization is above 200 MPa (Schmidt et al. 1998).
However, a new technique has been developed (Chou
et al. 1994, Schmidt et al. 1998, Darling & Bassett 2002)
that uses a hydrothermal diamond anvil cell (HDAC)
(Bassett et al. 1993) to apply confining pressure to the
inclusions while homogenization measurements are be-
ing made, essentially eliminating the problem of de-
crepitation and stretching. The new technique comes
with its own set of challenges, however. When an ex-
ternal confining pressure is applied and higher internal
pressures are achieved, elastic changes in volume be-
come significant (Schmidt et al. 1998). The measured
temperature of homogenization becomes a function of
the confining pressure, and the experimentalist must de-
termine which homogenization temperature is the cor-
rect one. As one check of internal consistency,
investigators have measured the relationship between
homogenization temperature and confining pressure and
compared it to what would be expected by taking into
account volume changes due to the bulk modulus of the
quartz host (Darling & Bassett 2002) and the stresses
around a spherical inclusion in elastically anisotropic
quartz (Schmidt et al. 1998). However, the volume
change and, in particular, decrepitation behavior are
known to be a function of the inclusion shape, size, and
distance to the specimen edge (Hall et al. 1993, Bodnar
et al. 1989, Bodnar & Bethke 1984, Pecher 1981, Leroy
1979, Larson et al. 1973). We have used finite element
modeling to explore the relative importance of shape
and proximity to the sample edge in determining elastic
changes in volume of fluid inclusions as an aid in un-
derstanding fluid-inclusion behavior in diamond-anvil
cell studies.

NUMERICAL MODELS

Numerical models are useful when problems exceed
the complexity that can be handled by analytical mod-
els. In the case of stresses and strains around expanding
or contracting fluid inclusions, it is relatively easy to

calculate analytically the behavior of a spherical hole
inside a spherical shell of varying dimensions, or a round
hole in a plate of varying thickness (e.g., Timoshenko
& Goodier 1970, Zhang 1998). Axisymmetric ellipsoids
in an infinite medium can also be dealt with analytically
(Eshelby 1957, Zimmerman 1991). However, not all
fluid inclusions are well approximated by axisymmetric
ellipsoids. Many inclusions take on the shape of a nega-
tive crystal, are close to the boundaries of the host ma-
terial, or are otherwise irregular in shape. The
deformation behavior of these inclusions can only be
effectively modeled using numerical methods. Numeri-
cal methods seek to break a problem into discrete com-
ponents across which an analytical expression can be
applied. Two methods that have been used for the analy-
sis of inclusions are boundary-element methods
(Whitney et al. 2000) and finite element methods (FEM)
(e.g., Kenkmann & Dresen 1998, Mancktelow 2002).

Finite element modeling is a method of approximat-
ing a solution to differential equations that describe the
behavior of a dependent variable over some field by
discretizing the problem into elements of a finite size.
In the case of stress and strain of a solid body, the body
is broken into two- or three-dimensional spatial ele-
ments, which form the model mesh. The behavior of the
elements is calculated at nodes that occur at the corners
and, in some cases, along the edges of the elements. The
behavior of each element is coupled to its neighboring
elements because elements share the nodes along their
common boundaries. The behavior of nodes within an
element are dictated by the constitutive equations as-
signed to that element. These relationships can be ex-
pressed as a system of linear equations. Provided that
there is a sufficient number of boundary constraints, the
solution to the system of linear equations can be ob-
tained by matrix inversion. Typically, the numerical
methods used to achieve the matrix inversion are itera-
tive. One’s ability to use finite element modeling to cal-
culate a realistic answer is limited by the degree to which
the geometry of the model, the material parameters, and
the coarseness of the model mesh approximate the mod-
eled object. Another limit is imposed by the amount of
CPU time needed to invert the matrix. For two-dimen-
sional models, the size of the matrix to be inverted is
equal to the number of nodes in the model squared; for
a three-dimensional model, it is equal to the number of
nodes cubed. For obvious reasons, two-dimensional
models are easier to calculate than three-dimensional
models.

