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ABSTRACT

Imaging with high-resolution transmission electron microscopy (HRTEM), selected-area electron diffraction (SAED), and
numerical simulations of the diffraction patterns are combined to further document the microstructures of the most widespread
types of 15-sector and 30-sector polygonal serpentines. Imaging, diffraction and simulation data recorded along the fiber axis are
reconciled with a model involving lateral continuity of the 1:1 layer structure and a curvature without inversion of the sheets of
tetrahedra across the sector boundaries. Axial fivefold symmetry is confirmed for polygonal serpentines. This model differs from
sharp-boundary models proposed by Chisholm (1991, 1992), without inversion, and by Dodony (1993, 1997a), with inversion.
Streaked diffraction chords connecting Bragg reflections are typical of all polygonal fibrils. They are due to curved layers with
constant curvature at sector boundaries, involving extra spacing and locally distorted H-bonds between layers. This is a peculiar-
ity of polygonal serpentines, not present in other varieties of rolled serpentine.

Keywords: serpentine-group minerals, polygonal serpentine, microstructure, HRTEM, electron diffraction, dislocation, fast
Fourier transform.

SOMMAIRE

La microscopie électronique à transmission à haute résolution (METHR), la diffraction électronique sur aire sélectionnée,
ainsi que des simulations numériques des clichés de diffraction, ont été combinées pour progresser dans la connaissance des
microstructures des types les plus répandus de serpentines polygonales à 15 et 30 secteurs. Imagerie, diffraction et simulations
sont en bon accord avec un modèle intégrant la continuité latérale des feuillets 1:1 et une courbure sans inversion de polarité aux
jonctions des secteurs. Une symétrie axiale d’ordre cinq est confirmée pour les serpentines polygonales. Ce modèle diffère des
modèles proposés par Chisholm (1991, 1992), avec des jonctions anguleuses et sans inversion, et par Dodony (1993, 1997a), avec
inversion. Des trainées diffuses joignant les réflections de Bragg sont typiques de toutes les fibres polygonales. Elles sont dues à
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la courbure des feuillets avec un rayon de courbure constant aux jonctions des secteurs plans, impliquant un sur-épaississement
basal et une distorsion locale des liaisons hydrogène interfoliaires. Ceci est une particularité des serpentines polygonales par
rapport aux autres variétés enroulées.

Mots-clés: serpentine polygonale, microstructure, METHR, diffraction des électrons, dislocation, transformée de Fourier rapide.

display hundreds of parallel fibrils at a time, the former
display PS with free-grown outlines, and a rather clean
diffraction pattern may be recorded from these without
too much interference from reflections produced by their
neighbors.

After having examined the growth features of sev-
eral hundreds of PS fibrils from various geological con-
texts, over a period of some ten years, we have found
that the PS can display a great microstructural variabil-
ity. However, the most common fibrils are those re-
ported on below. We leave the description of deviant
forms for a furture article.

Specimen preparation for TEM

Fifty-micrometer-thick thin sections were cut nor-
mal to vein surfaces and glued on a glass slide with
Lakeside or CrystalBond thermal resin. A disk 3 mm in
diameter was drilled with an “O. Medenbach” microdrill
fitted to a polarizing microscope. Then a single-hole
TEM copper grid (usually 2 � 1 mm slot) was glued on
top of the disk-shaped section with an ultrathin layer of
epoxy resin, and allowed to polymerize overnight. The
grid–rock disk assembly was then detached from the
glass slide with a TEM tweezer after gently melting the
resin underneath with the tip of a soldering iron. The
glue adhering to the disk was washed away with several
baths in ethanol, and the disk was then ready for ion-
thinning. A Gatan 600, or PIPS, ion mill with paired ion
guns was used for thinning at room temperature. On the
Gatan 600, the first 5 hours of thinning were done at 5
kV, 25 nA with 20° incidence, and the last 10 hours,
until a hole formed, were done at 3–4 kV, 25 nA with
12° incidence. The preparation was finished at 2 kV to
minimize the amorphous film on both sides of the speci-
men. On the PIPS ion mill, incidence angles were typi-
cally 4° on the specimen side and 9° on the grid side,
and the total thinning time was reduced to ca. 2–3 hours.
The specimen preparation was finished after coating it
with a rather thick (20 nm) layer of amorphous carbon
to insure good conduction of electrons between the
tubular microstructures and the copper grid in the
microscope.

Electron microscopy

A JEOL 2000 fx transmission electron microscope
operated at 200 kV, located at CRMC–N (part of the
CNRS/INSU French National TEM facility), was used
to acquire most of the images and the electron-diffrac-
tion data presented here. Point-to-point resolution in

INTRODUCTION

Lizardite, chrysotile and antigorite are the three most
common structural varieties of the trioctahedral family
of 1:1 layer silicates (e.g.,Wicks & O’Hanley 1988).
Except for the introduction of a talc component in
antigorite, their chemical formula does not depart much
from the Mg3Si2O5(OH)4 end-member composition.
However, they cannot yet be considered as true poly-
morphs because neither experimental studies nor petro-
logical observations have clearly ascribed stability fields
to each of these structural modifications. Moreover, they
coexist commonly as complex intergrowths, as shown
by many recent studies of serpentinites by transmission
electron microscopy (TEM) (e.g., Baronnet & Belluso
2002, Baronnet & Devouard 1996, Belluso et al. 1998,
Mellini 1986, Spinnler 1985).

Polygonal serpentine (PS) or “Povlen-type chryso-
tile” was early recognized as another rolled microstruc-
ture of serpentine (e.g., Cressey 1979, Cressey &
Zussman 1976, Mellini 1986, Middleton & Whittaker
1976, Mitchell & Putnis 1988, Yada & Liu 1987). The
description of the detailed structure of both 15- and 30-
sector PS is needed to place PS among other serpentine
varieties (Wicks & O’Hanley 1988). The interpretation
of partial results of more recent microstructural studies
remain controversial (Baronnet et al. 1994, Chisholm
1992, Dodony 1997a) and, therefore, needed to be docu-
mented further.

Our aim in this paper is thus to document microstruc-
tural data from high-resolution electron imaging and
electron diffraction of polygonal serpentine with 15 and
30 sectors. Numerical simulation techniques of the dif-
fraction features are used to interpret the results. Such
data are required to help provide the missing crystallo-
graphic details of the structure. Finally, we discuss the
previous models in the light of these results.

EXPERIMENTAL

Samples

Serpentinite specimens are from: i) the Piemont
Zone (Alps), Italy, kindly supplied by E. Belluso (Uni-
versity of Torino), ii) La Carrade Quarry (Hercynian
Maures Massif), Var, France, iii) the Costabonne mine,
Pyrénées, France, iv) the Jeffrey mine, Québec, Canada,
and iv) drill core from midoceanic crust. Serpentine
veins or serpentinite matrix containing mutually disori-
ented fibers are here preferred over those with a strongly
developed asbestiform texture. Although the latter may
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image mode is 0.28 nm. An attached Tracor TN 5502
EDX microanalytical system allowed us to check min-
eral compositions, but they are not reported here. The
best-resolved (0.20 nm) micrographs presented in this
paper were obtained on a JEOL 4000 fx at the RUCA–
EMAT Antwerp TEM facility, and some others on a
JEOL 3010, also at the CRMC–N facility. A TV-rate,
high-sensitivity camera (LHESA) was systematically
used during the object-orientation procedure and the
setup of optimum conditions for imaging . This proce-
dure minimized electron-radiation damage. The full-
beam conditions were re-established slowly and only to
record the micrographs. Local charging on the speci-
mens and drift were dealt with by correcting the objec-
tive lens astigmatism after any change in tilt.

A ±30° double-tilt specimen stage was used for pre-
cise orientation of the fibers. The axial orientation of a
fiber was first approached in direct space by rotating it
at constant speed using the axial tilt of the specimen
holder under perfectly eucentric conditions. Then the ro-
tation was stopped at the point where the diffraction
“contrast cross” rotated on the fiber image at maximum
angular speed. Eventually, we used the transversal tilt
to spread the cross to make the fiber completely black,
i.e., maximum diffraction contrast over the entire cross-
section was obtained. The diffraction mode was used to
finalize the orientation.

The best high-resolution images were recorded at
relatively low magnification of 150,000 to 300,000� to
minimize electron doses, and in the thinnest regions.
Only one to three through-focus micrographs were usu-
ally taken, bracketing the Scherzer defocus, before the
fiber became amorphous. No image-enhancement tech-
nique (such as averaging or Fourier transform filtering)
was used on the HRTEM micrographs presented here.

