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ABSTRACT

Optical analysis combines the measurements of index of refraction (n) and density (D) to closely constrain the structural
formula and hence to provide an independent check on composition. Physically, light of specific energy is refracted to a unique
degree by each element, so that each photon follows the bonds through the structure of the mineral. The ionic refractivity gener-
ally increases with atomic number and is modified by the electrical environment of the bond at each crystallographic site. In
general, n changes in proportion to D, such that n � D and K = n/D for each mineral composition. From the change �n/�D of
specific mechanisms of substitution, the per-ion contribution (i) to n and D are found with K = �(kidi), where ki is the ionic
refractivity and di is the fractional density. The absolute contribution to density by an ion in the unit-cell volume is |di| = mi/Vcell
= wiD, with D = �mi/Vcell. The fractional density di equals the weight fraction of the ion, di = wi = aiAW/FW, in which each ion
(ai) of atomic weight (AW) contributes to the formula weight (FW). The absolute contribution of the refractivity of Fe to nalmandine
is |nFe| = kFe|dFe|. The number of atoms per formula unit in (Fe2Mg)Al2Si3O12 is indicated by K = [k(Fe2+)(2AWFe) +
k(Mg2+)(AWMg) + k(Al3+)(2AWAl) + k(Si4+)(3AWSi) + k(O2–)(12AWO)]/FW. A solved set of ki values yields the weight fractions
of ions and the structural formula from the measured index of refraction and unit-cell edge or density.
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SOMMAIRE

Une analyse optique repose sur des mesures de l’indice de réfraction (n) et de la densité (D) afin de mieux délimiter la formule
structurale, et ainsi fournir une vérification indépendante de la composition. En termes physiques, une lumière ayant une énergie
spécifique est réfractée de manière unique par chaque élément, de sorte que chaque photon longe les liaisons en traversant la
structure du minéral. La réfractivité ionique augmente généralement avec le nombre atomique et se trouve modifiée par le milieu
électrique de la liaison à chaque site cristallographique. En général, n change en proportion à D, de sorte que n ä D, et K = n/D
pour chaque composition d’un minéral. En partant du changement �n/�D dû aux mécanismes spécifiques de substitution, la
contribution spécifique d’un ion (i) à n et à D découlent de K = �(kidi), expression dans laquelle ki est la réfractivité ionique, et di
est la contribution fractionelle à la densité. La contribution absolue à la densité par un ion dans le volume d’une maille élémentaire
est |di| = mi/Vmaille = wiD, avec D = �mi/Vmaille. La densité fractionnelle di est égale à la fraction pondérale d’un ion, di = wi = aiAW/
FW, dans laquelle chaque ion (ai) ayant un poids atomique (AW) contribue au poids formulaire (FW). La contribution absolue de
la réfractivité de Fe à nalmandine serait |nFe| = kFe|dFe|. Le nombre d’atomes dans une unité formulaire de (Fe2Mg)Al2Si3O12 est
révélé par K = [k(Fe2+)(2AWFe) + k(Mg2+)(AWMg) + k(Al3+)(2AWAl) + k(Si4+)(3AWSi) + k(O2–)(12AWO)]/FW. Une liste de
valeurs affinées de ki mène aux fractions pondérales des ions et à la formule structurale à partir de l’indice de réfraction mesuré
et le paramètre réticulaire ou la densité.

(Traduit par la Rédaction)

Mots-clés: indice de réfraction, lumière polarisée, minéralogie optique, photon, relation de Gladstone et Dale, composition
minérale, grenat.
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INTRODUCTION

Mineralogists can identify many minerals on sight,
from the optical characteristics of the bulk material.
They commonly follow this with measurement of the
index of refraction and density to confirm mineral iden-
tity or to estimate composition. With additional exami-
nation using plane-polarized-light microscopy, many
more species can be distinguished with minimal ambi-
guity. Optical properties are also sensitive indicators of
structure; thus variation of symmetry may be recognized
optically even if the single-crystal structural results re-
main ambiguous. If a mineral exhibits unusual optical
characteristics, a phase transition or structural change
may be suspected, or an unusual composition may ex-
ist. The method of optical analysis requires that the in-
dex of refraction, unit-cell and density data be consistent
with the composition indicated by the structural formula,
thus constraining the valence of ions and the state of
order.

