PHASE EQUILIBRIA IN THE SYSTEM Cu-Ga-S AT 500° AND 400°C

TEIICHI UENO, KATSUYOSHI NAGASAKI, TOMOMASA HORIKAWA, Mutsunori KAWAKAMI and Katsuhiko KONDO

Department of Earth Sciences, Fukuoka University of Education, Akama-Bunkyo town 1–1, Munakata city, Fukuoka, 811–4192, Japan

Abstract

Phase equilibria in the system Cu–Ga–S were investigated by dry synthesis at 500° and 400°C using the three elements (Cu, Ga and S) and four synthetic sulfides (CuS, Cu₂S, GaS and Ga₂S₃) as starting materials; we established the phase diagrams for this ternary system at both temperatures. Gallite, the only reported mineral in the system, is located in the central position in these diagrams, and many tie lines extend from it to other phases; covellite, digenite, phases α , ζ , γ , GaS, X and and sulfur. Gallite shows essentially no solid solution with the other phases, appearing as stoichiometric CuGaS₂. On the join between gallite and Ga₂S₃, a new phase, named X, was found. It is whitish gray with yellow internal reflections in reflected light. It is optically very similar to Ga₂S₃, but its X-ray powder-diffraction data show a tetragonal symmetry. The cell parameters are *a* 2.250, *c* 10.474 Å. It has a limited solid-solution field ranging from Cu_{10.0}Ga_{31.7}S_{58.3} to Cu_{10.5}Ga_{32.5}S_{57.0} at 500°C and from Cu_{9.7}Ga_{32.2}S_{58.1} to Cu_{10.4}Ga_{32.2}S_{57.3} at 400°C. Digenite contains between 0.2 and 0.4 at.% Ga, GaS contains from 1.1 to 1.4 at.% Cu, and Ga₂S₃ exist at both temperatures. The phases α , ζ , and γ are connected to gallite with tie lines, and the phases γ , ω , and gallium liquid are connected to GaS with tie lines at both temperatures.

Keywords: system Cu-Ga-S, phase equilibria, dry synthesis, gallite, phase X.

Sommaire

Nous avons étudié les équilibres de phases dans le système Cu–Ga–S par synthèses à sec à 500° et 400°C en utilisant comme matériaux de départ les trois éléments (Cu, Ga et S) et quatre sulfures synthétiques (CuS, Cu₂S, GaS et Ga₂S₃); nous avons établi les diagrammes de phases pour ce système ternaire aux deux températures. La gallite, le seul minéral connu dans ce système, est situé à une position centrale dans ces diagrammes, et plusieurs lignes de coexistence vont de ce point vers les autres phases: covellite, digénite, α , ζ , γ , GaS, X et soufre. La gallite ne montre quasiment aucun écart à la composition idéale, CuGaS₂. Nous avons établi l'existence d'une nouvelle phase, X, sur le joint entre gallite et Ga₂S₃. Cette phase est blanchâtre avec des réflexions internes jaunes en lumière réfléchie; elle est optiquement très semblable au Ga₂S₃, mais son spectre de diffraction montre qu'il s'agit d'une phase tétragonale. Ses paramètres réticulaires sont *a* 2.250, *c* 10.474 Å. Elle fait preuve d'une solution solide limitée allant de Cu_{10.0}Ga_{31.7}S_{58.3} à Cu_{10.5}Ga_{32.2}S_{57.0} à 500°C et de Cu_{9.7}Ga_{32.2}S_{58.1} à Cu_{10.4}Ga_{32.2}S_{57.3} à 400°C. La digénite contient de 0.2 à 0.4% Ga (proportion atomique), GaS contient entre 1.1 à 1.4% Cu, et Ga₂S₃ contient entre 0.9 et 1.0% Cu aux deux températures. Sur la lignée Cu–Ga, cinq phases, désignées α , ζ , γ , ω et gallium liquide, existent aux deux températures. Les phases α , ζ , et γ sont connectées à la gallite par des lignes de coexistence, et les phases γ , ω , et gallium liquide sont connectées à GaS par des lignes de coexistence, et les phases γ , ω , et gallium liquide sont connectées à GaS par des lignes de coexistence.

(Traduit par la Rédaction)

Mots-clés: système Cu-Ga-S, équilibre des phases, synthèse à sec, gallite, phase X.

[§] *E-mail address*: uenot@fukuoka-edu.ac.jp

INTRODUCTION

Copper, one of the principal metallic elements, has been widely used since prehistory; on the other hand, gallium only recently has been found useful in high technology (e.g., semiconductors, radiation detectors and cathodoluminescent display devices). In nature, only one phase of the ternary system Cu-Ga-S has been described until now, by Strunz et al. (1958). They found the CuGaS₂ phase in the ores from Tsumeb mine in Namibia, and Kipushi mine (Prince Leopold mine) in the Democratic Republic of Congo. Both Tsumeb and Kipushi mines are hydrothermal vein-type ore deposits and produce Cu-Fe-Zn-Pb-S ores containing rare metals (Ge and Ga). According to Strunz et al. (1958), gallite occurs in association with germanite, renierite, sphalerite, galena, chalcopyrite, pyrite, bornite, and chalcocite.

PREVIOUS EXPERIMENTAL STUDIES

Phase equilibria of the Cu–S system have received much attention from mineralogists and economic geologists, so that this binary system is now well understood (*e.g.*, Roseboom 1966). Lieth *et al.* (1966, 1967) studied the phase relations in the system Ga–S using the sublimation method, and presented the P–T–X phase diagram of this binary system. Weibke (1934), Hume-Rothery & Raynor (1937) and Betterton & Hume-Rothery (1951–1952) investigated phase relations in the system Cu–Ga and showed this binary diagram from 0° to 1,100°C from the metallurgical point of view. Hahn *et al.* (1953) first synthesized CuGaS₂ phase using the evacuated silica-tube method (900°–1000°C, 12 hours heating) from a mixture of Cu₂S and Ga₂S₃, and found that it has a chalcopyrite structure.

Here, we present the first phase-equilibrium study of the ternary system Cu–Ga–S at 500° and at 400°C in order to elucidate the field of stability of CuGaS₂, gallite, and the phase relations in this ternary system, including the discovery of a new phase. These temperatures are important for understanding the genesis of ore deposits and also are suitable for the attainment of the equilibrium state in synthetic experiments.