Techniques of direct space
and reciprocal space simulations

In the case of cylindrical lattices, the correspondence
between image contrasts and diffraction features is not
easily explored by standard techniques of dark-field
imaging. Diffraction beams or streaks cannot be selected
individually because of the ubiquitous overlap of dif-
fraction features coming from different sectors. There-
fore, simulations of the lattices of regular polygonal
serpentines and of their associated diffraction-patterns
proved necessary to interpret the complex observations
in both spaces. These simulations are reminiscent of
those conducted for chrysotile (Devouard & Baronnet
1995), but here they have been extended to the polygo-
nal case.

First, a special algorithm was designed to draw
curved and flat Bravais lattice nodes projected along
[100], i.e., onto the (100)* reciprocal plane common to
all flat sectors. Both fifteen or thirty sectors were con-
sidered, and the layer structure of the serpentine was
assumed to be laterally continuous, without reversal of

polarity across sector boundaries. Each layer closes up
as an integral number of Bravais unit-cells with five
more unit-cells added per new adjacent outer layer
(Jagodzinski & Kunze 1954, Yada 1967). In addition,
the continuity of individual layers across sector bound-
aries was secured through curved portions of the layers,
which stack while keeping a constant radius of curva-
ture from one layer to the next. In these portions, the
mechanically neutral surface is located in the middle of
the serpentine single layer, i.e., roughly along the apical
O – inner-OH plane connecting the sheet of tetrahedra
to the sheet of octahedra. The lizardite mode of stack-
ing successive layers was assumed to apply inside the
sectors, i.e., optimal H-bonding exists between the flat
layers. These conditions are those contained in the
model proposed by Baronnet et al. (1994). Accordingly,
each fiber was made of a rotational set of sectors (15 or
30) with fully coherent junctions between successive
layers.

Input variables for generating a polygonal fiber were:
i) the number of sectors, ii) the inner core diameter, iii)
the number of layers making the fiber wall (up to 60
layers, i.e., modeling fibers up to 42 nm in diameter),
iv) the stacking sequence (periodic or semirandom)
within one of the sectors, the others being automatically
generated from the layer-continuity principle, and v) the
radius of curvature inside sector boundaries, which con-
trols the sector-boundary width.

The resulting dot patterns were represented by 1024
� 1024 or 2048 � 2048 pixel matrices. Then a fast
Fourier transform (FFT) algorithm was applied to gen-
erate the topology of the diffraction pattern as its power
spectrum. Because the actual structure of a single layer
of serpentine was not introduced in the computation
(only lattice nodes were considered), the topology of the
Fourier space is correct, but the structure factors are not
taken into account, and thus intensities may not be ac-
curate. However, diffracted intensities are not essential,
as they can be modified by numerous factors, including
dynamic diffraction conditions, misorientations, and the
unequal development of sectors.

Precautions were taken to reduce the artifacts inher-
ent to FFT techniques. Nevertheless, a few residual ar-
tifacts can be recognized in the power spectra, such as
faint streaking around 001 reflections or exaggerated
elongation of basal reflections for 30-sector fibers. Both
are due to the shape factor of the limited sectors, and
low-intensity spots in the background that come from
aliasing (folding over of high-frequency intensities).

RESULTS: TEM IMAGES OF REGULAR FIBERS

Bright-field zone-axis images of 15- and 30- sector
fibers are shown at low magnification in Figures 1 and 2,
respectively. They are most representative of regular
fibers, i.e., those with nearly equal radial development
of component sectors. The outer diameter of most fi-
bers of polygonal serpentine extends from 40–50 nm to
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beyond one micrometer. The hollow core may vary in
diameter from very small (2 nm or less) to several hun-
dreds of nanometers. This is in contrast with chrysotile
cylinders, whose inner diameter is rarely below 5 nm
and the outer diameter rarely above 65 nm (Yada 1967,
1971). Coreless polygonal fibers have isosceles trian-
gular sectors that may or may not radiate out from a
unique point. In all cases, however, both intersector
angles and the angles between adjacent (001) lattice
planes retain regular values of 24° and 12°, for 15 sec-
tors and 30 sectors, respectively (Figs. 3a, b). Cylindri-
cal and spiral wrapped (polygonal scrolls) serpentine
layers coexist among fibers of the same occurrence. The
spiral pitch is usually one to several layers thick, but
rare “ammonite-like” fibers may have pitches of sev-
eral tens of serpentine layers.

Sectors are made of a lizardite-like material. Flat 1:1
layers are tangential to the fiber [i.e., (001) // fiber axis]

and parallel to their own external sector “facet”. High-
resolution images of these flat parts of the microstruc-
ture cannot be distinguished from those of lizardite seen
along any of the three xi – <100> type directions
(Fig. 3), as defined by Bailey (1988). Bright spots, 0.45
nm apart along the layering, display shifts of possible 0
or ±0.15 nm along the layer trace in going from one
layer to the next. The stacking sequences of these shifts
along the normal to the layers may be regular (Fig. 3a)
or semirandom (Fig. 3b), suggesting ordered and disor-
dered polytypes, respectively.

Structural continuity is invariably observed between
adjacent sectors. This is particularly evident in PS fi-
bers with overall ordered sequences, in which stacking
faults can be followed from one sector to both the adja-
cent ones (Fig. 4). Modifications of the stacking se-
quences from one sector to the next also are obvious in
the high-resolution images. For ordered sequences, these

FIG. 1. Low-magnification HRTEM bright-field image of cross-sections of two regular 15-sector fibrils of  polygonal serpen-
tine (15-PS) seen along the [100] axis, and surrounded by chrysotile fibers. The bottom-right PS is built up of a two-layer
polytype, whereas the one in the upper left mixes two-layer and one-layer stackings. Arrowheads mark stacking faults.
“Picrolite” from the Jeffrey mine, Québec (JEOL 3010).
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modifications commonly result in a succession of or-
thogonal (O), right-slanted (R) and left-slanted (L) unit-
cells (in 2D projection) in successive sectors (Fig. 4),
repeating every three sectors. This succession was first
described by Dodony (1993, 1997a) in ordered 30-sec-
tor fibers. In some cases, a non-equivalent but regular
structural repeat every three sectors can be seen on low-
magnification micrographs by uneven electron-beam-
induced damages between or within sectors (Fig. 5).
Further information on stacking sequences in sectors
will be provided below, on the basis of diffraction space.

Not only the regular fibers, but all the hundreds of
fibers we examined thus far exhibit curved junctions of
(001) lattice planes through sector boundaries when
properly aligned and seen at sufficient magnification,
as in Figures 3 and 4. The radius of curvature of roughly
10–15 nm for both 15- and 30-sector fibrils is constant

or nearly so from the core to the rim of most fibrils
(Fig. 3). This uniformity ensures a locally constant
width of the sector boundary. This width tends to be
larger in 15-sector fibers (4 to 5 nm) than in 30-sector
fibers (2.5 to 3 nm) because the kink angle between
(001) lattice planes in the former case is twice that in
the latter case. Such constant curvature results in a pro-
gressively larger flat part in each layer-turn from core
to rim. Small hollow cores are limited by rounded lay-
ers where the curved 15- or 30-sector boundaries meet.
This progressive evolution from mostly curved to
mostly flat layers outward avoids structural disruption
of crystal matter, as would be expected from the model
of Middleton & Whittaker (1976) of an abrupt polygo-
nal coating over a core of chrysotile fiber. From our
observations, a distinct cylindrical core is not generally
present in most cases of PS observed thus far.

FIG. 2. Low-magnification TEM bright-field image of a regular 30-sector fibril of polygonal serpentine (30-PS) seen along its
[100] axis. Note the defective rim between sectors 29 and 30, presumably due to the imperfect closure of the fiber along this
plane at the end of growth. Overfocusing of the objective lens emphasized the contrast between sectors. Serpentinite vein
from the Piemont zone, Western Alps, Italy. JEOL 2000FX. The SAED pattern is derived from the fiber shown in Figure 19.
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On properly oriented high-resolution micrographs,
no evidence of polarity reversal can be seen between
sectors, for 15- or 30-sector PS, even on high-resolu-
tion images, where sheets of tetrahedra and of octahe-
dra can be resolved (Fig. 3a).

RECIPROCAL-SPACE SIMULATIONS

OF REGULAR FIBERS

The interpretation of the axial diffraction-patterns
produced by single fibers (see Figs. 15 and 16, below)
has been made possible using a progressive simulation
approach. In this section, structural ingredients of the
fiber are introduced progressively in the simulation so
that the origin of the various diffraction features may be
identified in direct space.