There are a number of criteria that one uses to dis-
cern whether an FEM model is good. First, the elements
must be small with respect to the scale at which one
wishes to examine the model. This is because the model
uses a linear interpolation between each node or a para-
bolic fit over three nodes. Therefore, changes in between
nodes are not as well known. Areas of less interest can
be modeled with larger elements, and computational
power thus can be saved to resolve areas with large fluc-
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tuations. Second, solutions should be mesh-indepen-
dent; results from succeeding generations of mesh re-
finement should converge on a single result, and two
different meshes that are both sufficiently refined should
yield the same result. Finally, to the maximum extent
possible, model results should compare favorably with
analytical calculations and experimental observations.

METHODS

We have used a commercially available engineering
package, MSC MARC/Mentat, to create and analyze 2D
axisymmetric finite-element models of fluid inclusions
experiencing varying internal (PI) and external pressures
(PE). All models presented here were constructed using
six-noded triangular elements that have a node at each
vertex and at the midpoint of each side. The models were
calculated assuming a 2D axisymmetric geometry uti-
lizing full integration. We assumed an isotropic linear
elastic response for the host material around the inclu-
sion. The constitutive equation used by MARC for lin-
ear elastic solids is:

�ij = ��ij�kk + 2G�ij (1)

where �ij is the stress tensor, �ij is the Kronecker delta,
�ij is the strain tensor, � is the Lame constant, and G is
the shear modulus. Note that � can be expressed as

� = vE/[(1 + v)(1 – 2v)] (2)

and G can be expressed as

G = E/[2(1 + v)], (3)

where v is the Poisson’s ratio and E is the Young’s
modulus. MARC accepts E and v as inputs to define a
material’s elastic properties. For all the models pre-
sented here, we used the Young’s modulus and
Poisson’s ratio for polycrystalline quartz (Table 1). The
pressure and temperature dependence of the moduli are
not included in these calculations. At room temperature,
the change in the shear modulus of quartz from 0 to 300
MPa is 0.3%. The bulk modulus increases over the same
range by 5.1%. However, in any experiment, this in-
crease will be offset by a decrease in the stiffness due to

increasing temperature for example at room pressure,
the bulk modulus is 5.5% less at 250°C than at room
temperature. Zhang (1998) has shown that for a sphere,
the effect of elastic anisotropy is important in making
quantitative comparisons with experimental fluid-inclu-
sion data. However, for any shape other than a sphere,
the orientation of the shape with respect to the crystal-
lographic axes should also be important. Thus for a
quantitative comparison between a particular laboratory
measurement and a numerical model, the specific de-
tails of inclusion shape, crystallographic orientation and
elastic anisotropy will need to be included.

As we wish to use FEM to calculate solutions that
cannot be obtained by other means, it is important to
know that our method is reliable. We tested a variety of
element types to see which ones performed best for our
particular problem. All of the element types tested could
reproduce the analytical solution for the stress state
around a hole in a plate and an empty sphere in a solid
to within 2.5% of the peak stress values. A six-noded
triangular element gave the closest fit, the difference in
the peak stress not exceeding 1%. This element (ele-
ment 126 in the MARC library) uses a parabolic inter-
polation function along each edge.

An iterative process was used to develop each model
mesh. The first mesh for a given inclusion was built to
capture the basic geometry, with the smallest elements
near the inclusion and the largest elements furthest
away. Material properties and boundary conditions were
assigned, and then the meshes were analyzed using
MARC. The location of stress concentrations and gra-
dients in stresses were noted; the mesh in these areas
was then refined until the stress contours appeared
smooth. In addition, the models were checked for any
deflections of the outer edges caused by the presence of
the inclusion at the center of the model. If changes in
displacement along the outer edges of a model were
greater than 10–6 of the model dimensions, more mate-
rial was added to the exterior of the model. Element
sizes in the final models vary over two to three orders
of magnitude, and the outer dimensions of the full mod-
els are about 20 times the long dimensions of the inclu-
sion. Models used to study the effect of the proximity
of the sample edge to the inclusion were made by trun-
cating full models. Two meshes are shown as examples
in Figure 1.