Most analytical methods do not include provision for
oxygen. Routine analysis by electron microprobe can-
not deal with the light elements H, Li, Be, B, C, N and
O. Consequently, as oxygen typically accounts for half
the formula weight, the estimate of oxygen content by
charge balance with the cations represents an accepted,
but questionable, practice. Such typically incomplete
analytical results, valence uncertainties and the possi-
bility of variable distribution of cations among sites ren-
der the structural formula of many minerals ambiguous.
But oxygen accounts for most of the volume of a min-
eral and contributes significantly to the index of refrac-
tion and density (as can the light elements from H to N).
Therefore, it is important to develop relations involving
index of refraction, density and composition that con-
strain the structural formula of a mineral.

BACKGROUND INFORMATION

Close relations among index of refraction (n),
density (D) and composition indicate the feasibility of
quantitative optical analysis. However, empirically de-
termined curves of n – D – composition are accurate
only in the simplest cases, mainly for pure minerals with
limited compositional variability. For complex solid-
solutions, the relation proposed by Gladstone and Dale
(1864) attributes a specific refraction (ko) to each oxide
component. Then, average ko values determined from
minerals are used to verify the composition of new spe-
cies. However, the mathematical and physical basis of
determining ko values has never been described. A quan-
titative atomistic explanation of the n – D relation for
bulk materials has not been developed, and refracted-
light optical analysis remains at present an unsatisfac-
tory secondary method of analysis.

By contrast, single-crystal structure refinement is
accepted as a primary method of analysis. Using Bragg’s

law for reflected X-ray light, the distance between adja-
cent planes of atoms in a crystal is determined by the
wavelength of X-ray photons, electrons or neutrons, by
reflection at a certain angles. As the intensity of a re-
flection is proportional to the atomic number, composi-
tion is refined along with the crystal structure. Inclusion
of a bond-valence analysis and a refinement of site oc-
cupancy using ionic scattering factors makes a single-
crystal refinement of a structure a valid primary method
of compositional analysis. Furthermore, the light emit-
ted or absorbed by a specific atomic transition is char-
acteristic of an element. The radiated intensity is directly
proportional to the ion concentration; conversely, Beer’s
law is applied for absorption, providing a basis for nu-
merous analytical spectroscopic methods, and proton,
ion and electron microprobes.

THEORY OF REFRACTION

In the theory of light as a wave, the reduction in ve-
locity (from c to �) as light passes from vacuum into a
mineral requires reduction of wavelength (�). In the
wave equation, � = f �, the frequency f is the constant of
proportionality. Note that the velocity � is measured
along an assumed linear path between entry and exit
points. This is a simplification of ray optics wherein the
refraction of a collimated beam of light is depicted as
showing a sharp and immediate change of direction at a
surface. A continuous beam is “bent” by refraction. In
the Snell equation, the index of refraction is n = c/� =
sin(i)/sin(r); the beam enters the material at angle i and
refracts at angle r toward the normal. The wave mecha-
nism of propagation is light-induced oscillation of the
electrons of the material, such that the outer electrons
of an atom are affected more by low-energy visible light
than are its tightly bound inner electrons. This mecha-
nism explains the greater degree of refraction from red
to violet light, but contradicts wave theory.

The Snell equation indicates that a single mechanism
causes both the change of direction and the net reduc-
tion of velocity. Light must change direction gradually
as it enters the electric field-gradient of an ion; the ion
charge density increases toward the nucleus (Fig. 1). At
an atomic scale, light must refract along a curved path,
but then there is no need for reduced velocity. Further-
more, identifying a specific refraction of ions means that
light must change direction to a unique degree charac-
teristic of each ion. But light refracting by inducing os-
cillation in the outer electrons of ions cannot follow a
straight-line path through a mineral because the ions are
in staggered array. Consistency with the Snell equation
is possible only if light refracts continuously about both
the surface and the interior atoms of a material, such
that the length of the winding optical path (l) is related
to the length of the linear geometric path (d) by l = nd;
this relationship requires a particulate photon of con-
stant velocity and wavelength, however.
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A proposal of invariant velocity and wavelength is
consistent with the quantum hypothesis of light as a
stream of particles, each with energy E = hf, where h is
the Planck constant. Natural continuous oscillators that
constantly lose energy by radiating a continuous wave
of light remain unidentified, but rather a single photon
is produced by a single atomic electrical transition to
propagate as a finite local particle. Einstein argued that
if an individual atom or electron absorbs a single packet
of light, it is likely that light consists of small particles
(Arons & Peppard 1965, Teertstra 2003). The Maxwell
theory of light (Iksander 1992) as an electromagnetic
wave with energy spread over space requires a homo-
geneous refracting medium (formed by wave addition),
so that light interacts with tens of thousands of atoms at
the same time, whereas the Gladstone–Dale relation in-
dicates that light is refracted to a specific degree by each
component of a material. Each ion must maintain its
characteristic electrical atomic structure. By the 1920s,
the idea that each ion maintains local identity was sup-
ported by crystal-structure solutions using X-ray-dif-
fraction data. With this method, the characteristic
electron-density and radius of atoms at specific sites
could be determined. In other words, a crystal is not a
homogeneous refracting material.