The diffraction pattern is assumed to be the sum of
the diffraction features issued from individual parts of
the fiber. This statement is not correct for the usual case
of a translation lattice, where strong phasing exists
among the different parts of an object. However, this
situation may work to simulate cylindrical lattices, for
which translational phasing is relaxed. In other words,
we have made the unconventional assumption that the

Fourier transform of the fiber as a whole is the sum of
the Fourier transforms of component building parts of
the fiber, such as individual sectors and junctions at sec-
tor boundaries. Such an assumption had been used suc-
cessfully by Devouard & Baronnet (1995) for chrysotile.
In that case, the axial diffraction-pattern of the circular
object could be geometrically predicted as the sum of
the reciprocal lattices of local translation-lattices as po-
lygonal approximants from all around the cylindrical

FIG. 3. HRTEM two-dimensional images of the boundary between two consecutive sectors of fibrils of polygonal serpentines.
White spots, 0.45 nm = b/2 apart along the layers indicate a [100]-type zone-axis for both images. The structural continuity
between consecutive sectors is ensured by a layer curvature. a) A 15-PS with a four-layer stacking sequence. Note how the
+++ shift sequence on the right sector converts to a 000 shift sequence on the left, i.e., the structure undergoes a homogeneous
shear. “Picrolite” from Jeffrey mine, Québec. Raw image. JEOL 3010. Raw image. b) A 30-PS fibril with a semirandom
sequence of stacking. La Carrade quarry, Var, France. Raw image. JEOL 4000ex.

FIG. 4. HRTEM two-dimensional images of three consecu-
tive sectors of polygonal serpentines with two-layer
polytypes. The stacking sequences of each sector are
drawn; their power spectrum derived from FFT of portions
of the HR image are shown as insets underneath. Arrow-
heads point to the same stacking fault crossing consecutive
sectors. Note the changes of direct and reciprocal unit-cells
when going from one sector to the next one (see text for
detailed discussion). a) A 15-sector PS. “Picrolite” from
the Jeffrey mine, Québec. Raw image. JEOL 3010. b) A
30-sector PS. La Carrade quarry, Var, France. Raw image.
JEOL 4000ex.
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FIG. 5. Low-magnification images of selective electron damages on 30-sector PS fibers. a) The contrast in the “serpentine
clock” dial is due to silicate amorphization at curved sector boundaries. The apparent periodicity over three boundaries is
considered to be caused by the contact between right (R)- and left (L)-leaning unit-cells of neighboring sectors (long trace)
that differ from the two enantiomorphous L–O and R–O contacts (short traces).The latter should have the same boundary-
structure, and therefrom the same sensitivity to beam damage. Such a pattern occurs in fibers with fully ordered, low-repeat
sequences of stacking. Semirandom stacking, for which beam damage might be equalized among successive boundaries,
should not cause such a pattern. Piemont serpentinite, Western Alps, Italy. b) Mottled contrasts periodically distributed within
one out of three sectors (white arrowheads). An orthogonal (O) unit-cell is expected for such damaged sectors because the
other L and R sectors might behave similarly as enantiomorphous variants of the same structure. La Carrade quarry, Var,
France.
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fiber. For polygonal serpentines, the procedure consists
in the following steps: i) recall the basic features of the
<100> diffraction pattern of lizardite as the model for
diffraction of a single sector; ii) then build up three of
these lizardite-like sectors after considering proper
structural shifts, sector shapes, rotations, and suitable
curved junctions between sectors, and iii) finally propa-
gate the results over a full turn to complete the fiber as
a whole.

The <100> SAED pattern of lizardite

Two-dimensional numerical Fourier transforms of
three polytypes of lizardite are reported in Figure 6,

using primitive lattice nodes of the projected subcells
as a numerical mask for multilayer polytypes. The re-
sulting power spectrum may be compared with a SAED
pattern provided that single-layer structure-factors and
conditions of dynamic diffraction are neglected. Bailey
& Banfield (1995) and Dodony (1997b) published simu-
lations of the SAED patterns of various polytypes of
lizardite under conditions of dynamic diffraction.

In all diffraction patterns, diffraction rows, parallel
to [001]* and (0.45 nm)–1 apart, are successively in-
dexed as [0 0 l]*, [0 ± 2 l]*, [0 ± 4 l]*, [0 ± 6 l]*, etc.,
the missing rows being due to the C-centering of the
Bravais cell of such layer silicates. Regular polytypes
and semirandom stackings show up as supercell spots

FIG. 6. Indexed power-spectra of three lizardite polytypes
projected along [100]: a) projected ...0, 0, 0, 0... stacking.
b) Projected ...+1/3 b, -1/3 b, +1/3 b, -1/3 b, ... (= ...-1/6 b,
+1/6 b, -1/6 b, +1/6 b, ...) stacking. Strong reflections for k
+ l = 2n + 1, weak ones for k + l = 2n along 0 2k l rows with
k ≠ 3n. c) Semirandom stacking made of random mixing of
0, +1/3 b, and –1/3 b shifts. Somewhat spotty streaks in-
stead of fully continuous streaks along rows such as k ≠ 3n
are due to the limited number of layers used in the simula-
tion.
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or streaks along [0 ± 2 l]*, [0 ± 4 l]*, [0 ± 8 l]*, [0 ±
10 l]*, i.e., along [0 2k l]* with k ≠ 3n, respectively. On
the other hand, [0 0 l]*, [0 ± 6 l]*, etc., i.e., [0 2k l]*
with k = 3n are invariably made of regular spots (0.73
nm)–1 apart, that is, they are affected by systematic ex-
tinctions. These rows are indicative of the 0, ±⅓(b/2)
shift operators we used to generate the layer-stacking
sequences.

The <100> SAED pattern of a few
connected sectors of lizardite

A numerical mask was made for the lattice having
the shape of a truncated, isosceles triangle with a 24°
(15-sector PS) or 12° (30-sector PS) apex angle. Then
we took care of the layer shifts s in the generation of the
stacking sequence of contiguous sectors. For flexural
folding of layer packets, keeping the layer thickness
constant, Devouard & Baronnet (1995) showed that s =
t�, with t as the layer thickness and � as the flexure
angle in radians. This relation indicates that the glide
component along the interlayer space is completely in-
sensitive to the shape of the flexured part but responds
to the flexure angle only. Note that constant layer-thick-

ness is indicated experimentally by circular and sharp
00l diffraction rings with (0.73 nm)–1 radius in the dif-
fraction space, whatever the local curvature and shape
of the serpentine layer packets may be.

With t = 0.73 nm, �(15 PS) = 24° = 0.42 rd and �(30
PS) = 12° = 0.21 rd, we have: s (15 PS) = 0.30 nm ≈
b/3, and s (30 PS) = 0.15 nm ≈ b/6. Accordingly, the
stacking sequences of polytypes are “sheared”
homogenously by these amounts in going from one sec-
tor to the next. This shearing is a direct consequence of
the continuity in atomic structure across the sector
boundary. Homogeneous shear affecting all interlayers
has been envisaged for the 30-sector PS (Amelinckx et
al. 1996) as a modification of the “coherent layer-pair”
model originally proposed by Baronnet et al. (1994).
Polytypes thus undergo a “martensite-like” modification
between successive sectors (Baronnet et al. 1994). For
[100] projections, the +b/3 shift is equivalent to the –b/
6 shift, and the +b/6 shift is equivalent to the –b/3 shift,
owing to the projected b/2 periodicity. The same pro-
jected stacking structure will be consequently repeated
after three sectors for both 15 PS and 30 PS. This find-
ing justifies using three sectors for the intermediate
simulation. In the 3-D structure, the sector sequence will

FIG. 7. a) Circular mask of the Bravais lattice nodes of three consecutive sectors of a 15-PS seen along [100] with a ...0, 0, 0, 0,
... projected stacking-sequence, i.e., with an orthogonal (O) projected (primitive) unit-cell in sector 2. In neighboring sectors
1 and 3, the “closest-to-orthogonal” convention produces unit cells that are oblique-to-the-right (R) and oblique-to-the-left
(L), respectively. Note how the 0 2k l lattice planes in sector 2 deviate only slightly upon crossing sector boundaries. b) Power
spectrum (FFT) of Figure 7a. Indexing as 0 k l (i), with i as the sector numbering. Individual reflections are circled in color
according to which sector they arise. R*, O* and L* reciprocal-plane unit-cells correspond to the direct-space R, O, and L unit-
cells, respectively. Diffuse segments connecting basal reflections [e.g., 0 0 ̄1 (1), 0 0 ̄1 (2), 0 0 ̄1 (3)] and non-basal reflections
[e.g., 0 2 0 (1), 0 2 1̄ (2), 0 2 2̄ (3)] show up quite well.



