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ABSTRACT

The classifi cation of granitic pegmatites was frequently attempted during the past century, with variable degrees of success 
and applicability. Internal structure, paragenetic relationships, bulk chemical composition, petrogenetic aspects, nature of parent 
medium, and geochemical features were applied. However, all schemes were marked by contemporary degrees of understanding 
of these parameters, and most attempts were hindered by ignoring differences in geological environment. Substantial progress was 
achieved only since the late 1970s. The classifi cation is approached here from two directions, based on but broadened and refi ned 
from earlier works by Ginsburg and Čern´y. The fi rst concept deals with geological location, leading to division of granitic pegma-
tites into fi ve classes (abyssal, muscovite, muscovite – rare-element, rare-element, and miarolitic), most of which are subdivided 
into subclasses with fundamentally different geochemical (and in part geological) characteristics. Further subdivision of most 
subclasses into types and subtypes follows more subtle differences in geochemical signatures or P–T conditions of solidifi cation, 
expressed in variable assemblages of accessory minerals. The second approach is petrogenetic, developed for pegmatites derived 
by igneous differentiation from plutonic parents. Three families are distinguished: an NYF family with progressive accumulation 
of Nb, Y and F (besides Be, REE, Sc, Ti, Zr, Th and U), fractionated from subaluminous to metaluminous A- and I-type granites 
that can be generated by a variety of processes involving depleted crust or mantle contributions; a peraluminous LCT family 
marked by prominent accumulation of Li, Cs and Ta (besides Rb, Be, Sn, B, P and F), derived mainly from S-type granites, less 
commonly from I-type granites, and a mixed NYF + LCT family of diverse origins, such as contamination of NYF plutons by 
digestion of undepleted supracrustal rocks.
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SOMMAIRE

Il y a eu plusieurs tentatives de classifi cation de pegmatites granitiques au cours du siècle dernier, avec un taux de réussite 
et une applicabilité variables. La structure interne, les relations paragénétiques, la composition chimique globale, les aspects 
pétrogénétiques, la nature du milieu de croissance, et les caractéristiques géochimiques ont tous été utilisés comme bases de 
classifi cation. Toutefois, ces schémas ont été limités par le niveau de compréhension de ces paramètres lors de leur application, et 
par négligeance des différences du milieu géologique. Des progrès substantiels ont seulement été atteints depuis la fi n des années 
1970. La classifi cation est abordée ici de deux directions, fondées sur les travaux antérieurs de Ginsburg et Černý, mais affi nés 
et considérés dans un contexte élargi. Le premier concept porte sur la situation géologique, et mène à cinq classes de pegmatites 
granitiques: abyssale, à muscovite, à muscovite – éléments rares, à éléments rares et miarolitique), la plupart des classes étant 
ensuite subdivisées en sous-classes ayant des caractéristiques géochimiques (et, en partie, géologiques) fondamentalement diffé-
rentes. Une subdivision plus poussée des sous-classes en types et sous-types repose sur des différences plus subtiles des traits 
géochimiques ou des conditions de solidifi cation distinctes en termes de P et de T, exprimées par des assemblages variables de 
minéraux accessoires. Le second concept est pétrogénétique, développé pour les pegmatites dérivées par différenciation d’un 
parent plutonique. Nous distinguons trois familles. La famille NYF , caractérisée par l’accumulation progressive de Nb, Y et 
F (en plus de Be, REE, Sc, Ti, Zr, Th et U), est fractionnée à partir de granites subalumineux à métalumineux de types A et I, 
qui peuvent être générés par une variété de processus impliquant une croûte stérile ou une contribution du manteau. La famille 
hyperalumineuse LCT, reconnue par son enrichissement marqué en Li, Cs et Ta (en plus de Rb, Be, Sn, B, P et F), serait dérivée 
surtout de granites de type S, et à un degré moindre, de granites de type I. Enfi n, il y a la famille mixte NYF + LCT d’origines 
diverses, par exemple une contamination des plutons NYF par digestion de roches supracrustales fertiles.

 (Traduit par la Rédaction)
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and granites of peraluminous, subaluminous and meta-
luminous (to subalkaline) compositions are considered, 
to the exclusion of the peralkaline kindred [dealt with, 
in part, by Wise (1999), and by Zou & Xu (1975) and 
Zou et al. (1985) in their mantle-related category]. Also, 
the classifi cation deals exclusively with what Fersman 
(e.g., 1940) called pegmatites of “pure-bred lineage”. 
Those that are demonstrably contaminated to hybridized 
(“cross-bred lineage”; Fersman 1940) by reaction with 
country rocks are not considered, such as the desili-
cated pegmatites in ultrabasic rocks and amphibolites 
(e.g., Martin-Izard et al. 1995, Laurs et al. 1996), or 
the danburite-rich pegmatites in marble-dominant host 
rocks (Pezzotta 2001).

GEOLOGICAL CLASSES OF GRANITIC PEGMATITES 
AND THEIR GEOCHEMICAL–PARAGENETIC 

SUBDIVISIONS

Derived from the depth-related “formations” of 
Ginsburg et al. (1979) (a term with an unfortunate 
sedimentological connotation), fi ve classes of granitic 
pegmatites are distinguished here. They are based on 
the pressure (and, in part, temperature) conditions that 
characterize their host-rock suites; these, however, do 
not necessarily reflect the conditions of consolida-
tion of the synkinematic to post-kinematic (granite +) 
pegmatite populations themselves (Table 1, 2, Fig.1). 

INTRODUCTION

The broad spectrum of mineralogical, geochemical, 
textural and economic types of granitic pegmatites has 
been the subject of numerous attempts at classifi cation 
since about a century ago. Most of the early attempts did 
not go beyond simple fi eld-based subdivisions, but some 
of them developed into more sophisticated schemes, 
the general principles of which still apply today (e.g., 
Fersman 1940). A variety of criteria were applied to the 
classifi cation: internal structure, paragenetic relation-
ships, bulk chemical composition, petrogenetic aspects, 
nature of parent medium, and geochemical signatures, 
among others. The successes and failures of individual 
efforts were, to a high degree, controlled by the regional 
versus global experience of the authors, by the state of 
understanding of the petrological aspects of granitic 
pegmatites, and by the strong tendency to classify all 
granitic pegmatites by a single criterion. The early 
attempts were reviewed and commented on by Jahns 
(1955), Schneiderhöhn (1961), Solodov (1971) and 
Černý (1982a).

