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ABSTRACT

Equations of equilibrium of plagioclase crystals and a melt of plagioclase composition (a transfer system), and between 
associated calcic clinopyroxene and orthopyroxene (an exchange system) are reproduced and compared. Thermodynamic theory 
has been remarkably successful in dealing with these two fundamentally different kinds of phase-equilibrium relations.
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SOMMAIRE

Les équations servant à décrire lʼéquilibre entre cristaux de plagioclase et un bain fondu de la composition dʼun plagioclase 
(un système de transfert), et entre un clinopyroxène calcique et un orthopyroxène associé (un système dʼéchange) sont reprodu-
ites et comparées. L̓ approche théorique thermodynamique a réussi remarquablement bien à traduire ces deux sortes de relations 
fondamentalement différentes entre phases à lʼéquilibre.

 (Traduit par la Rédaction)
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INTRODUCTION

Several kinds of equilibria involving phases of 
variable composition are of interest to geologists. 
The well-known equilibrium of plagioclase crystals 
and a melt of plagioclase composition is an example. 
As near-equilibrium crystallization occurs in this 
system, atoms belonging to both solution components, 
NaAlSi3O8 and CaAl2Si2O8, are displaced from melt 
to crystals (resulting in an increase in the volume of 
crystals), as diffusion occurs to eliminate concentra-
tion gradients. The resulting change in composition is 
an increase in the Na/(Na + Ca) ratio in both phases in 
this system. Prigogine & Defay (1954, p. 276) referred 
to the “transfer of two components from one phase 
to another”, and the term transfer equilibrium is here 
adopted for the kind of equilibrium that occurs in the 
plagioclase system. In another kind of transformation 
involving binary mixtures, one of the two phases, calcic 
clinopyroxene, yields atoms of Mg to the second phase, 
orthopyroxene, in exchange for Fe, or vice versa (with 
virtually no change in volume), until a new condition 
of equilibrium is obtained. The result is that the ratio 
Mg/(Mg + Fe) increases in one phase and decreases 

in the other. These are here referred to as exchange 
equilibria. In the present review, equations of transfer 
and of exchange equilibrium are reproduced and 
compared, leading to the conclusion that the two kinds 
of equilibria differ fundamentally, and must be carefully 
distinguished from each other.

TRANSFER EQUILIBRIUM

A thermodynamic analysis of transfer equilibrium 
in binary systems was carried out by van Laar (1908) 
(Reisman 1970, Chapters 27 and 28), and the resulting 
equations were applied by Bowen (1913). Retaining the 
plagioclase crystal (c) – melt (m) system as an example, 
the mass-balance and energy-balance equations are,

mass: (NaAlSi3O8)c  (NaAlSi3O8)m (1a)

 (CaAl2Si2O8)c  (CaAl2Si2O8)m (1b)

energy: �c
ab  = �m

ab  (2a)

 �c
an  = �m

an  (2b)
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where � denotes chemical potential (i.e., partial molar 
Gibbs energy), and the albite (ab) and anorthite (an) 
components are NaAlSi3O8 and CaAl2Si2O8. By substi-
tution of four equations of the kind

� = G + RT ln X  (3)

where G stands for molar Gibbs energy, R for the gas 
constant, T for absolute temperature, and X for molar 
fraction,

GAb(c) + RT ln Xc
ab = GAb(m) + RT ln Xm

ab (4a)

GAn(c) + RT ln Xc
an = GAn(m) + RT ln Xm

an (4b)

Here, Ab and An (with a capital A) refer to pure 
NaAlSi3O8 and CaAl2Si2O8, and both melt and crystal 
are assumed to behave as ideal mixtures. By rearrange-
ment of terms,

Xm
ab / Xc

ab = exp [–(GAb(m) – GAb(c)) / RT] (5a)

Xm
an / Xc

an = exp [–(GAn(m) – GAn(c)) / RT] (5b)

Note that at equilibrium, both (5a) and (5b) must be 
satisfi ed simultaneously, and because Xc

ab + Xc
an = 1.0, 

only two concentration variables appear in these equa-
tions. At constant pressure, the expressions on the right 
of each equal sign in (5a) and (5b) are functions only of 
temperature. Thus, at a specifi ed temperature, we have 
two equations and two variables, and these two vari-
ables must become fi xed, i.e., at constant temperature 
and pressure, the plagioclase system is invariant. This 
is apparent from the phase diagram (Fig. 1).