EXPERIMENTAL

We performed dry-synthesis equilibrium experiments in the system Cu–Ga–S in evacuated pyrex tubes. Elemental Cu (99.999% purity), Ga (99.9999% purity) and crystalline S (99.999% purity), and four synthetic sulfides (CuS, Cu₂S, GaS and Ga₂S₃) were used as starting materials. Syntheses of GaS and Ga₂S₃, and other experimental details, are described in Ueno & Scott (1991).

Reactants were mixed by grinding in an agate mortar and sealed in evacuated pyrex tubes with an oxypropane gas flame. The tubes were heated in an electric furnace at 500° and 400°C, and quenched in cold water after heating for 60 to 70 days at 500°C and 90 to 100 days at 400°C. These experiment durations are considered adequate to attain the equilibium state, because we examined the phase assemblages of products from the point of view of the phase rule. Products were examined by reflected light microscopy and by X-ray powder diffractometry (Mac Science high-energy X-ray diffractometer, Ni-filtered CuKa radiation, 40 kV, 100 mA), with Si as an internal standard. Cell parameters were calculated for some phases by the least-squares method from precisely measured d-values. The chemical compositions of the phases synthesized were determined using a JEOL 50A electron microprobe. Operating conditions were 25 kV accelerating voltage and 20 nA probe current (measured on a MgO crystal). Synthetic CuS, Cu₂S, GaS, and Ga₂S₃ and metallic Cu were used as standards.

RESULTS

In Tables 1 and 2, we show the experimental results for the joins CuS–GaS, Cu₂S–GaS and CuS–Ga₂S₃ at 500° and at 400°C, respectively. In Tables 3 and 4, we show the experimental results for the Cu₂S–Ga₂S₃, CuS–Ga, Cu–GaS and Cu–Ga joins at 500° and at 400°C, respectively. These tables show the assemblages

 TABLE 1. EXPERIMENTAL RESULTS FOR THE CuS–GaS, Cu2S–GaS

 AND CuS–Ga2S3 JOINS AT 500°C

Run no.	Reactants	Bulk	compos	itions	Duration	Products
		Cu	Ga	S	(days)	
NA007	9CuS + GaS	45.0	5.0	50.0	60	cy + gal
NA008	$8CuS \pm 2GaS$	40.0	10.0	50.0	60	cv + gal
NA009	7CuS ± 3GaS	35.0	15.0	50.0	60	cv + gal
NA010	$6CuS \pm 4GaS$	30.0	20.0	50.0	60	cv + gal
NA011	5CuS + 5GaS	25.0	25.0	50.0	60	gal
NA012	4CuS + 6GaS	20.0	30.0	50.0	60	gal + GaS
NA013	3CuS + 7GaS	15.0	35.0	50.0	60	gal + GaS
NA014	2CuS + 8GaS	10.0	40.0	50.0	60	gal + GaS
NA015	CuS + 9GaS	5.0	45.0	50.0	60	gal + GaS
NA025	$9Cu_3S + GaS$	62.1	3,4	34.5	70	$\alpha + dg + gal$
NA026	$8Cu_3S + 2GaS$	57.7	7.1	35.7	70	$\alpha + dg + gal$
NA027	$7Cu_2S + 3GaS$	51.9	11.1	37.0	70	$\alpha + dg + gal$
NA028	6Cu ₂ S + 4GaS	46.2	15.4	38.5	70	$\alpha + dg + gal$
NA029	5Cu ₂ S + 5GaS	40.0	20.0	40.0	70	$\alpha + dg + gal$
NA030	$4Cu_{3}S + 6GaS$	33.3	25.0	41.7	70	gal + C
NA031	$3Cu_{2}S + 7GaS$	26.1	30.4	43.5	70	$gal + GaS + \gamma$
NA032	$2Cu_{1}S + 8GaS$	18.2	36.4	45.4	70	$gal + GaS + \gamma$
NA033	Cu ₂ S + 9GaS	9.5	42.9	47.6	70	$gal + GaS + \gamma$
NA040	$9CuS + Ga_3S_3$	39.1	8.7	52.2	65	cv + gal + S
NA041	$8CuS + 2Ga_2S_3$	30.8	15.4	53.8	65	cv + gal + S
NA042	7CuS + 3Ga ₃ S ₃	24.1	20.7	55.2	65	cv + gal + S
NA043	$6CuS + 4Ga_2S_3$	18.8	25.0	56.2	65	gal + X + S
NA044	$5CuS + 5Ga_2S_3$	14.3	28.6	57.1	65	gal + X + S
NA045	$4CuS + 6Ga_2S_3$	10.5	31.6	57.9	65	gal + X + S
NA046	$3CuS + 7Ga_2S_3$	7.3	34.2	58.5	65	$Ga_2S_3 + X + S$
NA047	$2CuS + 8Ga_2S_3$	4.5	36.4	59.1	65	$Ga_2S_3 + X + S_3$
NA048	$CuS + 9Ga_2S_3$	2.1	38.3	59.6	65	$Ga_2S_3 + X + S_3$

Symbols: cv: covellitc, gal: gallitc, GaS: GaS phase, α : phase α , dg: digenite, ζ : phase ζ , γ : phase γ , S: sulfur, Ga₂S₁: phase Ga₂S₁, X: phase X. The bulk compositions are quoted in atom %.

of reactants, bulk compositions (atom %), duration of the experiments and the reacted products.

In the join CuS-GaS, covellite, gallite and GaS were produced at both temperatures. In the runs having the bulk composition of Cu₂₅Ga₂₅S₅₀, (single phase) gallite was synthesized. Along the join Cu₂S-GaS, the phases $\alpha,$ digenite, gallite, GaS, γ and Ω were produced at both temperatures. Along the join CuS-Ga₂S₃, covellite, gallite, sulfur, phase X and Ga₂S₃ were produced at both temperatures. Phase X had not been encountered before (see below). Along the join Cu₂S-Ga₂S₃, gallite, digenite, phase X, GaS and Ga₂S₃ were produced at both temperatures. Along the join CuS-Ga, gallite, digenite, covellite, phases α , Ω , γ , GaS, ω and Ga liquid were produced at both temperatures. Along the last join, Cu–Ga, the phases α , Ω , γ , ω and Ga liquid were produced at both temperatures. The results of the electron-microprobe analyses, each an average of measurements on several grains, are shown in Tables 5 and 6. All analytical errors are within 0.1 weight %.