The modern era was ushered in by Ginsburg & Rodi-
onov (1960), and particularly Ginsburg et al. (1979), 
who distinguished four geological classes (abyssal, 
muscovite, rare-element and miarolitic) on the basis of 
their crustal environment, more specifi cally on the depth 
of their intrusion, and on their relationship to meta-
morphism and granitic plutons. Černý (1990, 1991a) 
revised this classifi cation using improved petrological, 
paragenetic and geochemical criteria, and introduced 
a new, separate concept of three petrogenetic families 
(NYF, LCT and mixed). This petrogenetic classifi ca-
tion was fairly widely accepted, and some parts of it 
were expanded to cover granites (e.g., London 1995). 
However, it was presented in a rather telegraphic style, 
which caused uncertainties and misconceptions about 
some of its aspects. With progress of time, a need 
emerged to revise some of the pegmatite classes and 
families (e.g., Černý & Kjellman 1999, Černý 2000), 
and to take into account several new (or previously 
omitted) classifi cations (Zou & Xu 1975, Zou et al. 
1985, Wise 1999, Hanson et al. 1999, Gordiyenko 1996, 
Zagorskyi et al. 2003).

The impetus for revamping the two classifi cations 
was provided by Ercit (2005), who reviewed REE-
bearing granitic pegmatites, and collected general infor-
mation on the abyssal- and muscovite-class pegmatites in 
the process. These two classes were poorly represented 
in the original versions (Černý 1990, 1991a), in which 
the main focus was on the rare-element category. We 
present here the current status of our ideas on these three 
classes, we incorporate the muscovite – rare-element 
class, and we modify the subdivision of the miarolitic 
pegmatites and their links to the rare-element class. 
Also, the system of petrogenetic families is clarifi ed in 
greater detail. Otherwise, the scope of the classifi cation 
remains the same as in the previous versions: pegmatites 



 THE CLASSIFICATION OF GRANITIC PEGMATITES REVISITED 2007

As such, these P–T conditions should be considered as 
maximal estimates for the environment during pegma-
tite emplacement, as they characterize peak metamor-
phism, which usually substantially predates intrusions 
of the pegmatite-forming melt. This P–T gap is locally 
the largest in the abyssal class, and minimal (if any) in 
the muscovite class. The difference increases again in 
the rare-element and miarolitic classes.

In some classes, the next step leads down to 
subclasses distinguished by fundamental differences 
in geochemical signature. If permitted by the current 
insight into individual classes and subclasses, further 

subdivision leads to pegmatite types and subtypes, 
marked by signifi cant differences in mineral assem-
blages, geochemical signature, conditions of consoli-
dation, or a combination of these aspects. The classes 
are based on geological criteria, but within individual 
classes, the subdivision follows geochemical features, 
mineral assemblages and textural attributes that refl ect 
the P–T conditions of pegmatite consolidation. Thus 
the above hierarchy serves to place a given pegmatite 
into a gross geological context, and into a descriptive 
geochemical–paragenetic category.

FIG. 1. Schematic P–T fi elds of regional host-rocks that harbor granitic pegmatites of the abyssal (AB), muscovite (MS), 
muscovite – rare-element (MSREL), rare-element (REL) and miarolitic (MI) classes. Arrows indicate regional trends of 
fractionation in the pegmatites relative to metamorphic grades of the host rocks. The MS and MSREL populations, as well 
as those of the REL and MI pegmatites, tend to be in some cases transitional one to the other. See text for comments on the 
diversifi ed environment of the AB-class pegmatites. Aluminosilicate fi elds from Robie & Hemingway (1984), spodumene–
petalite boundary from London (1984), granite liquidus – solidus from Jahns (1982). The 25°C/km and 50°C/km gradients 
correspond to average Barrovian and Abukuma metamorphic facies-series, respectively.
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The degree of subdivision in individual classes 
is highly variable, depending on the current state of 
understanding of the classes and on the degree of vari-
ability encountered in them. In all cases, the hierarchy 
is open-ended downward (Table 1), providing elbow 
room for further subdivision as it may become desirable 
with progress of research. We resisted the temptation 
to expand the number of types and subtypes where 
differences would be hazy or minor. Excessive “pigeon-
holing” would defeat the purpose of the classifi cation, 
which is aimed at clearly defi nable types that constitute 
sub stantial segments of the global population of granitic 
pegmatites. Consequently, we feel confi dent that a vast 
majority of granitic pegmatites can be correlated with 
one or another of the proposed categories. Pegmatites 
with transitional characteristics do occur and may be 
locally abundant, but they can be described, with appro-
priate qualifi cations, by their relationship to the closest 
“end-members”, even if they are not totally identical 
with any of them. A negligible minority of pegmatites 
with unorthodox mineral assemblages and geochemical 
signatures, usually restricted to isolated local popula-
tions, must necessarily remain outside the generalized 
scheme, unless proven to be more widespread and 
signifi cant in the future. This applies, for example, 
to the enormously Cs- and B-enriched pegmatites of 
Madagascar (Simmons et al. 2001).

Abyssal class

Despite its shortcomings, the original term is retained 
for this category, which is hosted within most of the 
P–T range of the granulite facies (extending to upper-
amphibolite conditions) as defi ned by Yardley (1989) or 
Bucher & Frey (1994), but excluding the high extremes 
of pressure. Thus the abyssal class also encompasses 
pegmatites of intermediate depth but in largely dehy-
drated high-temperature host terranes. Pegmatites of the 
abyssal class most commonly correspond to products of 
partial melting or metamorphic re-equilibration, gener-
ally conformable to the metamorphic fabric of the host 
environment where synkinematic, or discordant where 
late-kinematic. Migmatitic leucosome and its segrega-
tions are common, whereas more voluminous edifi ces 
merging into autochthonous anatectic granites with inte-
rior pegmatite bodies and exterior pegmatite fringes are 
much less abundant (e.g., Baie Johan Beetz, Rimšaite 
1981). Even rarer are abyssal pegmatites magmati-
cally derived from granites (Bushev & Koplus, 1980). 
Processes of magmatic differentiation and fractionation 
within populations of pegmatites are virtually absent. 
Mineralization, largely restricted to a narrow range of 
HFSE (U, Th, Y, REE, Nb, Zr: Table 2), is commonly 
sparse, rarely economic (e.g., Hewitt 1967b, Cuney 
1980, Shmakin 1992).