MICROSTRUCTURES OF COMMON POLYGONAL SERPENTINES 523

be repeated after three sectors in 15 PS, but after six
sectors now in 30 PS. The junction between successive
sectors is curved over a few b/2 distances while main-
taining a constant radius of curvature, as is observed in
high-resolution images of PS fibers.

Masks computed according to the above model and
the corresponding 2-D Fourier transform are shown in
Figures 7 and 8 for a 15-sector and a 30-sector PS, re-
spectively. Radiating series of 00l reflections are nor-
mal to their three corresponding sectors, and then rotated
from each adjacent sector by 24° for 15 PS or 12° for
30 PS.

The [0 2k l]* diffraction rows maintain a constant
distance of 2k/b from [00l]* in every case, i.e., they are
tangential to the frequency rings of radii 2k/b. However,
the distribution of intensity maxima of the power spec-
trum is not simply a rotated replication of a single sec-
tor. Reciprocal nodes undergo a shift along the [0 2k l]*
row of –2k �/b for a rotation of +�, due to the above-
mentioned shifts. This value corresponds to the length
of the circular arc limited by the two contact points of
the [0 2k l]* row on the 0 2k 0 frequency ring.

A prominent peculiarity on the Fourier transform of
any of these sets of sectors, for both 15-sector PS and
30-sector PS, is a set of diffuse streaks between basal
reflections and a second set of streaks between non-basal
reflections (Figs. 7b, 8b).

The streaks between basal reflections are linear seg-
ments that link 00l reflections of adjoining sectors, on
the same frequency ring. This observation is valid for
any l order of diffraction. As justified in the Appendix,
we interpret these streaks as caused by the superimposed
curved junctions joining the (001) lattice planes at sec-
tor boundaries while keeping a constant radius of cur-
vature along the boundary. Another origin of basal
reflection streaks may be the shape factor due to the nar-
rowness and limits of lizardite-like sectors. Since the
intersector boundary bisects the angle between the two
00l diffraction vectors, Bragg’s relaxation of 00l reflec-
tions will occur along the segment joining 00l reflec-
tion pairs, i.e., at the precise location of the observed
basal reflection streaks. However, linear streaking due
to shape factor would overshoot somewhat the two 00l
spots they link rather than stop right on them. This as-
terism on 00l reflections is visible, although of low in-
tensity, on our FFT simulations, but is never observed
in SAED patterns.

The streaks between non-basal reflections are linear
segments joining successive 0 2k l reflections (Figs. 7b,
8b). All k orders of diffraction are involved. These also
correspond to the curvature of non-basal lattices planes
as they pass through the boundaries between sectors.
Any lattice plane parallel to the axis of curvature of the
fibril should be curved where the basal plane is curved
itself.

FIG. 8. a) Circular mask of the Bravais lattice nodes of three consecutive sectors of a 30-sector polygonal serpentine along
[100]. Note that upon going from sector 1 to sector 3, the sequence of unit cells is L-O-R instead of R-O-L as for a 15-sector
PS (Fig. 7a). b) Corresponding power-spectrum (FFT). Same notations as in Figure 7.
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Simulations of complete fibers

General features. Figures 9a and b are the lattice-
node pattern and the Fourier transform of a fiber of po-
lygonal serpentine with 15 sectors having the simplest
orthogonal, one-layer projected stacking as input struc-
ture (the projected 1T, 1M, 2H1, or 2Or polytypes of
lizardite, for instance). Diffraction features are reminis-
cent of those displayed by simulations of chrysotile
(Devouard & Baronnet 1995), and will be discussed
accordingly.

Compared to chrysotile, successive 00l rings are no
longer smooth but spotty, with 30 reflections regularly
distributed around the ring. This number of 30 reflec-
tions is doubled with respect to the number of sectors.
This doubling is due to the centering of the Fourier trans-
form completing the acentric 15-fold symmetry of the
set of basal planes.

For each k, 0 2k l reflections are grouped as spotty
arcs,”birds in flight”, each “bird” having two “wings”
of spots connected by diffuse streaks (designated above
as non-basal reflection streaks). In other words, the
equivalent lattice nodes are situated on evolutes of the
concentric circle having 2k/b as radii. Evolutes of circles
are the curves drawn by the trajectory of any fixed point
on an infinite straight line “rolling without gliding” on
a circle. The cusp point is situated on the circle and the
beginning of the two spiral branches resembles the two
wings of a bird. See Devouard & Baronnet (1995) for
detailed derivation for cylindrical chrysotile.

The continuous shear within the cylindrical structure
of chrysotile results in continuous distributions of in-
tensity along the “wings” of such evolutes (Devouard
1995, Devouard & Baronnet 1995). However, in case
of polygonal serpentines, these evolutes are marked with
distinct diffraction-spots from the non-basal planes of
the direct lattice. From a given 0 2 0 diffraction spot,
successive diffraction-spots along each wing are due to
successive and subtle deviations of the lattice and also
to the shortening of the lattice distance where non-basal
lattices cut across adjacent sectors (visible in Figs. 9a
and 10a if looked at under grazing incidence). The num-
ber of “birds” around the 0 2k 0 rings is 10 for k = 1, 20
for k = 2, etc., i.e., 10k for a one-layer projected stack-
ing. In other words, the curved distance between suc-
cessive evolutes of any 0 2k 0 ring is constant and equal
to 1/t, which is also the radius of the 001 ring. This is
the distance between successive spots along [0 2k l ]*
rows. The axial symmetry of the pattern is ten-fold, as
constrained by the set of evolutes of the 0 2 0 ring.

To generate the projected direct lattice of 30-sector
polygonal serpentine (Fig. 10a), we retained the model
of 1/6 <110> dislocation walls with dislocations present
at each interlayer within sector boundaries (Amelinckx
et al. 1996) rather than the original model of 1/3 <010>
dislocations in every other interlayer (Baronnet et al.
1994). This choice is validated below, in the Discussion
and Conclusions section. For a one-layer polytype con-

stituting a 30-sector PS fiber, the Fourier transform (Fig.
10b) is very similar to the one described above for 15-
sector polygonal serpentine in terms of location of dif-
fraction spots (cf. Figs. 9b, 10b). Spots are less well
defined than for the 15-sector PS because shape-factor
effects prevail in the Fourier transform owing to the
narrowness of sectors. However, as a main difference
between the two cases, each 0 0 l and 0 2k l spot in the
30-sector case represents two superimposed reflections
from opposite sectors. Such doubling comes from the
centrosymmetrical distribution of projected lattice-
nodes of the 30-sector fiber, so that 0 2k l spots system-
atically overlap 0 2k̄ l̄ spots after half a turn. Again,
ten-fold symmetry prevails in projection.

Diffuse streaks connect 0 0 l spots along each 0 0 l
ring as well as 0 2k l spots along any branch of the evo-
lutes (“wings”) (Figs. 9c, 10c). A major difference be-
tween the 15-sector and the 30-sector cases is that
streaks are double and connect each successive diffrac-
tion-spots for the 30-sector PS, whereas streaks are
single and connect every other diffraction spots for the
15-sector PS.

Effects of layer-stacking modes. Having envisaged a
greater number of polytypes, we report only on a pro-
jected two-layer stacking sequence and on a semi-
random ordering of the layers. Figure 11b simulates the
power spectrum of a 15-sector PS with a two-layer pro-
jected structure (Fig. 11a). The main difference from
the one-layer case: there is twice the number of evo-
lutes (“birds”) occur around 0 2k 0 rings with k ≠ 3n,
whereas for k = 3n (e.g., 0 6 0), the number remains
10k. Note that the relative intensity of successive evo-
lutes is modulated, as is the intensity of spots along
straight polytype-sensitive rows of a single sector ([0 2
l]*, [0 4 l]*,...) (cf. Fig. 6b). The evolutes thus are geo-
metrically generated through simultaneously “roll-
ing without gliding” the [0 2k l]* rows around their
respective 0 2k 0 frequency rings. Each evolute results
from the trajectory of each of the diffraction spots that
sits on the [0 2k l]* rows with proper reinforcements of
intensity due to flat sectors. Accordingly, there are 10Nk
evolutes around 0 2k 0 frequency rings with k ≠ 3n, with
N the number of layers in the repeat of the regular
polytype. The period and intensity distribution of
polytypes in sectors thus may be read by examining
round the 0 2k 0 frequency ring; the intensity sequence
distributed along a 1/t length of arc is repeated 10k
times. The 0 2 0 ring is the best for determining the
periodic distribution of intensities of the sector
polytypes. It is so because this ring is devoid of any
overlap by [0 2k l]* rows, k > 1. Other 0 2k 0, k > 1
rings are superimposed on entangled “lateral” recipro-
cal rows, which prevent the recording of clean profiles
of intensity.