Descriptions of synthesized phases

Gallite forms small irregularly shaped grains (less than 20 μ m) in polished thin section and coexists with covellite, digenite, GaS, phase X, sulfur, phases α , Ω and γ . Gallite is brownish gray in reflected light and

TABLE 2. EXPERIMENTAL RESULTS FOR THE CuS–GaS, Cu2S–GaS AND CuS–Ga2S3 JOINS AT 400 $^\circ\mathrm{C}$

Run no.	Reactants	Bulk	Bulk compositions			Products
		Cu	Ga	S	(days)	
MU-009	9CuS + GaS	45.0	5.0	50.0	90	cv + gal
MU-010	8CuS + 2GaS	40.0	10.0	50.0	90	cv + gal
MU-011	7CuS + 3GaS	35.0	15.0	50.0	90	cv + gal
MU-012	6CuS + 4GaS	30.0	20.0	50.0	90	cv + gal
MU-013	5CuS + 5GaS	25.0	25.0	50.0	90	gal
MU-029	4CuS + 6GaS	20.0	30.0	50.0	90	gal + GaS
MU-028	3CuS + 7GaS	15.0	35.0	50.0	90	gal + GaS
MU-014	2CuS + 8GaS	10.0	40.0	50.0	90	gal + GaS
MU-015	CuS + 9GaS	5.0	45.0	50.0	90	gal + GaS
HO-005	9Cu ₂ S + GaS	62.1	3.4	34.5	95	$\alpha + dg + gal$
HO-006	8Cu ₃ S + 2GaS	57.7	7.1	35.7	95	$\alpha + dg + gal$
HO-007	7Cu ₂ S + 3GaS	51.9	11.1	37.0	95	$\alpha + dg + gal$
HO-008	6Cu ₅ S + 4GaS	46.2	15.4	38.5	95	$\alpha + dg + gal$
HO-009	5Cu ₂ S + 5GaS	40.0	20.0	40.0	95	$\alpha + dg + gal$
HO-010	4Cu ₂ S + 6GaS	33.3	25.0	41.7	95	gal + $\zeta + \gamma$
HO-011	$3Cu_2S + 7GaS$	26.1	30.4	43.5	95	gal + GaS + γ
HO-012	$2Cu_2S + 8GaS$	18.2	36.4	45.4	95	$gal + GaS + \gamma$
HO-013	$Cu_2S + 9GaS$	9.5	42.9	47.6	95	$gal + GaS + \gamma$
HO-017	$3CuS + 7Ga_2S_3$	7.3	34.2	58.5	95	$Ga_2S_3 + X + S$
MU-019	$9CuS + Ga_2S_3$	39.1	8.7	52.2	90	cv + gal + S
MU-020	$8CuS + 2Ga_2S_3$	30.8	15.4	53.8	90	cv + gal + S
MU-022	$7CuS + 3Ga_3S_3$	24.1	20.7	55.2	90	cv + gal + S
MU-021	$6CuS + 4Ga_2S_3$	18.8	25.0	56.2	90	gal + X + S
MU-023	$5CuS + 5Ga_2S_3$	14.3	28.6	57.1	90	gal + X + S
MU-024	$4CuS + 6Ga_2S_3$	10.5	31.6	57.9	90	gal + X + S
MU-025	$3CuS + 7Ga_2S_3$	7.3	34.2	58.5	90	$Ga_2S_3 + X + S$
MU-026	$2CuS + 8Ga_2S_3$	4.5	36.4	59.1	90	$Ga_2S_3 + X + S$
MU-027	$CuS + 9Ga_2S_3$	2.1	38.3	59.6	90	$Ga_2S_3 + X + S$

Symbols: ev: covellite, gal: gallite, GaS: GaS phase, α : phase α , dg: digenite, ζ : phase ζ , γ : phase γ , S: sulfur, Ga₂S₃: phase Ga₂S₃, X: phase X. The bulk compositions are quoted in atom %.

TABLE 3.	EXPERIMENTAL RESULTS FOR THE Cu2S-Ga2S3, CuS-Ga,
	Cu–GaS AND Cu–Ga JOINS AT 500°C

Run no.	Reactants	Bull	compos	itions	Duration	Products	
		Cu	Ga	S	(days)		
CGS-009	$7Cu_2S + 3 Ga_2S_3$	38.9	16.7	44.4	60	gal + dg	
CGS-010	$Cu_2S + Ga_2S_3$	25.0	25.0	50.0	60	gal	
CGS-011	$3Cu_2S + 7Ga_2S_3$	13.6	31.8	54.6	60	X + gal + GaS	
CGS-012	$Cu_2S + 4Ga_2S_3$	8.7	34.8	56.5	60	X + gal + GaS	
CGS-013	$Cu_2S + 9 Ga_2S_3$	4.2	37.5	58.3	60	$X + Ga_2S_3 + GaS$	
CGS-001	4CuS + Ga	44.5	11.0	44.5	60	gal + dg + cv	
CGS-002	7CuS + 3Ga	41.2	17.6	41.2	60	gal + dg + α	
CGS-003	3CuS + 2Ga	37.5	25.0	37.5	60	gal + γ + ζ	
CGS-004	CuS + Ga	33.3	33.3	33,3	60	$gal + GaS + \gamma$	
CGS-005	2CuS + 3Ga	28.5	43.0	28.5	60	γ +GaS + gal	
CGS-006	3CuS + 7Ga	23.1	53.8	23.1	60	$\gamma + GaS + \omega$	
CGS-007	4Cu + GaS	66.7	16.6	16.6	60	$gal + \alpha + dg$	
CGS-008	Cu + GaS	33.3	33.3	33.3	60	$gal + GaS + \gamma$	
CGS-014	CuS + 4Ga	16.6	66.7	16.6	60	$GaS + \omega + Ga$	
CGS-015	CuS + 9Ga	9.1	81.8	9.1	60	$GaS + \omega + Ga$	
CG-001	4Cu + Ga	80.0	20.0	0.0	70	α	
CG-002	7Cu + 3Ga	70.0	30.0	0.0	70	γ	
CG-003	3Cu + 2Ga	60.0	40.0	0.0	70	$\gamma + \omega$	
CG-004	Cu + Ga	50.0	50.0	0.0	70	$\gamma + \omega$	
CG-006	2Cu + 3Ga	40.0	60.0	0.0	70	$\gamma + \omega$	
CG-007	3Cu + 7Ga	30.0	70.0	0.0	70	ω + Ga	
CG-008	3Cu + Ga	75.0	25.0	0.0	70	ζ+γ	
CG-009	Cu + 4Ga	20.0	80.0	0.0	70	ω + Ga	
CG-010	Cu + 9Ga	10.0	90.0	0.0	70	$\omega + Ga$	
CG-011	9Cu + Ga	90.0	10.0	0.0	70	α	

Symbols: gal: gallite, dg: digenite, X: phase X, GaS: phase GaS, Ga₂S₃: phase Ga₂S₃: phase Ga₂S₃: phase Ga, Y: phase ζ , ω : phase ω , Ga: gallium. The bulk compositions are quoted in atom %.