All of the above characteristics indicate that the 
generation of pegmatites does not necessarily take place 
at the peak conditions of the granulite-facies regional 

metamorphism. Quite to the contrary, the host terranes 
are commonly polymetamorphic (Grew 1998, Grew 
et al. 2000), and pegmatites are related to relatively 
late processes connected with adiabatic melting during 
uplift.

Four subclasses of abyssal pegmatites (Table 3) 
can be distinguished, three of them characterized 
by extremes in the geochemical relationships of U 
and Th to Y, LREE, HREE and Nb. In the presence 
of relatively abundant Nb, most of the U and Th is 
concentrated as substituent elements in Y–REE–Nb-
oxide minerals (e.g., euxenite, samarskite, fergusonite 
and pyrochlore groups), hence the AB–HREE subclass. 
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With signifi cantly diminished Nb and HREE, yet rela-
tively abundant LREE, most U and Th are dispersed, 
again as substituent elements, between silicate and 
phosphate phases (e.g., allanite and monazite), hence 
the AB–LREE subclass. However, with negligible 
Nb, Y and REE, most U and Th necessarily reside 
as structurally important elements in species of their 
own: uraninite UO2 and thorite (U,Th)SiO4, hence the 
AB–U subclass.

The fourth subclass is provisional, pooling pegma-
tites enriched in B and Be, although most of their 
prominent concentrations are separate. The minerals 
hosting these elements are quite characteristic (Table 3), 
consisting largely of high-pressure species and devel-
oped mainly in complex environments during multi-
stage events (e.g., Grew et al. 2000). The pegmatites of 
this subclass commonly are strongly peraluminous (as 
are most of the typical minerals). In the absence of data 
on bulk composition of these pegmatites, the degree of 
their departure from truly granitic compositions is not 
clear and deserves attention.

Muscovite class

Pegmatites of this class are largely conformable to, 
and in part deformed with, host rocks of high-pres-
sure amphibolite facies characterized by the kyanite 
– sillimanite progression of the classic Barrovian 
metamorphic facies-series (Table 1). The pegmatites 
are generated directly by partial melting (Shmakin & 
Makagon 1972, Gorlov 1975, Sokolov et al. 1975) or 
by very restricted extent of differentiation of anchi-
autochthonous palingenetic granites (Bushev 1975, 
Gordiyenko & Leonova 1976, Ginsburg et al. 1979, 
Shmakin 1976). However, modern petrogenetic studies 
based on isotopic evidence are so far not available for 
this pegmatite class! Nevertheless, the fi eld evidence, 
enclosed relics of unaltered metamorphic assemblages 
and lack of fractionation all indicate that the conditions 
of magma generation, intrusion (if any) and pegmatite 
consolidation were very close to those of the metamor-
phic grade of the kyanite–sillimanite-bearing host rocks 
(Gordiyenko & Leonova 1976, Ginsburg et al. 1979, 
Gordiyenko 1996).
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The pegmatites are typically barren, carrying feld-
spar of ceramic grade, quartz and industrial mica, which 
gave them the original name. The name is retained here 
because of lack of any other suitable term, although the 
economic importance of muscovite has vastly dimin-
ished with time. The simple mineralogy of accessory 
silicates and lack of even minor mineralization in most 
occurrences preclude any meaningful subdivision of 
this class. Exceptional traces of rare-element minerals 
generally match the phases found in pegmatites of the 
muscovite – rare-element class (Table 4).

Muscovite – rare-element class

Pegmatites of this class were historically treated 
either as members of a specifi c class, or as interme-
diate links between muscovite and rare-element classes 
without a pigeon-hole of their own. However, analysis 
of the subject by Shmakin (1976) and Ercit (2005) 
persuasively supports this split. Thus we assign a class 
status to these pegmatites, with two broadly based but 
mutually distinct subclasses (Table 4). The metamorphic 
environment that typically hosts pegmatites of this 
class is intermediate to the parameters typical of the 
muscovite and rare-element classes (Table 1, Fig. 1). 
Pegmatites of the muscovite – rare-element class, unlike 
those of the muscovite class, are mostly discordant 
with respect to the metamorphic foliation of their host 
rocks, and occasionally show regional zonation with 
respect to parental granites (Shmakin 1976, Ercit 1992, 
2005, Wood 1996). Unlike pegmatites of the muscovite 

and rare-element classes, pegmatites of the muscovite 
– rare-element class contain both high-quality musco-
vite of economic potential (e.g., ruby grade), and 
concentrations of rare-element minerals that in rare 
cases verge on economic (e.g., beryl, cassiterite, colum-
bite-group minerals, REE–Nb–U oxides, Li silicates). 
The links of the muscovite – rare-element pegmatites 
to granites or regional metamorphism are largely ill-
defi ned, although in some cases the granitic parentage 
is spatially obvious or at least mandated geochemically 
(Gordiyenko & Leonova 1976, Ginsburg et al. 1979, 
Ercit 1992, 2005, Wood 1996). This statement applies 
particularly to members of the MSREL–Li subclass, 
whose geochemical signature implies a plutonic source 
(saturation in beryl, Li-bearing minerals). Nonethe-
less, a granitic parentage is doubtful for a signifi cant 
number of examples of this category, notably those of 
the MSREL–REE subclass (Mineyev & Salye 1971, 
Gordiyenko & Leonova 1976). As in the case of the 
muscovite class, genetic considerations are commonly 
based, mainly to solely, on field relationships and 
estimates of the bulk composition of the igneous rocks 
involved. An up-to-date petrogenetic analysis of typical 
cases of muscovite – rare-element class populations is 
currently not available, and sorely needed.