Einstein (1905, from Arons & Peppard 1965) also
maintained relativistic invariance of the charges, so that
the electrical charge of proton and electron remains con-
stant, whereas the electrical binding energy E relates to
change of rest mass by m = E/c2. In this manner, charge
is maintained as two ions bind to one another, whereas
a reduction of electrical potential would weaken a bond,
and reduction of rest mass is a means of describing the
stability of materials. Refraction is thus not directly af-
fected by inertial atomic mass, but each atom has a spe-
cific contribution of electrical charge and atomic mass,
giving the unit-cell volume and density of a mineral,
respectively.

Separate descriptions of light as wave and particle
are merged by the hypothesis that electromagnetic en-

ergy is in local oscillatory exchange with mass. A wave-
particle unified model of the photon has been proposed
in which refraction occurs by local entropic mechanisms
(Teertstra 2003). A reasonable explanation of the index
of refraction emerges with the proposal that light of
specific energy refracts to a unique degree about each
element, so that each photon winds through a mineral
structure at a specific energy-level. In this case, it will
be feasible to refine the composition of a mineral and
retrieve structural information from the observed indi-
ces of refraction and data on density for the mineral
group.

RELATING INDEX OF REFRACTION AND DENSITY

It is a 17th century idea that optical density and gravi-
tational density are related. Isaac Newton considered
light as stream of particles refracting in the space be-
tween atoms (Baierlein 1992). The mineralogical litera-
ture contains a wealth of data supporting the idea that
each element contributes its unique refractive and
atomic-weight properties to the net index of refraction
and bulk density. Across numerous solid-solution se-
ries, both index of refraction and unit-cell parameters
vary in a linear manner for compositions plotted on the
basis of atoms per formula unit (apfu). Across compo-
sition space, lines of constant n are typically equally
spaced, as are curves of constant D; garnet-group min-
erals provide an example. Unique intersections of n and
D indicate the possibility of identifying a unique com-
position by comparison of states across compositional
space, via optical analysis. In contrast to glass, the
change in n and D across mineral series is related to
variable composition by specific mechanism(s) of sub-
stitution defined at crystallographic sites. The unit-cell
volume can be explained by characteristic ionic radii
(Novak & Gibbs 1971), and the density can be explained
by atomic weights. Now, the refraction can be explained
by the specific ionic refractivity.

FIG. 1. Schematic refracted path of a photon through the Mg–O bond. Two units of posi-
tive charge extend from the noble gas core of the cation. The valence electrons of oxy-
gen (orbitals indicated by a solid line with an arrow) partly satisfy both the charge of its
O nucleus and that of adjacent Mg2+. The refractive power of each ion is increased by
the mutual overlap of opposite charges. As the photon takes a characteristic path about
each ion (dashed line), the composition and structure may be refined.
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In the example of garnet-group minerals, linear
covariation of n and cell edge a is found along each
exchange vector. Linear relations are also found in plots
of n or a versus composition expressed in apfu, indicat-
ing a close link between atomic-scale and bulk proper-
ties. Weight fraction and density are relative proportions
(dependent on formula weight), producing curves in all
plots involving weight fraction of ions or D (Bloss
1952).