Equations (5a) and (5b) are now used to derive 
equations for the liquidus and solidus (upper and lower) 
curves in the phase diagram for plagioclase (Fig. 1). 
Differentiating these two equations with respect to 
temperature, recalling that

  �(�G / T)  –�H
 —————— = ———  (6),
 �T  T2

followed by an integration from the melting temperature 
of albite, TAb, and the melting temperature of anorthite, 
TAn, we obtain

  Xm
ab   –�HAb(m–c) 1  1

 ——— = exp [  ——————— (—) – —— ) ]= �Ab (7a)
  Xc

ab   R  T  TAb

  Xm
an   –�HAn(m–c)  1  1

 ——— = exp [  ——————— (—) – —— ) ]= �An (7b)
  Xc

an   R T  TAn

Solving explicitly for XAb and XAn as functions of 
temperature yields the van Laar equations,

  �An (�Ab – 1)
liquidus: Xm

an = ———————— (8a)
 (�Ab – �An)

 (�Ab – 1)
solidus: Xc

an = ———————— (8b)
 (�Ab – �An)

where �Ab and �An are defi ned by equations (7a) and 
(7b), and �H stands for the molar heat of melting 
[Reisman (1970), p. 286-288, equations (17) and (19), 
and chapter 28). By use of the following data,

TAn = 1550°C = 1823 K (P = 1 bar)

TAb = 1100°C = 1373 K (P = 1 bar)

�HAn(m–c) = 121 350 J mol–1

�HAb(m–c) = 53 238 J mol–1

R = 8.314 J mol–1 K–1,

Bowen (1913) plotted equations (8a) and (8b), as 
shown in Figure 1, to obtain near-perfect agreement 
with his experimental results. Subsequent estimates of 
thermodynamic properties for this system have changed 
slightly, but the procedure followed by N.L. Bowen was 
entirely appropriate.

Equations (3) to (8) apply where both mixtures in 
the transfer system are ideal. This assumption can be 
relaxed by replacing mole fraction terms (X) by activity 
terms (a); the two are related by a = �X, where � is the 
activity coeffi cient. Some possibilities for liquidus and 
solidus curves in systems where one or both binary 
phases are not ideal mixtures were explored by Oonk 
(1981). 

The crystallization of plagioclase from natural melts 
also is a transfer process, but different composition 
– temperature equations are needed. This problem was 
considered, for example, by Ghiorso et al. (1983).

EXCHANGE EQUILIBRIUM

The exchange of cations between associated rock-
forming minerals is analogous to ion exchange in soils, 
which in 1850 was studied by H.S. Thompson and J.T. 
Way, and a few years later by J. Lemberg, who attrib-
uted the process to clay and zeolite minerals (Helfferich 
1962). One of the fi rst studies of exchange between two 
crystalline phases was by Tubandt & Reinhold (1929), 
who found that the equilibrium distribution of Ag and 
Cu between (Ag,Cu) I and (Ag,Cu)2 S is a function of 
temperature. The theory of exchange equilibrium was 
introduced to Geology by Ramberg & DeVore (1951).