Rare-element class

This class, most thoroughly investigated in the past 
and best known today, encompasses pegmatites gener-
ated by differentiation from granitic plutons, emplaced 
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largely at intermediate to relatively shallow depth, and 
marked by a tendency to accumulate economic concen-
tration of lithophile rare elements in the more fraction-
ated pegmatite bodies. This class is split here into two 
subclasses: REL–REE and REL–Li (Tables 1, 2, 5). 
Members of the REL–REE subclass are derived chiefl y 
from post- to anorogenic metaluminous to peraluminous 
granites at somewhat variable crustal depth, largely (but 
not exclusively) in extensional crustal settings (Černý 
1991a, b). In contrast, the REL–Li subclass corresponds 
to Ginsburg’s classic concept of this class, emplaced in 
the low-pressure, (upper-greenschist to) amphibolite-
facies host-rocks of the Abukuma-type metamorphic 
series, and differentiated dominantly from (syn- to) 
late-orogenic peraluminous granites, largely (but not 
exclusively) in compressional orogenic regimes (Černý 
1991a, b).

The gap between the peak metamorphic conditions 
of the country rocks and the P–T regime of pegmatite 
crystallization is in many cases emphasized by the brittle 
behavior of the consolidated host-rocks along pegmatite 
contacts, and is enhanced by recent experimental work. 
Signifi cant undercooling of pegmatite-forming magmas 
and their solidification at subsolidus temperatures 
increase the difference between the dominant condi-
tions of the host rock and those of consolidation of the 
REL magma.

The REL–REE subclass has a characteristic assem-
blage of HFSE, and is subdivided into three types 
(Table 5): allanite–monazite type, characterized by 
predominance of LREE, euxenite type with prominent 
Y, variable HREE/LREE ratio and negligible amounts to 
virtual absence of Be (Wise 1999), and gadolinite type, 
marked by dominance of HREE, Y and Be. Some local 
populations of this subclass are restricted to a single 
type, whereas others are more diversifi ed (Trout Creek 
Pass versus South Platte district or Iveland, respectively; 
Table 5). The REL–REE pegmatites are impoverished 
in phosphorus (despite the characteristic presence of 
accessory REE phosphates), boron and sulfur (the last 
one is negligible in rare-element pegmatites of any kind) 
and the contents of lithium, rubidium and cesium also 
are typically low (Černý 1991a, Brown 1999, Nizamoff 
et al. 1999).

The REL–Li pegmatites constitute the most diver-
sifi ed subclass in the whole classifi cation spectrum, 
refl ecting a broad array of rare elements and condi-
tions of solidifi cation. Rare alkalis, Be, Sn, Nb < Ta, 
B, P and F are typically accumulated with progress 
of fractionation in the REL–Li pegmatite suites. This 
is refl ected in the types and subtypes defi ned for this 
subclass (Table 5).

The beryl type is represented in its simplest form 
by the widespread beryl–columbite subtype. Although 
present in virtually all pegmatite bodies of this subtype, 
and commonly in substantial proportions, abundances 
of the minerals of Be and Nb–Ta are widely variable 
and their ratio may become very steep. Beryl very 

strongly dominates over Nb–Ta-bearing minerals in 
the CAT group in southeastern Manitoba (Černý et al. 
1981) and in the Lamoureux Lake pegmatites at Yellow-
knife (Meintzer 1987, Wise 1987), whereas the Plex 
pegmatite, Baffi n Island (Tomascak et al. 1994) and 
the YITT–B group, southeastern Manitoba (Anderson 
et al. 1998) are rich in Nb and Ta phases, but contain 
mere traces of beryl (cf. Černý 1992).

The beryl–columbite–phosphate subtype is less 
common than members of the beryl–columbite category, 
but by no means rare. Phosphates of Fe, Mn and Ca 
(graftonite – beusite) grade locally to the Li-bearing 
triphylite, representing the fi rst lithium-bearing phase 
in fractionation sequences of cogenetic pegmatite suites 
(e.g., Smeds et al. 1998). As above, deviations from 
substantial proportions of beryl and columbite-group 
minerals also occur: e.g., in the beryl-dominant Nancy 
pegmatite, Argentina (Tait et al. 2004) and the beryl-free 
Dolní Bory dikes (Stanĕk 1991). The percentage and 
diversity of phosphates also are variable. Anionic and 
transition-metal composition of the pegmatite-forming 
melt may skew the mineralogy in favor of microlite (F) 
and “exotic” phosphate species such as members of the 
wyllieite group (with Mn>>Fe) (Cross Lake, Manitoba, 
Ercit et al. 1986; the Nancy pegmatite, in Argentina, 
Tait et al. 2004).

The complex type is characterized by substantial 
proportions of lithium aluminosilicates. Complex 
pegmatites also display the most evolved internal struc-
ture and attain the most extreme levels of fractionation 
encountered in terrestrial rocks (Černý et al. 2005a). 
The bulk composition of the parent melts and P–T 
conditions of consolidation, both refl ected in mineral 
assemblages, participate in defi ning the subtypes.

The spodumene subtype is the most common 
category of complex pegmatites, crystallizing largely at 
relatively high pressures (~3 to 4 kbar, Fig. 1; London 
1984). In contrast, the less widespread petalite subtype 
consolidates at somewhat higher temperatures but 
lower pressures (~1.5 to 3 kbar). However, the defi n ing 
alumino silicate of Li may locally refl ect the stage at 
which it attains saturation, rather than the overall pres-
sure regime: Mongolian Altai #3 has the same P–T 
path of solidifi cation as Tanco, but crystallizes primary 
spodumene at a later, lower-temperature stage than the 
early precipitation of petalite at Tanco (Lu & Wang 
1997, Černý et al. 2005a). Also, the distinctive differ-
ences in pressure regimes are today somewhat blurred 
by the infl uence of undercooling and subsolidus crystal-
lization, which may shift low-pressure crystallization 
of Li-rich magma into the stability fi eld of spodumene 
(London 2005). Other than the difference in the domi-
nant or sole Li-aluminosilicate, the overall paragenetic 
and geochemical characteristics of these two subtypes 
are about identical (Table 5). Both subtypes usually 
show Li contents lower than the experimentally estab-
lished maximum (Heinrich 1975, Stewart 1978).
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The lepidolite subtype is much less common than 
the two subtypes above. Lepidolite as the dominant 
(to only) Li-aluminosilicate is stabilized by high �KF 
and �LiF and relatively low acidity; increasing �HF 
stabilizes lepidolite + topaz in some members of this 
subtype (cf. London 1982). Dominance of Mn over Fe, 
moderate Nb–Ta fractionation but substantial presence 
of microlite-subgroup minerals, and commonly also an 
abundance of tourmalines characterize the lepidolite 
subtype (e.g., Novák & Povondra 1995, Selway et al. 
1999, Černý et al. 2004).