TABLE 4.	EXPERIMENTAL RESULTS FOR THE Cu2S-Ga2S3, CuS-Ga,
	Cu–GaS AND Cu–Ga JOINS AT 400°C

Run no.	Reactants	Bull	k compos	sitions	Duration	Products
		Cu	Ga	S	(days)	
KKM-023	$7Cu_2S + 3 Ga_2S_3$	38.9	16.7	44,4	100	gal + dg
KKM-024	$Cu_2S + Ga_2S_3$	25.0	25.0	50.0	100	gal
KKM-025	$3Cu_2S + 7Ga_2S_3$	13.6	31.8	54.6	100	\overline{X} + gal + GaS
KKM-026	$Cu_2S + 4Ga_2S_3$	8.7	34.8	56.5	100	X + gal + GaS
KKM-027	$Cu_2S + 9Ga_2S_3$	4.2	37.5	58.3	100	X+Ga ₂ S ₃ +GaS
KKM-003	4CuS + Ga	44.5	11.0	44.5	90	gal + dg + ev
KKM-004	7CuS + 3Ga	41.2	17.6	41.2	90	$gal + dg + \alpha$
KKM-005	3CuS + 2Ga	37.5	25.0	37.5	90	$gal + g + \zeta$
KKM-006	CuS + Ga	33.3	33.3	33.3	90	$gal + GaS + \gamma$
KKM-007	2CuS + 3Ga	28.5	43.0	28.5	90	$gal + GaS + \gamma$
KKM-008	3CuS + 7Ga	23.1	53.8	23.1	90	$\gamma + GaS + \omega$
KKM-009	4Cu + GaS	66.7	16.6	16.6	100	$gal + \alpha + dg$
CGS-016	Cu + GaS	33.3	33.3	33.3	100	$gal + GaS + \gamma$
KKM-010	4Cu + Ga	80.0	20.0	0.0	100	α
KKM-011	7Cu + 3Ga	70.0	30.0	0.0	100	$\zeta + \gamma$
KKM-012	3Cu + 2Ga	60.0	40.0	0.0	100	$\gamma + \omega$
KKM-013	Cu + Ga	50.0	50.0	0.0	100	$\gamma + \omega$
KKM-019	2Cu + 3Ga	40.0	60.0	0.0	100	$\gamma + \omega$
KKM-020	3Cu + 7Ga	30.0	70.0	0.0	100	ω
KKM-021	Cu + 4Ga	25.0	75.0	0.0	100	ω + Ga
KKM-022	Cu + 9Ga	20.0	80.0	0.0	100	$\omega + Ga$
KKM-028	3Cu + Ga	75.0	25.0	0.0	100	$\zeta + \gamma$
KKM-029	9Cu + Ga	90.0	10.0	0.0	100	α
KKM-030	CuS + 4Ga	16.6	66.7	16.6	100	$GaS + \omega + Ga$
KKM-031	CuS + 9Ga	9.1	81.8	9.1	100	$GaS+\omega+Ga$

Symbols: gal: gallite, dg: digenite, X: phase X, GaS: phase GaS, Ga₂S₃: phase GaS₃, cv: covellite, α : phase α , γ : phase γ , ζ : phase ζ , ω : phase ω , Ga: gallium. The bulk compositions are quoted in atom %.

has weak anisotropy, from dark brownish gray to dark bluish gray. It is located in the central position of the Cu-Ga-S system, and its chemical composition is considered to be CuGaS₂ (Strunz et al. 1958). In our experiment, the reactants having the bulk composition of $CuGaS_2$ produce only gallite (Tables 1, 2), and the electron-probe micro-analyses show a nearly stoichiometric composition (Tables 5, 6). Gallite thus shows very limited solid-solution toward other phases at 500° and 400°C.

In Table 7, we present the X-ray-diffraction data on our sample of synthetic gallite so as to compare with the first data presented for this mineral, by Hahn et al. (1953). This mineral shows tetragonal symmetry similar to chalcopyrite. Except for the absence of a (008)