In general, there is a net increase in index of refrac-
tion if the substituting elements have increased ionic
charge, increased atomic number, or decreased atomic
radius (e.g., Fe2+ for Mg, Ca for Na, Na for K, Ba for K,
Fe3+ for Al, Fe3+ for Fe2+, OH for F). The majority of
cation-exchange mechanisms produce increased index
of refraction and increased density with increased
atomic number, but some anion-exchange mechanisms
reveal a decreased index of refraction with increased
density [e.g, (OH)–1F in topaz]. The cations may be
modeled by a formal charge radiating from the spheri-
cal surface of the core of a noble gas configuration (Fig.
1). By contrast, the outer valence-electrons of anions
may not have spherical (ionic) orbitals, but can be lo-
cated between ions to give the bond a covalent charac-
ter (Zoltai & Stout 1984). There is an overall increased
index of refraction and decrease in density for com-
pounds with increasingly covalent bonds (Jaffe 1988).
This pattern confirms the idea that the refracted path of
a photon is sensitive to the density and distribution of
electrical charge about each ion and through the struc-
ture. The photon is then a probe of this atomic arrange-
ment and crystal structure. Physically, the changed
physical properties are all due to the opposing effects of
atomic number and ionic radius, encapsulated by the
radial electrical field-gradient (Volt/m) as modified by
the local environment of bonding in the crystal struc-
ture. In addition to identifying the refracting ion and its
valence state, optical analysis shows that ionic refrac-
tion decreases with increasing coordination-number
(Eggleton 1991); thus the site occupancy can be deter-
mined. In consequence, the mineral’s structural formula
can be constrained by measurement of its physical prop-
erties (n, a, D).

OPTICAL ANALYSIS

Optical analysis, the method of calculating the net
index of refraction from the ionic values of specific re-
fractivity, is a distinct method of compositional analy-
sis. But in optical analysis, the net refraction of each
sample across a compositional series is explained as a
sum of contributions of individual ions, each varying
directly with weight fraction (rather like the structure
factor of X-ray crystallography). The values of k are
solved by analyzing the data for index of refraction and
density of minerals of well-characterized composition
and structural state; specific values of n and D charac-
terize each state.

Minerals need not be established as optical reference
states, as light is the primary standard for distance, time
and energy. Measurement of the wavelength of light has
replaced a physical standard for the meter. Character-
ization of the resonant frequency of an atomic transi-
tion is the basis of the atomic clock. The proposed
constant velocity of light relates the distance and time
measurements, according to c = d/t. Accurate determi-
nation of the Planck constant h gives a standard for en-
ergy, i.e., E = hf. For minerals, a specific composition
and structural state must give the expected index of re-
fraction and unit-cell parameter from well-characterized
sources of light.

Indices of refraction can be measured to four or more
significant figures (within 0.5%, depending on the
method), and there is room for increased accuracy. Very
pure halite at 293 K and 1 atm has a equal to
0.564009(3) nm and n = 1.54416(4), determined for
sodium light of � equal to 589.301(1) nm (Nikogosyan
1997). Refined unit-cell parameters can be accurate to
five or more significant figures (within 0.1%, Herbstein
2000). The limiting factor for optical analysis seems to
be measurement of composition, with electron-micro-
probe results presently limited to about 1% precision
and 2–4% accuracy (e.g., Teertstra et al. 1998).

Experimentally, each index n is measured at a spe-
cific energy of light (e.g., the 2.15 eV or 589.3 nm yel-
low spectral line from a sodium lamp, or light-emitting
diode, laser or laser diode). Care must be taken to inter-
pret the atypical indices of refraction that occur for any
energy of light near an energy of atomic absorption. The
liquid-immersion technique is the most common. If the
index of the grain matches the index of the immersion
liquid, monochromatic light passes through both with-
out deflection and the grain is invisible. Alternatively,
index of refraction can be determined by beam deflec-
tion, that is, by measuring the change of angle as light
refracts into and then out of a grain held in air. A time
delay could also be measured, relative to light traveling
the same distance in a vacuum, with n = tmineral/tvacuum.

Optical analysis starts by noting that index of refrac-
tion changes in direct proportion to the bulk density,
n � D. Call the constant of proportionality K; as a re-
sult, n = KD, and n/D = K. In a plot of n versus D, each
material is characterized by its net refraction per unit
density. Any two materials are then related by a slope
�n/�D. A continuous mechanism of substitution, such
as the Mg–1Fe exchange vector from pyrope Mg3Al2
Si3O12 to almandine Fe3Al2Si3O12, defines a line
through n – D – composition space. The exchange vec-
tor defines the direction, but the magnitude is �n/�D
per mole.