The elbaite subtype is not truly scarce but defi nitely 
less abundant than the lepidolite subtype above, from 
which it appears to be locally transitional. Elbaite is the 
dominant Li-bearing phase here, with the anhydrous Li-
aluminosilicates and lepidolite (mainly polylithionite) 
scarce to absent (Novák & Povondra 1995). Boron plays 
a signifi cant role, as borosilicates and borates are stabi-
lized (Table 5). Pegmatites of the elbaite subtype locally 
tend to contain an appreciable proportion of miarolitic 
cavities (e.g., Novák & Povondra 1995).

The amblygonite subtype is generated from 
pegmatite-forming melts with high �PFO2 which 
suppresses Li-aluminosilicates and stabilizes minerals 
of the amblygonite–montebrasite series instead (London 
1982). This subtype is less common than the lepidolite-
dominant pegmatites, but it is known from quite a few 
well-documented examples on global scale (Table 5). 
Pegmatites of the amblygonite subtype may actually be 
more widespread: in the near-absence of Li-aluminosili-
cates and lithian micas, amblygonite may easily escape 
attention in the fi eld.

The albite–spodumene type of complex pegmatites 
is compositionally related to the spodumene subtype 
quoted above, and undoubtedly consolidates at the 
same somewhat elevated pressures. However, it differs 
in its bulk composition by substantial dominance 
of albite and quartz over K-feldspar, and by lithium 
commonly within the uppermost range established by 
experimental magmatic enrichment (~2.0 wt.% oxide; 
Stewart 1978). The most conspicuous difference is in 
the simple zoning, approaching textural near-homoge-
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neity, of individual bodies, and strong preferred orien-
tation of lath- and club-shaped crystals of spodumene 
and K-feldspar, subnormal to oblique to the attitude 
of the pegmatite dikes. In some cases the present-day 
preferred orientation fabric could have resulted from, 
or been enhanced by, deformation or recrystallization 
owing to a tectonic (or metamorphic) overprint [Kings 
Mountain belt in North Carolina: Kesler (1976) and 
Kunász (1982); Weinebene in Austria: Göd (1989)]. 
However, at many localities this fabric is demonstrably 
a primary growth-induced feature [Mateen in South 
Dakota: Norton et al. (1964); Violet–Thompson in 
Manitoba: Černý et al. (1981); Weinebene in Austria: 
Göd (1989); San Luis I, Argentina: Oyarzábal & 
Galliski (1993); Little Nahanni, NWT, Canada: Groat 
et al. (2003)]. The factors responsible for the primary 
oriented fabric of phenocrystic phases, imbedded in an 
apparently randomly aggregated matrix, are obscure and 
sorely in need of detailed investigation.

Pegmatites of the albite type are the least wide-
spread and least understood in the whole array of the 
REL–Li subclass. These pegmatites feature aplitic to 
saccharoidal albite dominant over quartz, and generally 
minor to accessory K-feldspar, spodumene or lepidolite. 
Individual dikes range from almost homogeneous to 
strongly layered. The localities quoted in Table 5, and 
some undisclosed occurrences in the former Soviet 
Union (Solodov 1962) are the only pegmatites of albite 
type that were described in reasonable detail. So far, 
albite pegmatites pose a considerable genetic problem 
(Černý 1992). Despite the tendency of differentiating 
fertile leucogranites and derived rare-element pegma-
tites to become progressively enriched in Na (Breaks 
& Moore 1992, Černý et al. 2005a), and despite the 
segregation of late aplitic albite in Macusani-glass-
based experiments (e.g., London 1992), huge volumes 
of melt crystallizing as virtually pure Ab + Qtz can 
hardly be expected at the tail-end of these processes. 
Yet such melts are required, commonly on a consider-
able regional scale, to form the populations of albite 
pegmatites. As in the case of the albite–spodumene type, 
thorough multifaceted studies are required here.

Miarolitic class

Primary cavities result from trapping bubbles of an 
exsolved gas phase inside the parent pegmatite body. 
They are generally known in all categories of granitic 
pegmatites, but largely in insignifi cant numbers and 
sizes. However, two prominent categories of shallow-
seated pegmatites with elevated contents of primary 
cavities deserve specifi c designation (cf. Černý 2000, 
Ercit 2005) and are treated here as separate subclasses 
of a redefi ned miarolitic class.

The designation of MI–REE is used for pegmatites 
in which the gas-phase separation was triggered by a 
pressure quench, and MI–Li is applied to pegmatites 

in which the exsolution of a vapor phase follows a 
combined chemical and pressure quench.

Given suitable tectonic conditions, the exsolved 
gas phase may escape out of the cooling pegmatite 
body, and the number and volume of cavities may be 
reduced or eliminated. Thus the abundance of cavities 
in populations of cogenetic shallow-seated pegmatites 
may be quite variable.

An apparent schism evolved during the 1990s, based 
on equilibrium relationships in the lithium-rich pegma-
tite system (London 1984, 1986). These experiments 
suggested ~3 kbar P(H2O) for spodumene-bearing miar-
olitic pegmatites, and led to doubts about the shallow 
level of emplacement of these dikes (e.g., Černý 2000). 
However, more recent work not only confi rmed the 
generally disequilibrium course of crystallization of 
lithium-rich pegmatites, but also consolidation from 
a supercooled melt some 200°C below the liquidus 
surface: this is suffi cient to shift the conditions into the 
stability fi eld of spodumene (London 1984, 1986, 2005; 
pers. commun. 2005). Thus the regimes of consolidation 
of pegmatites of the MI–REE (e.g., subvolcanic in the 
Pikes Peak area) and MI–Li subclasses (e.g., ~1.5 kbar 
in Elba and southern California; Ruggeri & Lattanzi 
1992, Webber et al. 1999) are near-identical, if one 
disregards the different Li-phases in the latter category 
(lepidolite, petalite, or spodumene).