Figure 12 is the power spectrum of a semirandom
stacking of layers (0, b/3 and –b/3 shifts in random se-
quence) in a 15-sector fiber. The 0 0 l spots have distri-
butions identical to those of the regular polytypes.
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FIG. 9. a) Projected Bravais cells (left half) and lattice nodes (right half) of an entire 15-PS with a ...0, 0, 0, ... projected stacking
in the first sector. b) The corresponding power-spectrum with partial indexing as 0 k l (i), i referring to the numbering of
sectors. c) Enlarged middle-right part of b) with one of the ten evolutes indexed for low frequencies. Note the diffuse streaks
joining every other reflections along diffraction rings and evolutes.
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FIG. 10. a) Projected Bravais cells (left half) and lattice nodes (right half) of a 30-sector polygonal serpentine with a ...0, 0, 0,
... projected stacking in the first sector. b) Corresponding power-spectrum with partial indexing. Same notations as in Figure
9. c) Enlarged middle-right part of b) with one of the ten evolutes indexed for low frequencies. Note that diffuse streaks join
successive reflections along diffraction rings and evolutes.
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However, [0 2k l]*, k ≠ 3n, display continuous streaks.
The 0 2 0 frequency ring is almost continuous and marks
a limit of space frequency below which there is no dif-
fuse intensity in the background, and above which there
is an almost uniform scatter of intensity. Increments of
background intensity occur outward in steps beyond
each 0 2k 0 ring with k ≠ 3n. For this disordered stack-
ing, scatter may be seen either as the “trace” of the
superimposed surfaces swept across by the streaks of
[0 2k l]*, k ≠ 3n when they “roll without glide” around
their frequency ring, or as a number of evolutes around
a ring that goes to infinity. The 10k sharp evolutes still
occur around 0 2k 0, k = 3n rings.

Whatever the nature of the input polytype and the
type of polygonal serpentine (15 or 30 sectors), the fol-
lowing general rules apply. i) Any regular polytype in a
sector gives rise to a set of stacking sequences in neigh-
boring sectors that maintains the same repeat as that of
the input polytype. This is a direct consequence of the
model, and is due to the homogeneous shear of nb/3 (15-
sector PS) or nb/6 (30-sector PS) undergone by all
interlayers of the nth sector that modifies the stacking
sequence without changing the number of layers along
the repeat distance. It follows from this “martensite-
like” modification of the stacking sequence that any
stacking fault in one sector will propagate also as a
stacking fault in neighboring sectors. ii) The semi-
random stacking introduced in a sector remains

semirandom in neighboring sectors owing to the same
homogeneous shear.

In summary, the degree of ordered stacking is in-
variant around a regular polygonal serpentine. Full
stacking-order occurs on the diffraction pattern as dif-
fraction curves (evolutes of circles), whereas semi-
random stacking occurs as diffraction surfaces. For
cylindrical lattices, one dimension is therefore system-
atically added in the diffraction plane once compared to
the case of translational (flat) crystals: in ordered stack-
ing, diffraction spots convert to diffraction curves, and
in semirandom stacking, diffraction streaks convert to
diffraction surfaces.

The constant relative intensity along “wings” of the
evolutes suggests that diffraction intensities of sheared
polytypes are not modified, even if their diffraction lat-
tice is slanted. This may be an inherent property of a
motif sheared along a plane containing the direction of
projection.

Diffuse streaks. The diffuse streaks joining basal and
non-basal reflections are now generalized over the
whole pattern. They outline 0 0 l frequency rings and
the “wings” of the evolutes of circles, respectively (l
being a multiple of the periodicity N for regular
polytypes).

For 15-sector fibers, streaks between basal reflec-
tions are arranged as two interlaced 15-sided polygons,
basal streaks connecting every other basal reflection
because they correspond to consecutive sectors

FIG. 11. a) Projected Bravais cells (half left) and lattice nodes (half right) of a 15-sector PS with a two-layer orthogonal stacking
(....., +1/3 b, - 1/3 b, +1/3 b, - 1/3 b, .....) in the first sector. b) Corresponding power-spectrum with partial indexing. Same
notations as in Figure 9. Weak and strong intensities alternate for the twenty inner evolutes, as they do along stacking-
sensitive rows in Figure 6b.
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(Figs. 9b, c). Accordingly, one polygon of streaks links
all successive 0 0 l (i) reflections such as l > 0, and the
other polygon does the same for l < 0.

In case of 30-sector fibers, basal streaks outline the
edges of two 30-sided concentric polygons, the corners
of each occurring at the basal reflections 0 0 l. This
comes from the fact that each reflection is now double,
0 k l (i) diffraction spots being superimposed onto the 0
(i + 15) diffraction spots from the opposite sectors. For
the same reasons, each branch of evolute displays two
distinct chains of streaked chords (non-basal streaks) for
15-sector fibers, whereas a unique, but doubled, chain
of streaks decorates the evolutes of 30-sector PS simu-
lated patterns.

OBSERVED AXIAL DIFFRACTION-PATTERNS

AND STACKING SEQUENCES

Selection of a few contiguous sectors
of 15-sector and 30-sector PS

Figures 13 and 14 are the SAED patterns of a few
contiguous sectors selected on a 15-sector PS with a
dominant two-layer polytype, and on a 30-sector PS
with a disordered sequence, respectively. They compare
quite well with the main features displayed in Figures
7b and 8b.

The [00l]* reciprocal rows are 24° and 12° apart in
15-sector PS and in 30-sector PS, respectively. For both
types, linear diffuse streaks connect 00l (i) and 00l (i +
1) spots, where i is the counterclockwise numbering of
consecutive sectors (1 ≤ i ≤ 15 for 15-sector PS, 1 ≤ i ≤
30 for 30-sector PS).

The [0 2k l]* rows of regular polytypes give infor-
mation about the stacking transformation in going from
one sector (i) to the next one (i + 1). Figure 13 and in-
sets of Figure 4a clearly show how the two-layer unit-
cell evolves along successive sectors of a 15-sector PS,
in accordance with the imaging and simulation data pre-
sented above. An orthogonal (O) unit-cell in sector (1)
evolves as a unit-cell leaning to the right (R) in sector
(2), and as one leaning to the left (L) in sector (3).
Clearly, the unit cells slanting to the left and the unit
cells slanting to the right are enantiomorphous images
of each other. An ...|ORL|ORLORL... sequence of unit
cells appears along the counterclockwise circuit. In a
30-sector PS with a same two-layer periodicity (insets
in Fig. 4b), a first left-leaning unit-cell transforms to a
right-leaning one and then to an orthogonal one, i.e., the
handedness of the sequence is reversed as ...|LRO|
LROLRO... with respect to the 15-sector case. Note that
this reversal is not distinctive, because the handedness
actually depends on the stacking periodicity (compare
with Figs. 7 and 8, with one-layer polytypes). The c*
component along the b* axis is either +b*/6 (or –b*/3),
–b*/6 (or +b*/3), or zero. In consecutive sectors, the
shift pattern is consistent with successive layer-glides
of +(1/3)b or –(1/6)b in direct space, depending on the

clockwise or anticlockwise sequence from one sector to
the next.

These observations are consistent with b/3 and b/6
projected shifts between successive layers in crossing
sector boundaries for 15-sector and for 30-sector PS,
respectively. High-resolution TEM images of 15-sector
PS (Fig. 3a) or 30-sector ones (Fig. 3b) confirm these
shifts in direct space.

And 15-sector and 30-sector PS fibers as a whole

Though we observe that the global topology of the
axial SAED patterns mainly depends on the layer-stack-
ing sequence (see below), any of them could be satis-
factorily simulated in the way described above. We
report only on selected examples in what follows.

Figures 15 and 16 are examples of [100] axial SAED
patterns of a 15-sector PS with a one-layer polytype and
a 30-sector PS with a two-layer polytype, respectively.
They are very similar to the simulated diffraction-pat-
terns (Fig. 9b for a 15-sector PS, for example). As a
major difference between experimental and simulated
diffraction-patterns, the basal 0 0 l reflections in experi-
mental patterns are more intense than the 0 2k l ones.
This difference might be the result of neglected struc-
ture-factors in our simulations.