Values for the specific refraction of light by each
element are solved by guess-and-iteration with respect
to a controlled change of composition. A number of re-
lations involving n, D and composition have been pro-
posed. All of these methods derive specific refractive
values k of molar refractivity (constants to be multiplied
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by the weight fraction or concentration of the oxide or
element), but differ in their manipulation of the refrac-
tive data. Below, I focus on the Gladstone–Dale equa-
tion, (n – 1)/D = �[(koxide)(weight oxide)], but find a
simpler equation that is more useful to the structural
formulae of minerals: n/D = �[(kion)(weight ion)].

THE GLADSTONE–DALE RELATION

The original relation of Gladstone & Dale (1864) is
(n – 1)/D = K = �(kowo), where density D = m/V (g/
cm3), and ko is the variable “specific refractive energy”
(their term) of each oxide (o) of weight fraction wo (in
grams per 100 g). With a set of average ko values, the
relation (n – 1)/D = �(kowo) allows comparison of cal-
culated and measured indices of refraction, and has been
used in this way. The compatibility index of Mandarino
(1976) gives an excellent check on the accuracy of re-
sults of a chemical analysis. The Gladstone–Dale rela-
tion is particularly useful in predicting the properties of
new glass or crystal compositions.

The iterative best-fit method of solution requires ko
values as “Gladstone–Dale constants” (Mandarino
1976), but ko actually varies with the atomic environ-
ment and varies between mineral groups (Eggleton
1991). So the original term “specific refractive energy”
remains evocative of the physical process, with atomic
electrical potential available for the refraction of light,
except that the ki are not a form of energy.

Gladstone & Dale (1864) analyzed minerals using
(n – 1), the optical displacement. Light traveling through
1 m of water (n = 1.33 = dwater/dvacuum) has a displace-
ment of 0.33 m, equal to the optical path length minus
the sample thickness (the geometrical path-length). The
distance (n – 1) is the net displacement perpendicular to
the direction of propagation and in the electrical plane
of plane-polarized light. The electrical force causing
refraction acts only along the electrical vector of light,
not along the direction of propagation, so the light does
not change energy, wavelength or color.

The left side of the equation, (n – 1)/D, relies on
macroscopic physical measurements on bulk material.
For each fixed composition, the index of refraction is
converted to a displacement (as in the example with
water) and normalized to the density. This approach
gives equivalence of weight fraction and density frac-
tion. The term (n – 1)/D forms a crude but effective
normalizing structure-factor that automatically accounts
for variation of temperature and pressure. Increased tem-
perature results in decreased density by increasing the
distance between refracting elements; this increase also
decreases the refraction. The present analysis is re-
stricted to n, D states defined at 298 K and 1 atm. Rela-
tions to variable composition are found from (n – 1)V/
�m, wherein a number of elements contribute atomic
mass to volume V. Note that by measuring �mass and
�V with varied composition, it is possible to iteratively
solve for atomic weights! Atomic weight is considered

here as a constant, even though inertial mass changes
slightly with bond formation at constant electron and
proton charge.

The right side of the equation, �(kowo), requires atom
parameters to explain the net index of refraction and
bulk density. Breaking up the net index of refraction into
corresponding weight-fractions gives an immediate
crude estimate of the refraction due to each element.
With varied composition, guess-and-iteration allows
convergence to a “specific refractivity” ko for each ox-
ide of weight fraction wo. The procedure is similar to
that used to empirically determine ionic radii. This
works if typical values are found for ko that ascribe a
specific power of refraction to each element in a similar
environment of bonding, and this is generally the case.

Refraction is sensitive to crystal structure as well as
to composition. Application of the Gladstone–Dale re-
lation to structural polymorphs (e.g., of SiO2 or Al2SiO5)
gives a range of ko values with respect to structure type
and coordination number. This range indicates two
matters of interest, the grand mean values of ko broadly
applicable to all minerals, and the specific values of ko
characteristic of element substitution in a particular
structure-type.