The MI–REE subclass is related mainly to anoro-
genic granites that rise to shallow intrusive levels in 
the crust. Exsolution of the vug-forming vapor phase 
follows reduction of the confining pressure in the 
residual pegmatite-forming melts, which are generally 
contained within the parent granitic plutons. A broad 
paragenetic and geochemical variety of pegmatites falls 
within this subclass, roughly subdivided into two types 
but with numerous examples of transitional assemblages 
(Table 6).

The topaz–beryl type is known from a number of 
localities in its “end-member” composition, topaz–beryl 
virtually sensu stricto (e.g., Luumäki: Lahti & Kinnunen 
1993). Rapakivi granites seem to carry minor occur-
rences of this type of pegmatite in the Baltic Shield 
and elsewhere (Lyckberg 1997). However, most occur-
rences show an array of associated accessory minerals, 
including lithium micas (dominantly zinnwaldite), 
fl uorite, Nb-, Ta- Ti-bearing phases, REE phosphates 
or phenakite [e.g., Mount Antero: Switzer (1939), 
Korosten: Lazarenko et al. (1973), Pikes Peak: Foord 
(1982)].

The designation of the gadolinite–fergusonite type 
refers to an extreme counterpart of the topaz–beryl 
type, characterized by a conspicuous concentration 
of REE- and Nb–Ta-bearing minerals (with Nb>Ta) 
e.g., Baveno: Pezzotta et al. (1999). However, as in 
the previous case, most pegmatites of this category 
also carry other accessory phases, including oxide 
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minerals of Ti, silicates of Sc, zircon, aeschynite and 
ferrocolumbite.

The MI–Li subclass is related to the same type of 
fertile granites that generate REL–Li-class pegmatites, 
and locally develops by gradual transition from the 
latter. Pressure reduction leads to exsolution of a vapor 
phase as in the MI–REE subclass, but is aided here by 
stabilization of B- and Li-bearing silicates, which also 
sharply reduces solubility of H2O in the parent melt, and 
promotes the formation of miarolitic cavities (London 
1986, 1987, Černý 2000). Tourmalines of variable 
composition are a typical, and abundant, component of 
the MI–Li pegmatites, as boron is the main and rather 
omnipresent factor in the chemical quench involved. 
Some explicitly miarolitic pegmatites carry tourmaline 
throughout their zonal sequences, but hardly any other 
signifi cant minerals of rare elements [e.g., Stak Nala in 
Pakistan: Laurs et al. (1998)].

The subdivision of this subclass (Table 6) bears 
some similarity to the subdivision of the REL–Li 
subclass, mainly in the application of the Li-alumino-
silicate discriminant, but must be considered prelimi-
nary and subject to future modifi cation. Dominance 

of phases controlling the nomenclature is commonly 
diffi cult to establish, and two or more of these minerals 
may be present in about equal quantities. For example, 
the distinction of spodumene and petalite types is 
somewhat blurred by the fact that minor quantities of 
“the other” phase are relatively commonly found with 
the name-giving major one; fl uctuating fl uid pressure 
and undercooling also must be involved in shaping 
the mineral assemblages in MI–Li pegmatites (Jahns 
1982, London 1986, 1992, Černý 2000). The situation 
is further complicated by the fact that assemblages 
between individual pockets within the same body are 
typically not in equilibrium. Furthermore, highly diver-
sifi ed populations of pegmatites are common, even in 
relatively small districts, and in many cases described in 
the literature, specifi c dikes of pegmatite corresponding 
to a given type cannot be identifi ed. Consequently, we 
list only a few examples of each type in Table 6 that are 
reasonably “pure” representatives across their narrow 
spectrum.

The beryl–topaz type is typical of some of the classic 
gem-producing pegmatite populations such as Murzinka 
(Lyckberg & Rosskov 1997) and other districts in the 
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Ural Mountains. Individual dikes of pegmatite of this 
category are relatively widespread, but only as rather 
minor components of populations dominated by more 
diversifi ed pegmatites.

The MI–spodumene type ranges from spodumene-
poor occurrences (such as Drot in Pakistan, Laurs et al. 
1998) to spodumene-enriched pegmatites (e.g., Hindu 
Kush, Rossovskyi & Chmyrev 1977). The MI–petalite 
type seems to be poor in petalite; nevertheless, this 
phase is the main (and in some cases, the only) alumino-
silicate of lithium present. In contrast, the MI–lepidolite 
type is commonly rich in this mica, and the spodumene 
and petalite pegmatites are transitional into it, as in the 
Safi ra district, Brazil (Bilal et al. 1997) and Elba, Italy 
(Pezzotta 2000), respectively.

PETROGENETIC FAMILIES OF GRANITIC PEGMATITES

In contrast to the mainly geological-environmental 
and descriptive purpose of the class – subclass – type 
– subtype hierarchy, the concept of pegmatite families 
deals with provenance of granitic pegmatites that are 
derived by igneous differentiation from diverse plutonic 
sources (Černý 1990, 1991a, b, c). Thus the concept 
extends beyond pegmatites per se to their parental gran-
ites, and to granites in general (e.g., London 1995).

In view of the fundamental requirement of plutonic 
parentage, the concept is currently applicable only to 
pegmatites of the rare-element and miarolitic classes. 
Some authors strongly suggest that some of the MS 
and particularly MSREL populations are derived from 
granitic parents (e.g., Ginsburg et al. 1979, Shmakin 
1976). However, petrological, petrochemical and 
isotopic studies that would identify the metamorphic 
protolith(s) and processes leading to formation of poten-
tially parental granitic melts, and the processes involved 
in the derivation of the pegmatite-forming melts, are not 
available. Consequently, the petrogenetic classifi cation 
of the MS and MSREL pegmatites of potential plutonic 
parentage is at present beyond our reach.