Basal reflections. A regular set of 30 radiating rows
of sharp 00l basal reflections is common to both 15-sec-
tor PS and 30-sector PS. Each row is normal to the lay-
ering of the flat sectors. Successive orders of reflections
0 0 N, 0 0 2N, ….., 0 0 lN are (0.73 nm)–1 apart, N being
the polytype periodicity. Thirty equispaced reflections
with the same order of diffraction l sit on concentric
rings. Counterclockwise numbering i of the successive
sectors in direct space allows indexing of basal reflec-
tions as 0 0 lN(i). Positive values of l are taken toward
the rim of the corresponding sector.

Accordingly, in a 15-sector PS, successive half-rows
index as: 0 0 lN (1), 0 0 l (8), 0 0 lN (2), 0 0 l (9), 0 0 lN
(3), 0 0 l (10), etc., i.e., ...0 0 lN (i), 0 0 l (I + 7), ... with
l, N and 1 ≤ I ≤ 8 taken as positive integers. The above
alternation comes from the acentric setting of flat layers
around the axis of any fiber with an odd number of sec-
tors.

For a 30-sector PS, there is an intrinsic overlap of
the 0 0 lN basal reflections of one sector by the 0 0 l
ones from the antiparallel sector. This is due to the in-
herent centering of the configuration of an even number
of sectors. The pairs of reflections are: 0 0 lN (1) +
0 0 l (16), 0 0 lN (2) + 0 0 l (17), 0 0 lN (3) + 0 0 l (18),
etc., i.e., ... 0 0 lN (i) + 0 0 l (i + 15)... with l, N and
1 ≤ I ≤ 15 as positive integers. In this case, each basal
diffraction-spot is doubled, and their match is usually
impressive, which indicates a strict crystallographic
control upon the sectorial arrangement.

A few cases of 30-sector PS displaying radial split-
ting of 0 0 lN reflections, while keeping a constant-split
distance for any l, has been tentatively explained by
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electron optical refraction phenomena (Amelinckx et al.
1996, their Fig. 4). Also, occasional faint spots have
been observed that halve the c* distance. These cannot
easily be attributed to non-extinct forbidden reflections
caused by conditions of dynamic diffraction operating
on a even-layered polytype. In some cases, alternation
of two types of layers (ordered mixed-layering) or of
two arrangements (polar versus antipolar?) of a unique
type of serpentine layers thus may be possible within
sectors.

Non-basal reflections. In both types of fibers, there
are thirty [0 2k l]* (i) rows tangent to each of the suc-
cessive orders k of any 0 2k 0 [i.e., (k � 0.45 nm)–1]
space frequency-ring, and they run parallel to succes-
sive [00l]* (i) rows (e.g., Fig. 17). In the diffraction
plane, they form nested semi-infinite coronae having
each one of the 0 2k 0 space frequency-rings as inner
diameter and going to infinity outward. In 15-sector PS,
each [0 2k l]* row comes from a single sector. The
[0 2k l]* (i) and [0 k̄ l]* (i + 15) rows overlap systemati-

FIG. 12. Lattice Fourier transform of a 15-PS with a 2-D semirandom stacking of layers (i.e., combining randomly 0, +1/3 b, and
-1/3 b shifts) in one sector. Only frequency rings are indexed. -: undefined l. Note the diffuse intensity increasing by steps in
the background, beyond the 0 2 0 (i) and 0 4 0 (i) rings.
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FIG. 13. Electron-diffraction pattern of four contiguous sectors from a 15-sector polygonal serpentine displaying mostly two-
layer 2D-stacking with some disorder. Reciprocal unit-cells O*, R*, and L* correspond to the O, R, and L direct unit-cells in
sectors 1, 2, and 3, respectively. Inset: image of the corresponding fiber with location of the selection aperture (white circle)
used to record the SAED pattern.
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cally in a 30-sector PS. Assuming total structural conti-
nuity around the fiber, the total shear undergone be-
tween successive layers in going from sector (i) to sector
(i + 15) would be �t ≈ 5b/2 (Baronnet et al. 1994), i.e.,
the projected stacking sequences are the same but turned
by � on the fiber axis. Consequently, the diffraction

patterns might be presumably centered if Friedel’s Law
is valid so that opposed sectors will be identical and
might therefore duplicate the same information about
their stacking sequences. Both sequences look identical
in [100] projection, but differ in 3-D space as the total
interlayer shift, 5b/2, is not an integral multiple of b.

FIG. 14. Electron-diffraction pattern of a few contiguous sectors from a 30-sector polygonal serpentine exhibiting 2D
semirandom stacking. Streaks are almost continuous along [0 ± 2 l]* and [0 ± 4 l]* rows. Same comment as for Figure13
regarding the additional reflections along [0 0 l]* and [0 ± 6 l]* rows.
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Modifications in layer-stacking within individual
sectors. The [0 2 l]*, [0 4 l]*, [0 8 l]*, [0 10 l]*, i.e.,
[0 2k l]* rows with 2k ≠ 0 mod 6 have variable inten-
sity-profiles, including sharp, equispaced spots of regu-
lar polytypes, complex admixtures of the former, or
even continuous streaking of intensity. Periodic or non-
periodic projections are recorded in TEM images. A pe-
riodic projection may mean either a periodic (regular)
polytype or an aperiodic stacking sequence depending
on the unknown pattern of order of layer-stacking com-

ponents along [100]. Most common periodic projections
of polytypes are two-layered (Figs. 4a, b, 13 and 16),
four-layered (Figs. 3a, 17), and six-layered (Fig. 18)
sequences, as also noted elsewhere [Jiang & Liu (1984),
and Dodony’s (1988) data reported by Papp (1990)].
This statement holds for both 15-sector PS and 30-sec-
tor PS. The actual sequence of intensity is commonly
less clear for the latter because of the overlap of diffrac-
tion rows produced by opposite sectors. Better visibil-
ity of the intensity profile (and of the sequence of

FIG. 15. A [100] zone-axis SAED pattern of a regular 15-sector PS with a one-layer polytype. The selection aperture was
centered on the fiber axis. The ten-fold symmetry of the pattern as a whole arises from a true five-fold symmetry of the fiber
(see text).
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direct-space contrast) is obtained by tilting the fibers
slightly off their axis (inset in Fig. 18): more intensity
passes through a smaller number of characteristic rows,
and superperiodicity spots are rendered more visible by
enhanced conditions of dynamic diffraction. We notice
also how such a tilt emphasizes the imprint of the peri-
odic distribution of intensity in the polytype on the
0 2 0 frequency arc. The usual thick-on-average sec-
tions (>20 to 50 nm) of PS fibers and resulting dynamic
conditions prevent serious comparisons with the simu-

lated profiles of intensity for lizardite reported by Bailey
& Banfield (1995) under kinematic conditions. Also 30-
sector PS fibers with semirandom sequences of stack-
ing are quite common (Fig. 19). Note how this SAED
pattern resembles the simulated pattern of a 15-sector
PS with the same stacking sequence (Fig. 12).

Diffuse streaks. Diffraction streaks as segments or
arcs connecting reflections from different sectors are
ubiquitous features on the axial electron-diffraction pat-
tern of any single fiber (Figs. 15, 16, 18 and 19). These

FIG. 16. A [100] zone-axis SAED pattern of a 30-sector PS with a two-layer polytype. Note the alternation of strong (s) and
weak (w) “birds” around the 0 2 0 frequency ring, lowering the projected symmetry to ten-fold, and the propensity of smeared
reflections to merge with connected streaks similar to the simulation in Figure 10.
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streaks, usually rectilinear, connect sharp reflections two
by two as interspot segments that do not extend beyond
linked reflections.

In case of 15-sector PS, streaks between basal re-
flections link every other 0 0 l reflections (Fig. 15),
whereas in the case of 30-sector fibers, they connect all
successive 0 0 l (i) reflections (Fig. 19). That these
streaks are chords, on any 0 0 l frequency-ring, is par-
ticularly visible in Figures 15 and 16 if one looks at them
along a line of grazing incidence. However, if a cylin-
drical core of chrysotile occupies the center of the po-
lygonal fiber, these streaks are no longer chords but
arcs, or a mixture of chords and arcs. Such arcs under-

line the frequency ring (Fig. 18). This is consistent with
a Debye–Scherrer ring, itself typical of a constant basal
distance between curved layers. Their radius of curva-
ture thus is increased (or decreased) by the constant
layer-spacing when moving from one layer to the next
one. This is a basic property of chrysotile tubes.

Despite the great resemblance of the SAED patterns
of both types of PS fibers, the arrangement of basal
streaks is diagnostic for their recognition as 15-sector
or 30-sector PS in the absence of any direct-space im-
age.