To extend the Gladstone–Dale relation to anisotro-
pic crystals (Larsen 1921), a mean or average n has been
be used. Closer relations between calculated and ob-
served indices are found by using the ellipsoidal refrac-
tive (indicatrix) volumes 4�n3/3, 4�(�2�)/3 and
4�(	
�)/3 (Allen 1956), or mean indices (�2�)1/3 and
(	
�)1/3 in place of averages (2� + �)/3 and (	 + 
 +
�)/3, respectively. But one might not want to average
the refraction data for birefringent crystals if structural
information can be extracted! For one composition, a
crystal may have up to three principal orthogonal indi-
ces of refraction, indicating directional variations in the
structure. The relations with composition can be ob-
tained using individual values of � or �, and 	, 
 or �,
and this is important for biaxial minerals with ready
access to indices only on a basal cleavage (e.g., the mi-
cas). It is simplest and correct to use individual values
of refraction specific to the direction of an experimental
path of photons through the crystal.

The values of ko are derived by guess-and-iteration
using n, D data from minerals and compositional series
(Larsen 1921, Allen 1956, Jaffe 1956, 1988, Mandarino
1976, and references therein, Bloss et al. 1983, Eggleton
1991). The values of ko determined for pure oxides such
as SiO2 or Al2O3, with wo = 1 and ko = K = (n – 1)/D,
have been used as reference points to examine more
complex materials. For mineral groups, the average val-
ues of ko can also be estimated by the least-squares best
fit between observed and calculated values of (n – 1)/D
for many samples (Bloss et al. 1983). If one uses least-
square methods to derive average values of k for com-
plex solid-solution series, convergence to false minima
is quoted as possible, and the results may be influenced
by both the path and method of iteration (Eggleton
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1991). The values of k depend on the choice of accurate
n – D – composition data, so the sources of data must be
stated.

The values of k for other minerals may be used, com-
monly k(SiO2) from quartz, to questionable accuracy:
k(Si4+), k(O2–) and the combined k(SiO2) vary with the
structure of the polymorphs. I found that an unknown
k(MgO) of Mg3Al2Si3O12 garnet is determined by di-
viding the difference K – k(SiO2)w(SiO2) – k(Al2O3)
w(Al2O3) by the weight fraction w(MgO), a calculation
that leaves the observed data (n – 1)/D invariant. The
derived value of k(MgO) = [K – k(SiO2)w(SiO2) –
k(Al2O3)w(Al2O3)] / w(MgO) depends on the value
k(Al2O3); however, both vary with the choice of k(SiO2),
and this changes from quartz to garnet.

As it stands, the Gladstone–Dale relation is not in its
most useful form. If minerals are analyzed by chemical
dissolution and precipitation of oxides, it is convenient
to report the results as weight percent oxides. Expres-
sion as an oxide implies known valence, but valence is
readily expressed within the structural formula. If the
calculation of a mineral formula involves conversion
between oxides and elemental weights (e.g., Fe2O3 to
Fe), it is necessary to interconvert k-oxide and k-ion
values. The oxide values combine the atomic weights
and values of refractivity k for each ion component.
Using oxides to represent mineral formulae is archaic
and inconvenient. Ionic ki values, using weight fractions
of elements and numbers of atoms per formula unit, are
preferred to identify the specific contribution of oxygen
to refractivity and to give direct relations to mineral
formulae.

EXPANSION OF TERMS

Values of refractivity k can be determined for virtu-
ally any manipulation of the data for index of refrac-
tion: n, (n – 1), (n – 2), n2, n3, (n2 – 1)/(n2 + 2) and so on,
but relations to the physical process of refraction remain
to be demonstrated. Dimensional analysis of the
Gladstone–Dale relation gives units of cm3/g to k, as
the density or weight fraction is unitless. Calculating the
refracting volume of an ion according to Vr = (ki)AW/
AN, where AN is Avogadro’s number, gives the appro-
priate atomic scale for known ionic radii, but only for
values of k derived from the simplest relation, K = n/D
= �(kiwi). Regardless, the following analysis is appli-
cable to any form of manipulation of the data on index
of refraction.

I could not find a means to transpose values of k
derived from the (n – 1)/D form to those derived from
the n/D form. I wanted to use k data for oxides from the
literature to extract k values for ions, but the n, D data
of the reference samples are unstated, and the k values
for oxides are skewed by use of a mean k(SiO2) of
quartz, which is inappropriate in an unrelated structure.