The concept concerns large-scale pegmatite popu-
lations from individual granites + derived pegmatite 
groups to fi eld-sized assemblies of mutually related 
suites, linked by common provenance and processes. 
The acronyms NYF and LCT stand for the rare elements 
most conspicuously enriched in fractionation sequences 
of these two families (niobium, yttrium and REE, 
fluorine versus lithium, cesium, tantalum), and they 
symbolize overall enrichment trends in these families. 
The enrichment cannot be expected to be commensurate, 
and does not occur evenly, for all three typical elements 
in all pegmatite populations or individual pegmatites 
that belong to one or another of these families. Thus, 
the occasional attempts to establish more specifi c fami-
lies on the basis of mineralogy of local populations of 
pegmatites alone are not realistic at present (e.g., the NY 

category of Hanson et al. 1999) and tend to obscure the 
principle of the general concept.

This does not mean that the need for subdivisions 
of the current families, or additional families, does not 
exist. Quite to the contrary, the ultimate goal of the 
family classifi cation is a scheme of specifi c categories, 
each with a well-defined sequence of crustal envi-
ronment – protolith – process – granite – pegmatite 
generation. The need to follow this line of inquiry was 
repeatedly indicated (Černý & Kjellman 1999, Buck 
et al. 1999, Hanson et al. 1999), but it is currently 
hindered by lack of thoroughly documented individual 
case-histories.

It should be emphasized that the assignment of 
pegmatite populations to the NYF or LCT signature 
does not necessarily mean that the elements character-
istic of the other family are absent. Early, less-fraction-
ated members of LCT pegmatite populations commonly 
contain some minerals typical of the NYF family (e.g., 
REE phosphates, allanite, euxenite; Smeds 1990), 
and highly evolved NYF pegmatites may carry some 
minerals typical of the LCT family (e.g., lepidolite, 
elbaite; Ercit 2005, Novák et al. 1999). Some quantities 
of the atypical rare elements can be found in any granitic 
magma, and their concentrations may attain saturation 
levels of the above minerals at appropriate stages of 
evolution of the pegmatite-forming melts (early for 
NYF phases, late for LCT minerals). However, these 
atypical phases are usually quantitatively insignifi cant 
if compared to the signature minerals, which are the 
ones that are the dominant products of fractionation in 
each family. Note: emphasis on F in the NYF family 
relates to the abundance of fl uorite or topaz, or both, 
in the “prototype” NYF pegmatites; neither the rela-
tive abundance of F in lithium-dominant micas nor the 
somewhat elevated contents of Y and REE (Černý & 
Ercit 1985) mark the lepidolite-subtype pegmatites as 
NYF members.

Nevertheless, pegmatite populations with a combined 
signature do exist (based on signifi cant quantities of 
both suites of typical minerals), and they are assigned 
to the mixed NYF + LCT family. The genetic possi-
bilities are particularly broad in this case, as there are 
virtually no thoroughly examined examples available, 
and ideas about the derivation of the mixed populations 
are currently based only on fi eld evidence and gross 
petrochemical considerations (e.g., Černý 1991a).

The fi nal introductory note concerns the fundamental 
change in the family concept which took place in the 
early nineties, was not explicitly pointed out, and 
occasionally escaped attention. Originally, the NYF 
and LCT families and their precursors were correlated 
with anorogenic and orogenic settings, respectively 
(Černý 1982b, 1989), following the model of Martin 
& Piwinskii (1972, 1974). However, signifi cant and 
widespread exceptions were identifi ed from this correla-
tion that prevented it from being used as the principal 
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classifi cation yardstick, and the emphasis was shifted 
to the NYF and LCT geochemical signatures grounded 
in the source lithologies (see Černý 1991a for details). 
This shift does not mean that the tectonic affi liation of 
the NYF and LCT families with the respective anoro-
genic- and orogenic-related granites was discarded. 
These relationships are well documented and valid in a 
great number of cases, but not as universal as implied 
in the past and in the more recent arguments by Martin 
(1989, 1999) and Martin & De Vito (2004).

The NYF family

The NYF family is marked by a Nb>Ta, Ti, Y, 
Sc, REE, Zr, U, Th, F array of typical elements. The 
parent granites are fairly homogeneous to texturally 
and geochemically somewhat differentiated, in part also 
pegmatitic (Garrison et al. 1979, Simmons & Heinrich 
1980, Wilson et al. 1986, Simmons et al. 1987, Buck et 
al. 1999, Ercit 2005). They are mainly subaluminous to 
metaluminous A- to I-types, but with some representa-
tions of peraluminous compositions and peralkaline 
relationships. The degree of fraction ation within the 
fertile granites is usually moderate. Abundances of 
the REE range from most commonly LREE-enriched 
at 100 to 800 times chondritic, but relatively fl at to 
LREE-depleted trends are not uncommon (Ercit 2005). 
In contrast, HREE-depleted abundances are much less 
widespread. The patterns are usually undisturbed, 
compatible with crystal–melt fractionation (cf. refer-
ences quoted above). Radiogenic and stable isotope 
systematics also tend to be undisturbed; �18O data are 
centered on a single maximum of about +8.0‰ (Černý 
1991a).

Geological, isotopic and geochemical evidence 
(scattered and incomplete as it is) and petrological–
geochemical considerations suggest several possible 
modes of origin of the NYF magmas: (i) direct differ-
entiation from mantle-derived basaltic magmas (Fowler 
& Doig 1983, Wilson et al. 1986, Martin 1989); (ii) 
melting of middle- or lower-crust protoliths, modifi ed 
by a previous melting causing LCT elements to be 
mobilized but NYF elements to be conserved (White 
1979, Collins et al. 1982, Whalen et al.1987, Wilson 
et al. 1986, Christiansen et al. 1988, Martin 1989, 
Černý 1990, 1991a); (iii) melting of undepleted juve-
nile igneous lithologies in an orogenic setting (Wilson 
1980, Anderson 1983, Vocke & Welin 1987, Buck et 
al. 1999); (iv) a combination of processes (ii) and (iii) 
above (Andersson & Wikström 1989); (v) melting of 
sialic crust pre-enriched in NYF elements by mantle-
derived fluids (including bimodal gabbro–granite 
suites; Harris & Marriner 1980, Jackson et al. 1984, 
Öhlander & Zuber 1988, Martin 1989, 1999, Martin 
& De Vito 2004). A more detailed discussion of the 
above proposals and their intricacies is given in Černý 
(1991a).