TABLE 5. CHEMICAL COMPOSITION OF PHASES IN THE SYSTEM Cu-Ga-S AT 500°C

Run no.	Cu	Ga weight %	S	Total	Cu	Ga atom %	S	continuou the chemi high-temp	s with th cal com erature	ne dig positi form	enite : on po of ch	solid int o alcoo
			gallite					elements ((e.g., iro	on) (N	lorimo	oto 8
CGS-002 CGS-003	32.7 32.3	35.1 35.6	32.7 32.6	100.5 100.5	25.2 25.0	24.7 25.1	50.1 49.9					
CGS-004 CGS-010	32.3 32.5	35.1 35.6	32.2 32.8	99.6 100.9	25.2 25.0	25.0 25.0	49.8 50.0	Т	ABLE 6. C IN TH	HEMICA IE SYST	AL COM IEM Cu-	POSIT -GaS
			digenit	e								
CGS-002	79.2	0.4	20.1	99.7	66.3	0.3	33.4	Run no.	Cu	Ga weight %	Ś	Tota
			phase 2	х								
CGS-011	14.0	47.6	38.4	100.0	10.5	32.5	57.0				gallite	;
CGS-013	13.5	46.9	39.6	100.0	10.0	31.7	58.3	KKM-008	32.7	35.2	32.6	100.5
								KKM-023	31.9	36.0	32.6	100.5
			phase G	aS				KKM-024	32.0	34.8	32.2	99.0
								KKM-025	31.8	36.1	32.4	100.3
CGS-005	1.7	67.3	31.5	100.5	1.3	48.9	49.8					
CGS-006	1.8	66.0	31.5	99.3	1.4	48.4	50.2				digenit	e
CGS-015	1.8	67.2	31.7	100.7	1.4	48.7	49.9					
			ahaaa Ca					KKM-008	79.8	0.3	20.5	100.6
		I	phase Ga	1203				KKM-023	79.3	0.5	19.8	99.6
CGS-013	1.3	57.1	41.2	99.6	1.0	38.5	60.5				phase 2	X
			phase	α				KKM-025	13.0	47.8	38.6	99 d
								KKM-026	13.9	47.1	38.5	99.5
CG-001	78.5	21.4	0.0	99.9	80.1	19.9	0.0	KKM-027	12.9	47.1	39.0	99.0
CG-011	89.8	11.1	0.0	100.9	89.9	10.1	0.0					
			phase	ζ						1	phase Ga	$\iota_2 S_3$
~~ ~ ~ ~ ~								KKM-026	1.2	57.6	39.8	98.6
CG-008	/5.1	24.7	0.0	99.8	76.9	23.1	0.0	KKM-027	1.0	58.1	40.1	99.2
			phase	γ							phase ?	γ
CG-003	62.6	37.3	0.0	99.9	64.8	35.2	0.0	CGS-016	65.8	34.0	0.0	99.8
CG-008	67.7	31.8	0.0	99.5	70.0	30.0	0.0	KKM-019	61.0	38.8	0.0	99.8
			phase	9)							phase of	ມ
CG-006	34.0	66.2	0.0	100.2	36.0	64.0	0.0	KKM-019	33.4	66.5	0.0	99.9
CG-010	30.9	68.7	0.0	99.6	33.0	67.0	0.0	KKM-020	28.1	71.4	0.0	99.5
			Ga liqu	id							Ga liqu	id
CG-010	2.4	97.1	0.0	99.5	2.6	97.4	0.0	KKM-021	2.0	97.7	0.0	99.7

reflection, our data are very similar to those of Hahn et al. (1953), and the cell parameters a and c are nearly the same. At the two localities of this mineral, Tsumeb and Prince Leopold mine, Strunz et al. (1958) found gallite to be a light gray mineral with a metallic luster, and located in germanite, Cu₃(Ge,Fe)S₄, and renierite, Cu₃(Fe,Ge)S₄, and as exsolution lamellae along (100) and (111) in sphalerite, and itself contains exsolution lamellae of sphalerite oriented on (001).

Digenite occurs as small granular grains (less than 30 μ m) or rectangularly shaped long grains (500 μ m \times 10 µm) in polished thin sections, and coexists with covellite, gallite and phase α . This phase is light gray-blue in reflected light and isotropic. According to Roseboom (1966), chalcocite, the orthorhombic low-temperature form of Cu₂S, is stable from below room temperature to 103.5°C, and according to Skinner (1966), it inverts upon heating to a hexagonal polymorph that remains stable to 420°C, at which point it inverts to a cubic polymorph. This cubic polymorph is considered to be solid-solution. Thus from int of view, digenite is a alcocite containing other to & Koto 1970). In the

POSITION OF PHASES Ga−S AT 400°C

Cu

25.3 24.7 25.1

24.7

66.1

66.6

9.8 32.7

10.4

9.7

0.9 39.6

0.7 39.7

67.9 32.1

63.3

35.5

30.2

2.2 97.8

Ga

atom %

24.8

25.4

24.9

25.5

0.2 33.7

0.4 33.0

32.2

32.2

36.7

64.5

69.8

S

49.9

49.9

50.0

49.8

57.5

57.3

58.1

59.5

59.6

0.0

0.0

0.0

0.0

0.0

case of our experiments, it is stabilized by gallium, from 0.2 to 0.4 atom % (Tables 5, 6).

Phase X is a new phase produced in this experiment. It appears as very small grains (less than 10 μm) in polished thin sections and coexists with gallite, GaS, Ga₂S₃ and sulfur. It is whitish gray with yellow internal reflections in reflected light and is optically very similar to Ga₂S₃. The phase Ga₂S₃ is also whitish gray, but its internal reflections are bluish yellow. Phase X has a limited solid-solution field, ranging from Cu_{10.0}Ga_{31.7}S_{58.3} to Cu_{10.5}Ga_{32.5}S_{57.0} at 500°C (Table 5) and from $Cu_{9.7}Ga_{32.2}S_{58.1}$ to $Cu_{10.4}Ga_{32.2}S_{57.3}$ at 400°C (Table 6). Table 8 shows the X-ray powder-diffraction data for α -Ga₂S₃ and phase X. The latter is tetragonal, a 2.250, c 10.474 Å.

The phases GaS and Ga₂S₃ were described completely by Ueno & Scott (1991). In the present experiments, phase GaS contains up to 1.4 atom % Cu at 500°C (Table 5) and 1.1 atom % Cu at 400°C (Table 6). Phase Ga₂S₃ contains up to 1.0 atom % Cu at 500°C (Table 5) and 0.9 atom % Cu at 400°C (Table 6). The Cu-doped GaS and Ga₂S₃ phases are very similar to the pure phases optically.

The phase α forms small granular grains (less than 20 μ m) or long rectangular grains (80 \times 5 μ m) and coexists with gallite, digenite and phase ζ . This phase has a solid-solution field ranging from Cu₁₀₀ to $Cu_{80}Ga_{20}$ at both temperatures (Tables 5, 6). The color of this phase changes from copper brown (Cu₁₀₀) to reddish yellow ($Cu_{80}Ga_{20}$). Table 9 shows the X-ray powder-diffraction data for phase α . This phase has a face-centered cubic structure, and the cell parameter a increases with increasing Ga content, owing to the difference of atomic radii of copper and gallium.