BOUNDARY CONDITIONS

All axisymmetric models have their axis of rotational
symmetry along the horizontal axis (x axis). Therefore,
a boundary condition of no translation in the vertical
direction (y axis) was applied to all nodes that lay on
the x axis. For models that had a mirror plane perpen-
dicular to the axis of rotational symmetry, half the shape
was modeled and a boundary condition specifying no
translation in the direction of the x axis was applied to
nodes lying on the mirror plane. Pressure is modeled by
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FIG. 1. Two examples of finite-element meshes used in modeling. Each triangular element has six nodes, one at each vertex and
one at the center point of each side. The nodes are not plotted here so that the details of the mesh can be seen. Arrows pointing
at nodes and edges indicate boundary conditions applied at those locations. A) This model was used for the oblate ellipsoid
with a 1:5 aspect ratio. The model is constructed so that the right-hand side can be removed in steps in order to study the effect
of distance to the free surface. The insets show progressive levels of detail of the mesh near the inclusion. B) This model was
used for the right cylinder with a radiused internal corner (right cylinder II). The inset shows the meshing at the radiused
corner.
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the application of constant edge-loads to the external
boundaries of the models. Edge loads in MARC are as-
sumed to have the same units as the elastic moduli (e.g.,
GPa) and are distributed along the edge of the element,
which for an axisymmetric model represents an area.
MARC uses numerical integration to calculate equiva-
lent nodal loads given the dimensions of the area over
which the distributed load is applied. To simulate the
confining pressure, constant edge-loads were applied on
the external boundaries of the model. Another set of
edge loads was applied to the internal boundary of the
inclusion to simulate the pressure generated by the fluid
(for examples, see Fig. 1).

MODEL SHAPES

We have modeled a variety of oblate and prolate el-
lipsoids, a pointed disk, and two right cylinders, one
with perfectly sharp internal corners (right cylinder I)
and one with radiused internal corners (right cylinder
II). The pointed disk, which we refer to as the “disk with
three corners”, is shown in Figure 2. To build this model,
we used a profile derived from a photomicrograph of a
natural H2O–NaCl–CO2-bearing inclusion in quartz

(Blount et al. 1999, Davis & Burnley 2000) from a vein
in Piedmont basement rocks beneath the Savannah River
DOE site in Savannah, Georgia (La Tour et al. 1995).
At the level of resolution of the optical microscope, the
internal corners of the inclusion appear to be sharp;
however, rounding of the corners at some scale is to be
expected. The refinement of the mesh around the stress
concentrations generated at corners requires the model
mesh to contain details at a much finer scale than can be
resolved optically. Therefore, in order to determine the
degree to which the internal corners should be rounded,
we used transmission electron microscopy (TEM). A
chip of the same quartz vein that contained the inclu-
sion that we used for the model was thinned using an
Argon ion mill with a liquid nitrogen cooled stage. The
sample was imaged at 200 kV using a JEOL 2010 TEM
located at MVA Inc. in Norcross, Georgia. The radius
of curvature for the internal corners for several inclu-
sions was measured and compared with the longest di-
mension of the inclusion visible in the TEM foil (Fig.
3). We found that for this particular specimen, the ra-
dius of curvature ranged from 0.05 to 0.5 �m or 1–15%
of the inclusion’s long dimension. The relative measure-
ment is useful for comparison with the models, which

FIG. 2. The diagram shows the model mesh for the disk with three corners. The model is spun about the x axis to create a 3D
volume of revolution. The inset shows the entire mesh. The mesh was drawn from a profile of a natural inclusion in quartz.
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are dimensionless. For the disk with three corners, the
corners were meshed with a radius of curvature ranging
from 1 to 10% of the model’s long dimension. Right
cylinder I was meshed with a sharp 90° corner, and right
cylinder II built with an internal corner with a radius of
curvature of 5% of the model’s edge-length (Fig. 1b).

Ultimately, we wish to check the predictions of mod-
els against the behavior of real fluid inclusions. In such
a study, the many assumptions that go into the models,
including inclusion shape, isotropic elasticity, and the
level of detail captured by the mesh, can also be exam-
ined.

VOLUME CALCULATIONS

MARC output includes the undeformed node posi-
tions and their change in position. The deformed and
undeformed volume of the inclusions was calculated by
numerical integration. For shapes that can be described
analytically, the undeformed volume calculated from
each model fits the volume obtained by integration to
within 0.1%. Planes were fit to the percent change in
volume as a function of PI and PE. Owing to the itera-
tive nature of the modeling process, errors in stress and
nodal displacement are expected to be about 2%.