As an example of exchange equilibrium, consider 
a system composed of crystals of orthopyroxene (a 
mixture of components MgSiO3, denoted en, and 
FeSiO3, denoted fs), together with crystals of Ca 
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pyroxene (a mixture of components CaMgSi2O6, 
denoted di, and CaFeSi2O6, denoted hd). Simplifi ed 
formulas are used. A condition of equilibrium with 
regard to the distribution of Mg and Fe2+ atoms between 
crystals of orthopyroxene (Opx) and Ca pyroxene (Cpx) 
in this system is described by the following single mass-
balance equation and single energy-balance equation:

mass: MgSiO3 + CaFeSi2O6  FeSiO3 
 + CaMgSi2O6  (9)

energy: �en
Opx + �hd

Cpx = �fs
Opx + �di

Cpx (10)

By substitution of four equations of type (3), i.e., 
assuming ideal mixing in both phases,

 Xfs
Opx /    GFs + GDi 

  Xen
Opx   – GEn – GHd   �G(9)

—————– = exp – [ ——————— ] = exp – ( ——— ) (11)
  Xhd

Cpx /    RT  RT
 Xdi

Cpx

The quotient on the far left of this equation is commonly 
written

  Xfs (1 – Xhd)  
 ——–————— = KD  (12).
  (1 – Xfs) Xhd  

Notice that at low concentrations of Fe (i.e., where Fe 
forms a minor or trace element), quotient (12) becomes 
very nearly equal to the ratio Xfs / Xhd, which forms 
one expression of the Nernst distribution law (Nernst 
1904).

The orthopyroxene – Ca pyroxene exchange equi-
librium can be represented by a distribution diagram 
in which Xfs is plotted against Xhd, to produce an 
isothermal distribution curve (Fig. 2). At constant 
temperature and pressure, the system is obviously 
univariant (not invariant), and because �G in equation 
(11) is a function of temperature, KD is expected to vary 
with temperature:

FIG. 1. Transfer equilibrium in the plagioclase crystal – melt system at 1.0 bar pressure, 
showing experimental data (+) of Bowen (1913) and the writerʼs solutions to equations 
(8a) and (8b) in text (dots and curves).
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  �ln KD  1 �(�G(9) / T)   �H(9)

 ————  = – —– ———–——–— = – ——— (13)
  �(1/T)   (R ) �(1/T)  R

where �H(9) is the enthalpy change for reaction (9), with 
components as pure phases. For several exchange-type 
systems, the anticipated dependence of KD on T has 
indeed been demonstrated experimentally. Here, as in 
the transfer system (above), departure from ideal mixing 
can be accommodated if necessary. In the orthopyroxene 
– Ca pyroxene system at granulite-facies conditions, the 
distribution coeffi cient remains nearly constant at 1.80 
(the plotted curve in Fig. 2), and departures from ideal 
mixing seem small.

Fifty years ago, various terms and symbols were 
used in Chemistry for the quotient (12), and of these the 
writer (1959, 1961) chose distribution coeffi cient and 
KD. Since then, other terms and symbols have appeared 
in the geological literature, especially for the distribu-
tion of trace elements (Beattie et al. 1993).

DISCUSSION

Although the best-known examples of transfer 
systems in Geology are the plagioclase and the (Mg, Fe) 
olivine crystal–melt systems, Ramberg (1952) pointed 
out that analogous equilibria occur in solid-state (meta-
morphic) systems as well, for example,

2[(Fe,Mn)4.5Al1.5][Al1.5Si2.5]O10(OH)8 
+ 4SiO2 → 3(Fe,Mn)3Al2Si3O12 + 8H2O (14)

K(Mg,Fe)3AlSi3O10(OH)2 + Al2SiO5 + 2SiO2 
→ (Mg,Fe)3Al2Si3O12 + KAlSi3O8 + H2O (15)

Where a third solution component is added to a transfer 
system, e.g., Mn2SiO4 to the (Mg,Fe) olivine crystal 
– melt system, the liquidus and solidus lines become 
curved planes, equations for which were derived by 
Seltz (1935). In transfer systems (14) and (15), above, 
the chemical potential of H2O in the crystal-boundary 
phase becomes an additional variable.