The phase ζ appears as irregularly shaped grains (less than 70 μ m) and coexists with gallite, phases α

TABLE 7. X-RAY POWDER-DIFFRACTION DATA FOR GALLITE

	,			2	
$d\left(\mathrm{\AA} \right)$	I	hkl	$d_{\rm obs}({\rm \AA})$	$d_{\text{cale}}^2(\text{\AA})$	Ι
3.070	100	112	3.072	3.076	100
2.680	2	200	2.680	2.679	4
2.630	2	004	2.632	2.633	2
1.8940	60	220	1.8975	1.8944	21
1.8760	90	204	1.8776	1.8780	41
1.6100	90	312	1.6143	1.6130	24
1.5820	40	215	1.5898	1.5822	9
1.5360	2	224	1.5373	1.5378	2
1.3380	20	400	1.3386	1.3395	3
1.3110	6	008			
1.2270	20	332	1.2285	1.2281	3
1.2150	60	316	1.2169	1.2192	6
	Tetragonal			Tetragonal	
	a 5.360 Å			a 5.358(5) Å	
	c 10.49 Å			c 10.53(2) Å	

and γ . This phase is light yellow with strong anisotropy from reddish brown to pale green in reflected light. It has a hexagonal close-packed structure. Its cell parameters (composition of Cu₇₉Ga₂₁) are a 2.593, c 4.229 Å (Zintl & Treusch 1936). In the present study, we synthesized the ζ phase with the composition Cu₇₇Ga₂₃ (Tables 5, 6), and the cell parameters are a 2.6039, c4.249 Å (Table 10), values that are a little larger than those of Zintl & Treusch (1936).

TABLE 8. X-RAY POWDER-DIFFRACTION DATA FOR α-Ga₂S₃ AND PHASE X

d (Å)	1 T	hkl	d _{obs} (Å)	2 d _{cale} (Å)	I	hkl
5 34	20	110	5 235	5 237	1	002
A 775	16	200	0.200	5.451	1	002
4 732	7	111	4 606	4 604	0	101
3.510	5	311	3 715	3 713	4	110
2 /06	0	202	5.715	5.715	-	110
2 215	64	020				
3.213	100	402	3 027	3.020	100	112
2 646	15	210	2.0027	3.029	100	102
2.040	25	112	2.903	2.907	4	105
2.030	25	021				
2.740	3	220				
2.005	3	002	2 626	2 625	2	200
2.050	1	400	2.020	2.025	4	200
2.304	1	400	2 246	2 2 4 2	6	104
2.303	12	511	2,340	2.345	5	211
2.209	13	202	2.292	2.291	5	211
2.197	4	203	2 1 2 7	2.140	2	114
2.190	2	515	2.137	2.140	2	114
2.105	5	502				
2.089	0	515	1.0442	1.0456	2	105
2.046	3		1.9442	1.9450	3	105
1.8808	20		1.8518	1.8539	22	204
1.8533	29		1.7263	1.7262	26	301
			1.5809	1.5826	26	312
			1.5172	1.5145	1	224
			1.4552	1.4550	1	304
			1.4419	1.4423	5	321
	monoclinic		tet	ragonal		
	a 12.652	(4) Å	a	2.250(2) Å	

1. α-Ga₂S₃ (Ueno & Scott 1991); 2. this study (sample no. HO-017).

b

ß 131.07(3)

6.421(3) Å

7.048(2) Å

TABLE 9. X-RAY POWDER-DIFFRACTION DATA FOR THE @ PHASE

10.474(8) Å

d (Å)	1 I	hkl	d _{obs} (Å)	$\frac{2}{d_{\text{rate}}(\text{Å})}$	I	$d_{obs}(Å)$	$\frac{3}{d_{\text{cale}}(\text{Å})}$	I
			000 1 7					
2.088	100	111	2.096	2.091	100	2.128	2.125	100
1.808	46	200	1.8138	1.8112	40	1.8419	1.8401	37
1.278	20	220	1.2799	1.2807	17	1.3005	1.3011	22
Cubic			Cubic			Cubic		

1. JCPDS Card No. 6-0358 (Hahn et al. 1953); 2. This study (sample no. NA-011).

1. Cu₁₀₀, JCPDS Card no. 4-836; 2. Cu₉₀Ga₁₀, this study (sample no.CG-011); 3. Cu_{s0}Ga₂₀, this study (sample no. CG-001)

The phase γ occurs as irregularly shaped grains (less than 100 µm) and coexists with gallite, GaS, phases ζ and ω . This phase is yellowish white and isotropic in reflected light. According to Weibke (1934) and Zintl & Treusch (1936), this phase has a γ -brass structure. Betterton & Hume-Rothery (1951–1952) published values of the cell parameter *a* 8.758, 8.7387, 8.7209 and 8.6352 Å for Cu–Ga alloys with the contents of 29.68, 33.90, 35.89 and 42.64 atom % gallium, respectively.

TABLE 10. X-RAY POWDER-DIFFRACTION DATA FOR THE ζ PHASE

$d(\text{\AA})$	l I	hkl	$d_{\rm obs}({ m \AA})$	$d_{ m calc}^2({ m \AA})$	1
2.256	6	100	2.258	2.255	21
2.115	100	002	2.125	2.125	52
1.9881	22	101	1.9927	1.9919	100
1.5473	3	102	1.5462	1.5464	18
1.2960	26	110	1.3017	1.3019	9
	hexagonal		hexa	gonal	
	a 2.593 Å		а	2.6039(7) Å	
	c 4.229 A		С	4.249(2) A	

1. $Cu_{79}Ga_{21}$ phase, Zintl & Treusch (1936); 2. $Cu_{76.9}Ga_{23.1}$, phase ζ , this study (sample no. CG–008).

1035	I	111	1 (8)	2	
<i>u</i> (A)	1	пкі	$a_{obs}(A)$	$a_{calc}(A)$	1
3.91	60	210			
3 57	70	211			
2.92	20	300			
2 53	50	222	2 520	2 519	9
2 35	60	321	2 333	2 332	5
2.12	40	410	1000		
2.05	100	330	2.057	2.057	100
2.00	10	331		21001	
1.95	40	420	1.9513	1.9513	2
1.91	20	421			-
1.86	60	332	1.8610	1.8605	6
1.79	70	422	1.7814	1.7813	3
1.71	50	510	1.7119	1.7114	4
1.68	40	511			
1.62	20	520			
1.52	20	441			
1.50	10	530			
1.47	10	531			
1.45	80	600	1.4544	1.4544	11
1.43	10	610			
1.42	40	611	1.4158	1.4156	1
1.36	10	540			
1.35	20	541			
1.31	10	630			
1.30	10				
1.29	50	631	1.2865	1.2866	3
1.26	60	444	1.2593	1.2596	4
	cubic		0	ubic	
	a 8746 Å		ci	8 7264(5) Å	
	a 0.740 A		u	0.7204(J) A	

TABLE 11. X-RAY POWDER-DIFFRACTION DATA FOR THE γ PHASE

In this study, we synthesized the γ -phase solid solution ranging from Cu_{70.0}Ga_{30.0} to Cu_{64.8}Ga_{35.2} at 500°C (Table 5) and from Cu_{67.9}Ga_{32.1} to Cu_{63.3}Ga_{36.7} at 400°C (Table 6). Table 11 shows the X-ray powder-diffraction data for the phase γ . The cell parameter *a* of our γ phase (Cu_{70.0}Ga_{30.0}) is 8.726 Å.