FIG. 3. TEM micrograph of a fluid inclusion in quartz from the Piedmond basement at the
Savannah River site. The inclusion cuts through the foil at an angle, giving rise to extra
thin regions around the edge of the inclusion (arrows). Insets at the top and bottom show
tracings of the corner geometry as well as the radius of curvature. Accelerating voltage
was 200 kV. Scale bar is 1 �m.
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DEPICTION OF RESULTS

Each model can be described as a plane in a param-
eter space defined by volume change, internal pressure
(PI), and external pressure (PE ) (Fig. 4). Since what is
important about the spatial dimension of each model is
the relative dimension, the volume change can be de-
picted in terms of percent change in volume relative to
the volume of the original model (Vc).

Vc = (Vdeformed – Vundeformed)/Vundeformed � 100 (4)

All models should intersect the origin of this coordinate
space and share a line in the plane PE = PI, along which
the volume change is dictated by the bulk modulus
alone, as no shear stresses are generated in the absence
of differential pressure. It is useful to depict the models
by taking vertical sections through this space (as shown
in Figs. 5 and 6). Because all models share this com-
mon line in the plane where PE = PI, the difference in
volume change between any two models (�Vc ) is a lin-
ear function of the differential pressure (�P), where:

�P = PI – PE (5)

which can be written as:

�Vc = m�P (6)

An example of this approach can be seen later (in
Fig. 11). The difference in percent change in volume be-
tween any two models can be characterized by the slope
(m) of this line; the larger the value of m, the greater the
difference between the behavior of the models. This
method of collapsing the difference between two mod-
els to a single point is used in Figure 7.

RESULTS

Effect of shape

Curves describing the volume change in “quartz” as
a host (recall that by this we mean an isotropic material
with the same elastic moduli as polycrystalline quartz)
as a function of internal pressure for eight shapes are

FIG. 4. Diagram of the parameter space used in this study. Planes represent the behavior of fluid inclusions in the parameter
space. Because all of the models share a line in the plane PI = PE, which is dictated by the bulk modulus, the difference in Vc

between any two models is a linear function of �P. The larger the slope (m) of this line, the greater the difference in volume
change between the two inclusions.
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shown in Figure 5. Coefficients for the equation describ-
ing the percent change in volume (Vc) as a function of
PI and PE are presented in Table 2. The 2:1 prolate and
oblate ellipsoids have been meshed twice, and coeffi-
cients for Vc are reproducible to within <1%. As ex-
pected, all of the inclusions experience the same change
in volume if PI is equal to PE. Under this condition, there
is no differential stress in the material around the inclu-
sion, and the bulk modulus alone governs the volume
change. The average Vc of the models along the line
where PI = PE differs from that predicted by theory by
0.4%, and the models vary no more than 0.2% from each
other. Figure 6 shows Vc as a function of PE for eight
inclusion shapes plotted for a constant internal pressure
of 200 MPa. Notice that the models all intersect at 200
MPa where PI = PE. Inclusions that expand the most
when the internal pressure is greatest also collapse more
readily when the external pressure is greatest.

Effect of sample edges

Proximity to the sample edge will also have an im-
pact on volume change if the sample edge is close
enough to the inclusion. We examined two cases: 1)
inclusions that are centered in a plate of varying thick-
ness, and 2) inclusions that are close to one edge of a
very thick plate. For each shape, the axis of rotational
symmetry is normal to the free surface. In order to dis-
play the effect of proximity to the edge, the strategy of
characterizing the difference between two models as a
single point, as discussed above, was used. The differ-
ence between the volume change experienced by an in-
clusion located at a very large distance from any external
boundary and the same inclusion sitting in the center of
a thin plate is divided by �P and plotted in Figure 7. To
compare different shapes, the thickness of the wall be-
tween the inclusion and the free surface is divided by

FIG. 5. Percent change in volume (Vc) as a function of internal pressure (PI) when external
pressure is 0 MPa for an inclusion shaped like a sphere, three oblate ellipsoids with
different aspect ratios, a prolate ellipsoid, two right cylinders and a disk with three
corners.
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the radius of a sphere that has the same volume as the
inclusion; this value is plotted along the x axis. Results
for three shapes (a sphere, a 1:2 oblate ellipsoid and a
2:1 prolate ellipsoid) are shown in Figure 7, and the
model geometry for the 2:1 prolate ellipsoid and the
sphere are shown in Figure 8. For an inclusion sitting
close to one edge of a thick plate, the geometry relevant
to a fluid-inclusion study, we find that Vc can be ap-
proximated (to within 5%) by averaging the volume
change for a symmetric thin-walled and a thick-walled
model.