Diffuse streaks also are present as linear segments
joining non-basal reflections sitting on the same branch

FIG. 17. A [100] zone-axis SAED pattern of a 15-sector PS with a four-layer stacking sequence, i.e., a non-standard (long-repeat
or complex) polytype. The intensity sequence strong, strong, strong, weak (sssw) shows up along non-basal diffraction rows
(white arrowheads) and along the 0 2 l frequency ring as well (black-and-white arrowheads).
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of any evolute of a 0 2k 0 frequency-ring. They may be
visible in the case of a short-period, well-ordered
polytype, where sharp spots are observed (Figs. 15, 16),
or less visible in the case of semirandom stacking, where
only evolutes on 0 6 0 (more generally 0 2k 0, k = 3n)
are distinctly streaked (Fig. 19). Branches of evolutes
also display interlaced (15-sector PS) or single (30-sec-
tor PS) chains of streaks, although the fact that such a
chain might be actually made of two overlapping chains
is usually hard to see.

DISCUSSION AND CONCLUSIONS

Previous investigators considered polygonal serpen-
tine as an exotic and uncommon modification of chryso-
tile (Cressey 1979, Cressey & Zussman 1976, Middleton
& Whittaker 1976), somewhat intermediate in micro-
structure between the rolled chrysotile and the flat
lizardite. However, it turns out that most veins in
serpentinites from the Western Alps contain PS in vari-
ous amounts when looked at carefully with the trans-

FIG. 18. A [100] zone-axis SAED pattern of a 30-sector PS with a six-layer stacking sequence. Note the almost perfect tenfold
2D symmetry of the pattern. The intensity distribution strong, medium, weak, nil, weak, medium (smw0wm) along the 0 2 0
frequency ring is marked by arrows. This is hardly recordable elsewhere because too many reflections overlap. Note that
incorrect exposure would have led to misinterpretation of this pattern as a one-layer stacking sequence similar to that in Figure
15 or to the one reported by Dodony (1997a, his Fig. 1). Inset: the same fiber after a slight tilt around a nearly vertical axis.
Now intensity sequences along rows of non-basal reflection may be easily recorded (e.g., between the two white arrowheads).
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mission electron microscope (Belluso et al. 1998). In
agreement with Papp (1988, 1990), both natural (Yada
& Liu 1987) and synthetic (Devouard et al. 1997)
“chrysotile fibers” larger than ca. 100 nm in diameter
turn out to be PS. Nearly all such fibers display 15 or 30
radially distributed sectors of flat serpentine (Chisholm
1992, Mitchell & Putnis 1988, Yada & Liu 1987), but
exceptionally 29 sectors were also observed, as well as
more than forty (Devouard 1995). The reason(s) for the
occurrence of such fixed numbers of sectors inspired

various crystallographic models (Chisholm 1991, 1992,
Dodony 1993, 1997a) and dislocation-based models
(Baronnet et al. 1994, Amelinckx et al. 1996) .

Microstructural model of polygonal serpentines

The place of polygonal serpentines among other va-
rieties of serpentine depends strongly on the state of
knowledge of the intimate microstructure of these fi-
bers, and of the models proposed. Chisholm (1991,

FIG. 19. A [100] zone-axis SAED pattern of a 30-sector PS with a disordered (semirandom) layer stacking. This pattern is from
the fiber shown in Figure 2. Note that the 0 2 l streaks roll around the 0 2 0 frequency ring, which is a continuous circle with
a constant intensity.



MICROSTRUCTURES OF COMMON POLYGONAL SERPENTINES 537

1992) assumed a unique stacking structure of the flat
layers inside all sectors of one and the same fiber. Fur-
thermore, “kink” angles formed by (001) lattice planes
at sector boundaries are assumed to be controlled by
addition of integral numbers of octahedra at the border
of flat sectors. According to Chisholm’s model, 15- and
30-sector PS appear as cyclic twins on the lizardite
structure with sharp but corrugated contact-twin planes
(sector boundaries). As deduced by Devouard (1995)
and Dodony (1997a), a thirty-fold symmetry of the axial
diffraction-pattern of the 30-sector PS would result from
Chisholm’s model, but this is contrary to Dodony’s and
our observations.

Dodony (1993, 1997a) suggested that 30-sector fi-
bers could be made of flat layers of lizardite changing
their polarity at sharp intersector boundaries. He claimed
that this model is supported by simulated and observed
TEM contrasts of sectors in natural fibers. His model,
however, cannot be reconciled with 15-sector fibers
since they would present an odd number of polarity re-
versals. Following Dodony’s model, 30-sector PS could
be interpreted as a sort of polygonal roll of “para-
antigorite” with zero amplitude of the modulation
waves. Para-antigorite is mentioned because in
Dodony’s model, the 1:1 layers would be modulated
along the y axis, not along the x axis as in normal
antigorite.

Baronnet et al. (1994) hypothesized that sector
boundaries could be seen as partial dislocation-walls.
The continuity of the single-layer structure, including
layer polarity, would be maintained at crossing of sec-
tor boundaries. The stacking sequences of serpentine
layers in successive sectors would be related topologi-
cally by martensite-type shears.

Our combined use of conventional and high-resolu-
tion TEM imaging, electron-diffraction data, and the
numerical simulation of diffraction patterns sheds some
new light on the intimate microstructure of polygonal
serpentines. Structural continuity and homogeneous
shearing of the stacking sequences from one sector to
the next are unambiguously demonstrated in both 15-
and 30-sector PS fibers by high-resolution images, and
by the SAED patterns.

A most important contribution is the determination
of the ubiquitous curvature of serpentine layers at sec-
tor boundaries, for both 15- and 30-sector PS. Such cur-
vature has been overlooked by former microscopists,
probably because a very precise alignment of the zone
axis is needed to produce a consistent image around the
entire fiber. Without the precise alignment, a seemingly
sharp boundary and out-of-phase positions of the (00N)
lattice fringes are observed, which suggests structural
disruption of the structural continuity across sector
boundaries. Different off-axis positions of successive
sector-structures likely cause phase shifts of the images
of the two neighboring sectors (Guthrie & Veblen 1990).
Diffraction streaks interpreted here as signatures of such
curvatures may be found also in all the axial SAED

patterns of 30-sector PS published by Dodony (1997a;
his Figs. 1a, 4a, 6, 8). In the absence of high-resolution
images of the boundaries, he provided no explanation
of these streaks in diffraction space. Instead, Dodony
proposed sharp boundaries made of 1:1 layer polarity
reversals plus a 12° tilt of the basal planes on the fiber
axis. Accordingly, the same polarity of layers would be
found in every other sector. The present work does not
confirm his model, even if very exceptional 30-sector
fibers with modulated lizardite layers can be found
(Devouard & Baronnet, in prep.). In the latter case,
modulation contrasts occur inside the sectors and are
aligned normal to the layer traces, not along the bound-
ary. In addition, a numerical Fourier transform of
Dodony’s model (Fig. 20) displays 0 0 l intensities that
are markedly different from those of experimental
SAED patterns and from our simulated patterns as well.
This difference probably comes from the fact that
Dodony’s power spectrum is generated from the FT of
a direct-space model (his Fig. 11) that includes details
of the structure within the serpentine layer (triangles for
tetrahedra, dots for oxygen atoms…), thus inducing
strong differences in intensities (structure factors) for
successive 0 0 l and 0 2k l frequency rings. These dif-
ferences in intensities, as well as the difference in reso-
lution of Dodony’s and our simulations, make the
comparison of both models on the basis of the simu-
lated patterns very difficult. In addition, the boundary
reversal proposed by Dodony cannot occur in 15-sector
PS, as the model would systematically leave two con-
tiguous sectors with the same polarity because of the
odd number of sectors. No such unique boundary in 15-
sector PS has been observed in our images.

Our work demonstrates that all HRTEM and SAED
observations of both 15- and 30-sector PS fibers are
consistent with the dislocation model proposed by
Baronnet et al. (1994). However, Baronnet et al. (1994)
favored an elastic model for 30-sector PS according to
which a 15-sector PS would convert to a 30-sector one
beyond a certain diameter of fiber. This conversion
would occur through elastic interaction between dislo-
cations of the 15 walls, making any other dislocation of
each wall form 15 new walls in between. Hence dislo-
cations of a unique type 1/3 [010] were proposed for
both types of fibers. This would result in a b/3 shear
(homogeneous) of all interlayer spaces for a 15-sector
PS, and the same shear, but between every other
interlayer space for a 30-sector PS. This model is not
consistent with the homogeneous shear of 30-sector fi-
bers indicated by HRTEM (e.g., Fig. 3b). It is also not
consistent with the modifications of stacking sequences
in the 30-sectors PS (Fig. 16), or with contiguous one-
layer polytypes in a 30-sector PS, as observed by
Dodony (1997a, his Fig. 1a). Instead, the observations
support the possibility of distinct dislocations for 15-
sector PS (1/3 [010]) and 30-sector PS (1/6 <110>),
which also was considered (Baronnet et al. 1994,
Amelinckx et al. 1996), but not developed in terms of
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polytype generation in sectors. Two other arguments
also noticeably weaken our formerly proposed mecha-
nism of splitting of dislocation walls controlled by size.
i) The 30-sector PS are statistically, but not systemati-
cally, larger than 15-sector PS in a given serpentinite;
ii) the proportion of each PS type responds to the geo-
logical occurrences (Belluso & Baronnet, unpubl. data).