The phase ω forms irregularly shaped grains (less than 150 μ m) and coexists with GaS, the phase γ and gallium liquid. This phase is bluish creamy white with strong anisotropy of dark brown to dark green in reflected light. Zintl & Treusch (1936) showed the presence of a CuGa₂ phase and demonstrated that it has tetragonal symmetry, *a* 2.836, *c* 5.843 Å. El-Boragy & Schubert (1972) presented the X-ray-diffraction data of this phase (Table 12). In this study, we obtained a similar phase, with solid solution ranging from Cu₃₆Ga_{64.5} to Cu_{30.2}Ga_{69.8} at 400°C (Table 5) and from Cu_{35.5}Ga_{64.5} to Cu_{30.2}Ga_{69.8} at 400°C (Table 6). Table 12 shows the X-ray powder-diffraction data for the CuGa₂ phase of El-Boragy & Schubert (1972) and for our phase ω .

Gallium was in the liquid state during the experiments; it melts at 29.8°C, and boils at about 2300°C. Gallium liquid coexists with GaS and the phase ω at 500° and 400°C. Pure gallium solid is bright white, and Cu-bearing gallium is bluish white in reflected light. Both pure gallium and Cu-bearing gallium have very strong reflection from blue to brown. Solid gallium produced by quenching the liquid in water from 500° and 400°C contains 2.6 and 2.2 atom % Cu, respectively (Tables 5, 6).

TABLE 12.	X-RAY POWDER-DIFFRACTION DATA FOR THE (6) PHASE
	(CuGa, PHASE)

1				2		3			
d(Å)	Ι	hkl	$d_{\rm obs}({\rm \AA})$	$d_{\text{cate}}(\text{\AA})$	Ι	$d_{\rm obs}({\rm \AA})$	$d_{\mathrm{cale}}(\mathrm{\AA})$	I	
5 84	12	001	5 862	5 834	28	5 800	5.818	30	
2.92	7	002	2 921	2 917	27	2 899	2 909	63	
2 829	35	100	2 834	2 832	62	21055	21703	02	
2.545	80	101	2.549	2.547	19	2 536	2 542	17	
2 031	100	102	2.033	2 032	74	2 027	2 027	53	
2.000	80	110	2.002	2.002	100	1 9952	1.9983	13	
1 946	16	003	1 9458	1 9447	48	1.9380	1 9393	100	
1 893	3	111	110 100		10	10000	117070	100	
1.650	6	112							
1.603	ĭ	103							
1 460	6	004	1 4585	1 4585	15	1 4548	1 4545	43	
1.415	30	200	1.4162	1.4158	45	1 4135	1.4130	5	
1 395	30	113	1 3941	1 3950	4	1 3923	1 3917	8	
1 375	1	201	1.5541	1.5950	-	1.5525	1.5511	0	
1 297	1	104							
1 273	2	202							
1.275	5	210							
1 237	14	211	1 2374	1 2375	4				
1,20)		211	1.207.1	1.2010	'				
tatragonal				otragonal	totragonal				
ietragonal			ı				a 2.824(1) Å		
a 2.830 A			(a = 2.0310(3) A			a 5 919(2) Å		
C 5.839 A			6	c 5.834(2) A			C 5.818(5) A		

 JCPDS Card no. 21253 (Weibke 1934); 2. Cu₇₀Ga₃₀ phase, this study (sample no. CG-002) 1. CuGa2 phase, JCPDS Card no. 25-275 (El-Boragy & Schubert 1972);

2. $Cu_{36,0}Ga_{61,0}$ this study (sample no. CG–006); 3. $Cu_{33,0}Ga_{67,0}$ this study (sample no. CG–010).

Phase relations at 500° and 400°C

Phase diagrams of the ternary system Cu–Ga–S at 500° (Fig. 1) and 400° C (Fig. 2) have been constructed from the experimental results in Tables 1, 2, 3 and 4, and the chemical compositions of the phases in Tables 5 and 6. The tie-line relations are essentially the same at both temperatures.

Along the Cu–S join, there are four phases, sulfur, covellite, digenite and copper; along the Ga–S join, therer are four phases, sulfur, Ga₂S₃, GaS and gallium liquid, and along the Cu–Ga join, there are five phases, α , ζ , γ , ω and gallium liquid at both temperatures. The α , ζ and γ phases are connected to gallite with tie lines, and the phases γ and ω and gallium liquid are connected to GaS with tie lines at both temperatures. The principal ternary phases are gallite and phase X. Gallite appears in the central position of this ternary system, and it has tie lines to many other phases. Phase X appears between gallite and Ga₂S₃, and it has a limited solid-solution area.

DISCUSSION

Gallium is found in nature in oxide, silicate and sulfide minerals. According to Johan *et al.* (1983), sphalerite from zinc deposits in the Ordovician and Devonian of the French central Pyrénées contains several Ge- and Ga-rich mineral phases. They are argutite (GeO₂), Ga-rich magnetite (containing 3.5 weight % Ga₂O₃), carboirite [FeAl2GeO5(OH)2], and Ga-rich chlorite (containing 22.33 weight % Ga₂O₃), among others. Bernstein (1986) reported Ga-rich jarosite (containing 0.7 wt.% Ga) and Ga-rich "limonite" (containing 2 wt.% Ga) from the Apex Ge-Ga mine, Washington County, Utah. Recently, Roberts et al. (2004) reported the new mineral eyselite [Fe³⁺Ge⁴⁺₃O₇(OH)] from the Tsumeb mine, Namibia. This mineral contains 1.01 wt.% Ga₂O₃. The main Ga-containing sulfide minerals are renierite, germanite, gallite and sphalerite. According to Sheka et al. (1966), the dominant host of Ga in sulfide ores is sphalerite; the concentration of Ga varies between tens and hundreds of ppm. Some high values of gallium (up to 5.8 wt.%) have been reported in a zinc sulfide phase in meteorites (Nagahara & El Goresy 1984). Experimentally, Ueno & Scott (1991) showed the maximum solubility of Ga in sphalerite in the system Zn-Ga-S to be 24.9 at.% at 900°C and 16.3 at.% at 800°C. In the first account on gallite, Strunz et al. (1958) found that in sulfide ore, it occurs in sphalerite as exsolution lamellae with a brownish gray color in reflected light. They concluded that gallite may be the gray lamellar ore of Schneiderhöhn (1920) and Moritz (1933), and that it is surely the same mineral as that mentioned by Ramdohr (1944, 1956). In our phase-equilibrium experiments of the ternary system Cu-Ga-S, we obtained

FIG. 1. Phase diagrams of the system Cu-Ga-S at 500°C, determined by dry synthesis.