FIG. 6. Percent change in volume as a function of external pressure (PE) for an inclusion
shaped like a sphere, several oblate ellipsoids with different aspect ratios, a prolate
ellipsoid, two right cylinders and a disk with three corners, all with an internal pressure
of 200 MPa. The lines intersect where the internal and external pressures are equal
because the differential stress within the matrix is zero at that point.

FIG. 7. A plot showing the effect of distance from the free
surface on changes in elastic volume for a sphere, 2:1 pro-
late ellipsoid and a 1:2 oblate ellipsoid. Each point on the
plot represents the behavior of an inclusion in a thin plate
compared to the same inclusion in a very thick plate. The
difference between any two models is a linear function of
�P; �Vc = m�P. The slope m, a measure of the degree of
difference, is plotted on the y axis. The x axis gives the
thickness of the host between the inclusion edge and the
sample surface divided by the radius of a sphere that has
the same volume as the inclusion. This approach allows a
comparison of different models.
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DISCUSSION

Elastic changes in volume are clearly a function of
shape, and the most important characteristic of an
inclusion’s shape appears to be its aspect ratio. The ef-
fect of corners is less important. Both the disc with three
corners and the 1:2 oblate ellipsoid have the same as-
pect ratio, but the disk with three corners experiences
only slightly larger changes in volume. The effect of
the sharpness of the corners also is quite small. The
coefficients for the equation describing the Vc for right
cylinder I (sharp internal corners) and right cylinder II
(radiused internal corners) differ by only 5% (Table 2).
Whitney et al. (2000) found similar results in their

boundary-element study of fractures around solid inclu-
sions: aspect ratio was found to be the most important
characteristic in predicting fracture patterns. Zimmer-
man (1991) has shown that corner sharpness also has
little effect on the volume change of infinite channels
that have a four-sided hypotrochoidal cross-section. By
far the largest changes in volume seen amongst the
shapes modeled are in the oblate ellipsoid models. Al-
though the more equant shapes display only minor
changes in volume at low internal pressure, the high-
aspect-ratio oblate ellipsoids experience elastic changes
in volume that could be important (depending on the
equation of state of the fluid) for measurements of tem-
perature of homogenization. However, it is important
to keep in mind that the differential stress along the in-
ternal surfaces of these shapes can become extremely
high as well. For example, the quartz at the end of the
1:5 oblate ellipsoid will experience >500 MPa differen-
tial stress when under an internal overpressure of 100
MPa (Fig. 9). Therefore, these inclusions would also be
more likely to stretch or fracture at room pressure. These
model results emphasize the importance of using cau-
tion when working with inclusions with plate or crack-
like shapes.

From Figure 7, we can see that inclusions must be
relatively close to the sample edge before there is any
appreciable change in Vc. The additional change in vol-
ume is caused by the stresses surrounding the inclusion
encountering and causing a deflection of the model
edge. To first order, these stresses fall off with distance
cubed (Eshelby 1957), as seen in Figure 9, which is why
the effect is only seen where the wall is relatively thin
(Fig. 7). Since the shape of the stress field around the
inclusion is a function of the inclusion’s shape, the im-
portance of proximity to the sample edge will also be a
function of shape. A non-intuitive observation is that
the effect is less pronounced for the 2:1 prolate ellip-
soid than for the sphere, even though the 2:1 prolate
ellipsoid has a larger peak stress in the wall between it
and the free surface (166 MPa versus 133 MPa for �P =
100 MPa). However, because the sphere does not fall
away from the free surface at the same rate as the 2:1
prolate ellipsoid, the sphere creates larger stresses over
a greater area of the free surface, which deforms more
(Fig. 8). This relationship remains true even if one com-
pares a 2:1 prolate ellipsoid with a sphere whose radius
is the same as the minor axis of the 2:1 prolate ellipsoid.
The largest effect is seen for the 1:2 oblate ellipsoid,
which has the largest relative proportion of its surface
area close to the free surface. Using Figure 7, we pre-
dict that an elliptical inclusion 40 �m across and 20 �m
thick centered in a plate 32 �m thick, experiencing a
100 MPa overpressure, would have an additional 0.38%
volume change beyond what would be expected for the
same inclusion in an infinite host. The same inclusion 6
�m below the surface of a thick plate would experience
about 0.19% additional increase in volume.