FIG. 2. Distribution of Mg and Fe2+ between orthopyroxene (Opx) and Ca pyroxene (Cpx) 
in three widespread granulite-grade terranes (T ≈ 800°C, P ≈ 8 kbar), as a demonstra-
tion of exchange equilibrium. Data are from India (H: R.A. Howie), Australia (D: L.R. 
Davidson) and the Adirondacks in North America (J: L.-S. Jen; JRT: H.W. Jaffe, P. 
Robinson, R.J. Tracy). Numbers, e.g., J(3), indicate number of near-identical samples. 
The curve is for KD = 1.80 [(11) and (12) in text]. From Kretz (1994, p. 230).



 REVIEW OF SIMPLE TRANSFER AND EXCHANGE EQUILIBRIA 1353

Many exchange systems have been studied, prin-
cipally ones in which Mg and Fe2+ are shared by two 
phases, for example,

Ca(Mg,Fe)Si2O6 and (Mg,Fe)3Al2Si3O12 (16)

(Mg,Fe)3Al2Si3O12 and 
K(Mg,Fe)3AlSi3O10(OH)2 (17)

In exchange systems, the distribution coeffi cient can be 
displaced by the presence of another component, for 
example the addition of Ca3Al2Si3O12 to garnet in (17) 
(Kretz 1994, p. 225).

In the above derivations, pressure was assumed to 
remain constant. The effect of pressure on the equilibria 
can be readily evaluated by use of standard equations.

Comparing the simple transfer and exchange 
systems described above, recall that the variance of the 
plagioclase transfer system (at constant pressure) is one, 
and that of the pyroxene exchange system is two. Thus 
at constant pressure and temperature, the composition 
of both plagioclase crystal and melt is fi xed (Fig. 1), 
whereas in the exchange system, the composition of 
both orthopyroxene and Ca pyroxene can vary (Fig. 2), 
the only restriction being that the composition of one is 
a function of the composition of the other.

Now it would be possible to divide one of the 
transfer equations (5b) by the other (5a), to produce 
an equation that resembles the exchange equation (11), 
with a quotient,

  Xm
an (1 – Xc

an) ————–—————  (18),
  (1 – Xm

an) Xc
an

which resembles the distribution coeffi cient (12). But 
the equation cannot describe the liquidus and solidus 
curves, nor their dependence on the heat of melting, nor 
equivalent curves in solid–solid systems. Moreover, the 
equation does not fi x the composition of the two phases 
(at constant T and P) as required. Although this equation 
could at times be useful, it has no place in the theory 
of transfer equilibrium, and quotient (18) should not be 
referred to as a distribution coeffi cient. Also, one could 
attempt to defi ne a transfer system by combining one of 
the transfer equations, analogous to (5a) or (5b), with 
an exchange quotient such as (12). But this procedure 
also is theoretically incorrect.

As an example of a system in which a transfer 
reaction could dominate during heating, followed by 
minor exchange during cooling, consider the mineral 
assemblage in equation (15). In high-grade metamor-
phic terranes, biotite evidently reacts with sillimanite 
and quartz to produce garnet, K-feldspar and H2O, as 
both biotite and garnet increase in Mg relative to Fe 
(Ramberg 1952, p. 158, Schmid & Wood 1976, Kretz 
1990). During cooling, the reaction could reverse, but 

where only a slight increase in Fe is found in the rim 
of garnet crystals, where in contact with biotite, it 
seems more likely that a local Fe–Mg (garnet–biotite) 
exchange reaction has occurred instead (Hess 1971, 
Tracy et al. 1976, Spear 1993).

CONCLUSION

Although thermodynamic theory cannot provide 
information on the properties of minerals and melts 
(e.g., melting temperatures of crystals, and the heat 
of melting), the theory is remarkably successful in 
providing a defi nition of chemical equilibrium, and in 
describing different kinds of composition – temperature 
relations to be expected in different kinds of mineral or 
mineral–melt systems.
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