FIG. 2. Phase diagrams of the system Cu-Ga-S at 400°C, determined by dry synthesis.

gallite in the central position and a new phase, phase X, between gallite and Ga₂S₃. Gallite coexists with covellite, digenite, phase X, GaS, the phases α , ζ , γ and sulfur. In natural copper ore, gallite may occur in association with covellite and digenite. There is a possibility of finding phase X in natural ore containing gallite. As gallite occurs in association with sphalerite in nature, it would be informative to investigate the phase equilibria in the quaternary system Cu–Ga–Zn–S. That study would elucidate the stability relations between gallite and sphalerite and the phase relations with other phases, like covellite, phase X, Ga₂S₃, GaS and Cu–Ga phases.

ACKNOWLEDGEMENTS

The authors dedicate this paper on the phase equilibria of the system Cu–Ga–S to Michael E. Fleet on the occasion of his retirement. We thank Gen-ichiro Kura of Fukuoka University of Education for use of the high-energy X-ray diffractometer (Mac Science) and Shoji Kojima of Universidad Catolica del Norte for his valuable suggestions. The manuscript was substantially improved through the critical reviews of James E. Mungall, Ania Peregoedova and Robert F. Martin. This research was funded by grants from the Ministry of Education, Science and Culture of Japan to Ueno.

References

- BERNSTEIN, L.R. (1986): Geology and mineralogy of the Apex germanium–gallium mine, Washington County, Utah. U.S. Geol. Surv., Bull. 1577.
- BETTERTON, J.O. & HUME-ROTHERY, W. (1951–1952): The equilibrium diagram of the system copper–gallium in the region 30–100 at.-% gallium. J. Inst. Metals 80, 459-468.
- EL-BORAGY, M. & SCHUBERT, K. (1972): Kristallstruktur von CuGa₂. Z. Metallkd. 63, 52-53.
- HAHN, H., FRANK, G., KLINGLER, W., MEYER, A.-D. & STÖGER, G. (1953): Über einige ternäre Chalkogenide mit Chalkopyritstruktur. Z. anorg. allg. Chem. 271, 153-170.
- HUME-ROTHERY, W. & RAYNOR, G.V. (1937): The constitution of the copper–gallium alloys in the region 18 to 32 atomic per cent of gallium. J. Inst. Metals 61, 205-222.
- JOHAN, Z., OUDIN, E. & PICOT, P. (1983): Analogues germanifères et gallifères des silicates et oxydes dans les gisements de zinc des Pyrénées centrales, France; argutite et carboirite, deux nouvelles espèces minérales. *Tschermaks Mineral. Petrogr. Mitt.* **31**, 97-119.
- LIETH, R.M.A., HEIJLIGERS, H.J.M. & HEIJDEN, C.W.M.V.D. (1966): The P–T–X phase diagram of the system Ga–S. J. Electrochem. Soc. **113**, 798-801.

1660

_____, ____ & _____ (1967): The vapour pressure and thermal stability of gallium sulfide. *Mater. Sci. Eng.* **2**, 193-200.

- MORIMOTO, N. & KOTO, K. (1970): Phase relations of the Cu–S system at low temperatures: stability of anilite. Am. Mineral. 55, 106-117.
- MORITZ, H. (1933): Die sulfidischen Erze der Tsumeb-Mine vom Ausgehenden bis zur XVI. Sohle (-460m). Neues Jahrb. Mineral., Abh. A, B.-Bd. 67, 118-153.
- NAGAHARA, H. & EL GORESY, A. (1984): Yamato-74370: a new enstatite chondrite (EH4). *Lunar Planet. Sci.* 15, 583-584 (abstr.).
- RAMDOHR, P. (1944): Zum Zinnkiesproblem. Abh. Preuß. Akad. Wiss., Math.-nat. Kl. 4, 1-30.
- _____ (1956): Überraschende Verwachsungsstrukturen. Fortschr. Mineral. 34, 23-24.
- ROBERTS, A.C., SEWARD, T.M., REUSSER, E., CARPENTER, G.J.C., GRICE, J.D., CLARK, S.M. & MARCUS, M.A. (2004): Eyselite, Fe³⁺Ge⁴⁺₃O₇(OH), a new mineral species from Tsumeb, Namibia. *Can. Mineral.* 42, 1771-1776.
- ROSEBOOM, E.H. (1966): An investigation of the system Cu–S and some natural copper sulfides between 25 and 700°C. *Econ. Geol.* **61**, 641-672.

- SCHNEIDERHÖHN, H. (1920): Die Erzlagerstätten des Otaviberglandes, Deutsch-Südwestafrika. Metall und Erz 17, 293-302.
- SHEKA, I.A., CHAUS, I.S. & MITYUREVA, T.T. (1966): *The Chemistry of Gallium*. Elsevier, Amsterdam, The Netherlands.
- SKINNER, B.J. (1966): The system Cu–Ag–S. Econ. Geol. 61, 1-26.
- STRUNZ, H., GEIER, B.H. & SEELIGER, E. (1958): Gallite, CuGaS₂, das erste Selbst dige Galliummineral, und seine Verbreitung in den Erzen der Tsumeb- und Kipushi-Mine. *Neues. Jahrb. Mineral.*, *Monatsh.*, 241-264.
- UENO, T. & SCOTT, S.D. (1991): Solubility of gallium in sphalerite and wurtzite at 800°C and 900°C. *Can. Mineral.* 29, 143-148.
- WEIBKE, F. (1934): Das Zustandsdiagramm des Systems Kupher-Gallium. Z. anorg. Chem. 220, 293-311.
- ZINTL, E. & TREUSCH, O. (1936): Röntgenanalyse der Galliumbronzen. Z. physical. Chem., Abt. B, 34, 225-237.
- Received April 30, 2004, revised manuscript accepted May 25, 2005.