FIG. 8. Plot comparing the edge deflection of a spherical in-
clusion and a 2:1 prolate ellipsoid in a thin plate. The x axis
gives the deflection. The geometry is drawn to the same
scale as plotted on the y axis; the model extends a distance
of 18 units beyond the top of the plot. The vertical line
shows the position of the free surface relative to the inclu-
sions. The deflections are plotted for PI – PE = 200 MPa.
The 2:1 prolate ellipsoid deforms the surface significantly
less, and therefore its volume change relative to that in a
very thick host is less sensitive to the distance to the free
surface.
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Application

For most fluid-inclusion work, volume changes due
to elastic deformation are negligible, even for the 1:10
oblate ellipsoid, the most extreme shape tested. For ex-
ample, for fluid inclusions containing H2O, pressures at
homogenization cannot exceed 220.55 bars (Haar et al.
1984). Such a pressure yields changes in homogeniza-
tion temperature that are at most 0.3°C (Fig. 10), which
would not be observable in a typical heating experiment.
However, for inclusions containing several components,
internal pressures at homogenization can become quite
large. For example, CO2–H2O liquids can show

immisciblity at pressures well over 2 GPa [see Diamond
(1994) for review]. These homogenization temperatures
cannot be measured without the application of confining
pressure because the inclusions will decrepitate
(Schmidt et al. 1998, Darling & Bassett 2002). It is in
hydrothermal diamond-anvil cell studies, where the
difference between internal and external pressure of the
inclusion can reach 100 MPa or more, that these calcu-
lations are most useful. In the system CO2–H2O–NaCl,
small changes in molar volume can lead to measurable
changes in homogenization temperature (Schmidt et al.
1998). For example, Darling & Bassett (2002) calcu-
lated that a 0.22% change in molar volume should cause

FIG. 9. Plot of contours for constant differential stress in the quartz host around a 1:5
oblate ellipsoidal inclusion experiencing 100 MPa internal pressure and 0 MPa external
pressure. The outer boundaries of the quartz host are at a distance of 20 times the long
dimension of the inclusion. Numbers plotted beside the contours represent differential
stress in MPa.
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a 2.8°C change in the temperature of total homogeniza-
tion of natural CO2–H2O–NaCl inclusions in their study.

It is relatively straightforward to calculate the vol-
ume change of a sphere using analytical methods (Zhang
1998). Therefore, it is important to know how much
error is produced by assuming that an inclusion is a
sphere if the shape is in fact not a sphere. In Figure 11,
we plot the difference between the volume change of a
sphere and the other inclusion shapes as a function of
�P. As discussed before, if �P is zero, the volume
change is a function only of the bulk modulus of quartz,
and inclusion shape is not a factor. From Figure 11, it
can be seen that only the oblate shapes with high aspect-
ratios are likely to cause significant deviations from
what is predicted by using a spherical model.

CONCLUSIONS

The results of this analysis confirm what studies of
fluid inclusions at room pressure have already shown
empirically: elastic changes in volume in a quartz host
at internal overpressures, insufficient to cause the de-
crepitation, are not important to measurements of ho-
mogenization temperature. However, if inclusions are
studied at high external pressure, significant differen-
tial pressures can be achieved, and elastic changes in
volume can significantly affect measured temperatures

FIG. 10. Change in temperature of inclusion homogenization �THm due to changes in elas-
tic volume as a function of pressure for pure H2O. For inclusions homogenizing to
liquid water, the shift in homogenization temperature is positive. For inclusions homog-
enizing to steam, the shift in homogenization temperature is negative.

FIG. 11. Difference between percent change in volume for a
spherical inclusion and inclusions of other shapes (�Vc) as
a function of the difference between the external and inter-
nal pressure (�P). This difference is a measure of the error
produced by assuming that an inclusion is spherical. For
the more equant shapes tested, this assumption is good. For
oblate ellipsoids with higher aspect-ratios, measurable de-
viations in homogenization temperature may occur.
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of homogenization. At least for the axisymmetric shapes
studied here, these volume changes are primarily a func-
tion of the inclusion’s aspect ratio. Details of the shape,
such as the presence and sharpness of internal corners,
and the proximity of the inclusion to a free surface, also
have an effect, but these are secondary to the effect of
aspect ratio.
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