Invoking 1/6 <110> partial dislocations for 30-sec-
tor fibers (or any other system of dislocations project-
ing as b/6 along the [100] zone) implies that the fibers
must be subjected to some strain at sector boundaries,
as these dislocations have a component along the fiber
axis (Amelinckx et al. 1996). This axial stress may be
(at least partly) releaved by non-cylindrical, i.e., helical
or conical, wrapping of the layers. Dodony (1997a) in-

terpreted a chiral wrapping from the fading of non-basal
reflections in axial SAED patterns. This effect may also
originate from a semirandom stacking of the PS layers,
as indicated by Figures 12 and 19. On the other hand, in
using the diffraction mode to finalize the alignment of
[100] SAED patterns of PS fibers, we generally observe
that a perfectly intensity-symmetrical SAED pattern is
rarely obtained. Instead, the region of most excited re-
flections rotates on the transmitted beam. This behavior
suggests that the global zero-order Laue zone of polygo-
nal fibers may be somewhat conical instead of being
perfectly flat. The zone axes of individual sectors are
commonly not strictly colinear, but presumably ar-
ranged as the generated lines of an acute cone centered
on the fiber axis. This interpretation is further supported

FIG. 20. Numerical Fourier transform (FT) of Dodony’s model of 30-sectored polygonal serpentine (similar to Fig.13a in Dodony
1997a). This FT looks somewhat different from the experimental SAED patterns and from our simulated patterns (see text).
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by a better centering of the SAED patterns when using
convergent beam conditions. The above feature points
to the fact that high-resolution, two-dimensional imag-
ing is usually not obtained routinely all over the circum-
ference of a fiber. The cylindrical, helical or conical
nature of PS fibers, however, is best documented if ob-
served along the [010] direction, and a systematic study
in this zone axis should be considered to complete their
description.

An additional argument to support the description
of sector boundaries as glide dislocation walls is the
observation of plastic deformation of 15- and 30-sector
PS with sufficiently large inner holes were squeezed or
bent (Fig. 21). As a matter of fact, the deformation of
polygons is much more likely accommodated by the
migration of walls of glide dislocations than by possible
migration of polarity-reversal boundaries.

Fivefold symmetry of regular polygonal fibers

From the similar and symmetrical unit-cell se-
quences in the 15- and 30-sector PS, one could have

inferred that the complete fibers display a fivefold sym-
metry for 15 sectors, and a misleading tenfold symme-
try for 30 sectors, as indicated by the succession of
...|LRO|LRO... unit cells, or by electron-bombardment
damage between or within sectors (Fig. 5). This is true
in projection, but not true in the 3-D space. This state-
ment comes from the centering of the basal, rectangu-
lar, ab unit-cell of serpentine. Along the fiber axis,
direct-lattice rows carrying cell-corner lattice nodes
(“subscript 1” below) and those carrying cell-centering
lattice nodes (“subscript 2”) alternate in a [100] projec-
tion along the basal plane. The two types of lattice nodes
are shifted by a/2 along [100]. If one takes into account
those two types, the unit-cell sequence of a 30-sector
PS is ...|L1R1O1L2R2O2| L1R1O1L2R2O2... Hence there
are six types of neighboring unit-cells around a fiber,
and therefore the fiber axis is also a fivefold axis of
symmetry for a 30-sector PS.

Fivefold symmetry around the fiber axis should thus
be a general feature of normal chrysotile (Devouard &
Baronnet 1993, Cressey & Whittaker 1993) and in ad-
dition of polygonal serpentines (Baronnet & Mellini

FIG. 21. Assemblage of intergrown 15-PS (15) and 30-PS (30) fibers, interpreted as having undergone plastic deformation.
Sectors having layers normal to the expected compressive stress (N-S) are wider than the others (arrows). Collapsed hollow
cores extend W-E as “mouths”, especially in the case of large fibers. Piemont serpentinite, Western Alps, Italy.
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1992, Baronnet et al. 1994, this work). For fibers with
disordered sequences of stacking, this fivefold symme-
try is still visible in direct space, repeating an identical
disordered sequence five times a turn (see Devouard &
Baronnet 1995, their Figs. 5 and 6), but it must be noted
that this symmetry does not appear in diffraction space
(Fig. 19) because different disordered sequences of
stacking give rise to indistinguishable diffraction-
intensities along diffraction streaks.

Conclusions

This work, which systematically combines observa-
tions in direct and in diffraction spaces and modeling of
these features, places particular emphasis on the dual
nature of the PS microstructure. Sectors are lizardite-
like, with relationships between their stacking sequences
insured by layer continuity across their boundaries.
Boundaries themselves are shown to be made of curved
parts of the layers with a unique radius of curvature. As
a consequence, correct and periodic hydrogen bonding
prevails inside sectors, whereas H-bonding is disturbed
in the curved boundaries between sectors. Along these
curved regions H-bonds are gradually distorted and lost.
Such curved regions are accounted for by radial walls
of partial dislocations. Each of these dislocations is “ex-
tended” or “delocalized” over the curved junction be-
tween layers. Assuming an average d(00N) = 0.724 nm
for lizardite-like sectors (Mellini 1982, Mellini &
Zanazzi 1987), curvature would cause the basal lattice-
distance to increase continuously at junctions from
d(00N) to d(00N)/cos(12°), i.e., from 0.724 to 0.740 nm
in 15-sector PS, and from d(00N) to d(00N)/cos(6°), i.e.,
from 0.724 to 0.728 nm in 30-sector PS. Therefore, these
curved parts of the PS microstructures cannot be com-
pared to slabs of chrysotile for which the radius of cur-
vature increases with central distance. This is a
peculiarity of the PS structure. Accordingly, polygonal
serpentines cannot be polysomatically described as a
rose-like, alternating arrangement of lizardite and
chrysotile.

Grauby et al. (1998) synthesized hydrothermally
chrysotile from gels in the system SiO2–MgO–H2O, at
constant a P(H2O) of 700 bars and a T of 300°C, with
different run-durations. One salient result has been to
demonstrate that synthetic polygonal serpentines may
form from cylindrical chrysotile once a critical diam-
eter of fibers of ca. 50–100 nm is surpassed. Solid-state
polygonization of the former cylindrical lattice is most
probably taking place, then followed by inner growth
and unlimited overgrowth on inner and outer polygon
facets, respectively. Accordingly, in addition to transi-
tions from curved layers to flat layers to form sectors,
the polygonization of serpentine would seem to imply
also an evolution of concentrically curved layers to
equally curved layers to form sector boundaries.
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We suppose that, in direct space, the junctions be-
tween successive planar sectors are made of a portion
of cylinder each, stacked along the sector boundary (Fig.
A1a). In projection along the fiber axis, straight “lat-
tice” lines of adjacent sectors are linked by identical
circular arcs. The direct object is generated through it-
erative displacement of one set of “arc + two adjacent
lines” shifted by D along the boundary, such that the
lattice spacing t in flat sectors obeys: D = t / cos (�/n),
with n as the number of sectors in the fiber (15 or 30).

For the pile of arcs, the diffraction pattern is seen as
the set of tips of diffraction vectors issued from the set
of parallel and �-equidistant tangents to the arcs, con-
sidering a � angle variation between –�/n and +�/n: �
= D cos � = t cos � / cos (�/n).

In the range –�/n ≤ � ≤ +�/n, the locus of the tip of
diffraction vectors may be expressed in polar coordi-
nates as: 1/� = cos (�/n) / t cos � = cst / cos �. This is
the polar equation of a linear segment normal to the � =
0 symmetry line and ending at (± �/n; 1/t), i.e., con-
necting basal reflections (Fig. A1b).

APPENDIX: RECIPROCAL SPACE OF CURVED SECTOR-BOUNDARIES

FIG. A1. a) Schematic drawing of two successive lattice-planes crossing a curved sector-boundary. b) Its transform in reciprocal
space.