The NYF pegmatites comprise those that fall within 
the REL–REE and MI–REE subclasses, with possible 
future incorporation of some of the MSREL–REE popu-
lations, if proven to be of plutonic derivation (see Tables 
1, 2, 5, 6 and 7, and the relevant text in the description 
of pegmatite classes). Table 7 shows two potential 
subdivisions in the NYF family that may be developed 
into “subfamilies” as progress is made in petrogenetic 
studies of additional cases.

The LCT family

The LCT pegmatite family typically carries, and 
gets progressively enriched in, Li, Rb, Cs, Be, Sn, 
Ta, Nb (with Ta>Nb), and largely also in B, P and F, 
with progressive fractionation of the melt. The parent 
granites are mildly to substantially peraluminous, of 
the S, I or mixed S + I type. The granites are usually 
strongly fractionated and texturally diversifi ed within 
individual intrusive bodies, attaining maximum enrich-
ment in rare elements in the pegmatitic facies (Černý 
& Meintzer 1988, Breaks & Moore 1992, Breaks et al. 
2005, Shearer et al. 1992, Černý et al. 2005b). Patterns 
of REE distribution are variable, commonly displaying 
the tetrad effect and other deviations from simple 
crystal–melt fractionation, and the REE abundances are 
generally low, with LREE at 100 to 10 times chondritic. 
Radiogenic and stable isotope systems are commonly 
disturbed, but �18O data show a distinct, albeit some-
what overlapping, bimodal distribution, with peaks at 
+8.5 and +11.5‰ (Meintzer 1987, Černý 1991a). This 
bimodal pattern refl ects the two principal sources of 
the LCT fertile granites. Their parent melts form by (i) 
anatexis of undepleted upper- to middle-crust metasedi-
mentary and metavolcanic protoliths (e.g., Osis Lake 
leucogranite in Manitoba, Černý & Brisbin 1982; other 
examples in Černý et al. 2005a), or (ii) low-percentage 
anatexis of (meta-) igneous rocks of the basement 
(Köhler & Müller-Sohnius 1981, Wright & Haxel 1982, 
Walker et al. 1986). Both types of protolith generated 
fertile leucogranitic LCT melts during their fi rst melting 
event (Černý 1991a), commonly marked by different 
arrays of minor anions (Table 7). However, many fertile 
granites are proven to have been derived by melting of 
a mix of basement and supracrustal protoliths, and they 
show intermediate geochemical parameters (Meintzer 
1987, Walker et al. 1986, Propach 1978, 1989). It is not 
uncommon to fi nd different single-source and mixed-
source granites in a single fi eld of pegmatites (Meintzer 
1987, Černý 1991a, Černý et al. 2005b).

The LCT pegmatite populations consist of members 
of the REL–Li and MI–Li subclasses, with possible 
future incorporation of some of the MSREL–Li popula-
tions, if proven to be of plutonic derivation (see Tables 
1, 2, 5, 6 and 7, and the relevant text in the descrip-
tion of pegmatite classes). Table 7 shows examples of 
possible subdivisions in the LCT family that have a 
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good potential to become “subfamilies” if documented 
by additional thoroughly examined examples.

The mixed NYF + LCT family

The mixed NYF + LCT family consists of granites 
and pegmatites that display mixed geochemical and 
mineralogical characteristics. Only a few cases of NYF 
+ LCT systems have been examined to date [Kimito in 
Finland: Pehrman (1945), Tørdal district of Norway: 
Bergstøl & Juve (1988), Černý (1991a), O’Grady 
batholith in the NWT: Ercit et al. (2003)], but additional 
ones were observed in the fi eld (Ercit 2005). The usually 

minor LCT component is manifested as either LCT 
trace-element content of rock-forming minerals and 
accessory LCT phases in highly differentiated members 
of NYF populations, or as more-or-less pristine LCT 
pegmatites formed in late stages of evolution of the 
principally NYF pegmatite groups. With exception of 
the huge O’Grady batholith, NWT (Ercit et al. 2003), 
which requires a petrogenetic study, all other cases 
may be explained by LCT contamination of originally 
“pure” NYF granites. However, in the absence of 
rigorous geochemical data, three possibilities must 
be considered for the genesis of the mixed systems, 
based on the model of anatexis of depleted crust for the 
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dominant NYF component, and on the local geological 
situation: (i) a pristine NYF magma from depleted crust 
may become contaminated by digestion of undepleted 
supracrustal lithologies (Černý 1991a), (ii) the crustal 
protolith may have been only partially depleted (Whalen 
et al. 1987), or (iii) the anatexis may have affected 
a mixed range of depleted and undepleted protoliths 
(Whalen et al. 1987).

Further notes on the mixed-signature granites and 
pegmatites are to be found in Černý (1991a), dealing 
primarily with the model (i) above. The spectrum of 
genetic possibilities may considerably expand once the 
other above-mentioned models of NYF-granite deriva-
tion (and diverse potential modes of LCT enrichment) 
are considered. In this respect, the mixed NYF + LCT 
granite and pegmatite populations are currently the 
least fathomable of the three families. Thus it is not 
surprising that they are occasionally subject to unreal-
istic speculations, such as a specialized contamination 
of NYF pegmatites by Sn and Sc from host rocks (Berg-
støl & Juve 1988), or a selective hydrothermal lateral 
secretion of LCT components into a magmatic NYF 
pegmatite precursor (Martin & De Vito 2004).

CONCLUDING REMARKS

The principles of the dual classifi cation of granitic 
pegmatites presented here are rather demanding with 
respect to petrological and petrogenetic aspects. This 
is the main reason why even the descriptive hierarchies 
of pegmatites are in some cases incomplete. However, 
the system applied to the descriptive, paragenetic and 
geochemical classifi cation within geological classes 
welcomes expansion upon further study, and so does 
the petrogenetic classifi cation. The dominant current 
problem is a lack of well-documented case-histories 
that would permit (i) sound subdivision of the abyssal 
and muscovite – rare-element subclasses, (ii) rigorous 
genetic discrimination in the muscovite and muscovite 
– rare-element classes, and (iii) subdivision of the NYF 
and LCT families. Modern geochemical and petroge-
netic documentation of the above cases should take 
precedence to attempts to create further descriptive 
subdivisions.
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ČERNÝ, P. (1982a): Anatomy and classifi cation of granitic 
pegmatites. In Granitic Pegmatites in Science and Indus-
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