With the index of refraction normalized to the bulk
density by K = n/D, values of refractivity k can be de-

termined with respect to each analytically established
weight-fraction (w) according to K = �(kowo) for ox-
ides, or K = �(kiwi) for ions, respectively. Each compo-
nent has a relative fractional contribution to n/D; this is
kw, but the absolute contribution |ni| is Dkw. The ad-
vantage of using (n/D)-normalized values is that the
unitless weight-fraction w is also the fractional contri-
bution to density, with wi = di and �wi = 1. For a pure
compound such as SiO2, wo = 1 and ko = n/D. The abso-
lute contribution of each ion to the density is |di| = mi/V
= wiD. The absolute contribution of each ion to the in-
dex of refraction is |ni| = ki|di|.

The exact solution of ki values is preferred over av-
erage or best-fit approximations. Any solution of ki val-
ues should leave the observed data n/D invariant,
returning exactly the definition of state. The constraint
of zero net change of �(kiwi) values is unusual for lin-
ear algebra, but occurs because the ni contribution of
each element to the index of refraction n is iterated along
fixed lines of di (or the contribution of absolute density
in a plot of |ni| versus |di|). The iterative process alters
the slope ni/di. This is more evident in vector space,
where each kiwi is a vector of direction ki and magni-
tude wi contributing to the resultant n/D. Vector addi-
tion is normally done by projection of components onto
the x and y axis, in this case �ni and �di. Each vector
kiwi is tied head to tail to the next, but constrained along
wi = di to give K = �kiwi. By refining ki in cm3/g, each
value ni is automatically refined with an anchor at |di| =
(aiAWi)/FW = mi/Vcell in g/cm3.

In contrast to glass, the translational symmetry of
minerals allows identification of a distinct unit-cell.
Operations of symmetry also describe constraints on the
structural formula. If results of a complete analysis are
available, and if unit-cell dimensions are refined from
X-ray-diffraction data, then the D term expands to D =
�(aimi)/V = �(aiAW)/VAN, where a number of atoms ai
of atomic weight AW contribute mass mi to the unit-
cell volume V.

To determine ni, simply multiply (ki)AW by the
number of atoms contributing to the formula weight (ai/
FW), as read directly from the mineral formula. Con-
sider almandine, Fe2+

3Al2Si3O12, in which Fe2+ contrib-
utes k(Fe2+)(3AWFe)/FW to the total �(kiwi). The
formula of the garnet (Fe2Mg)Al2Si3O12 is now indi-
cated in K = [k(Fe2+)(2AWFe) + k(Mg2+)(AWMg) +
k(Al3+)(2AWAl) + k(Si4+)(3AWSi) + k(O2–)(12AWO)]/
FW. This expression gives a direct relation between n
or D and changing Fe/(Fe + Mg), Fe or Mg apfu, or the
molar percentage of end-member almandine or pyrope.
The value k(Al2Si3O12) varies by change in the relative
proportion of w(Al2Si3O12), due to change in MW/FW
that produces a curve across the compositional series,
and by structural changes induced by substitution at the
X site. This interesting new form of the Gladstone–Dale
relation allows exploration of variation in refractivity
with respect to crystallographic constraints, such as 3
apfu occupancy of tetrahedral sites by Si, by providing
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a means to isolate the contributions to refraction and
density of any chosen structural unit. Therefore, we need
not insert the k(SiO2) of quartz to accurately resolve the
ki value of a cation.

The oxide k-values transpose into ion k-values as
follows. For a given value of k(O2–), the transformation
k(Fe2+)w(Fe) = k(FeO)w(FeO) – k(O2–)w(O) leaves n/D
invariant. The w(O) here is only that weight fraction of
oxygen associated with FeO, w(O) = wo(aiAWO)/
(MWFeO), where wo is the weight fraction of oxide, and
ai is the number of atoms of oxygen per unit of FeO,
simply w(O) = w(FeO) – w(Fe). For magnesian alman-
dine, (Fe2Mg)Al2Si3O12, using k(FeO) = 0.188, k(MgO)
= 0.200, k(Al2O3) = 0.207, k(SiO2) = 0.208 and k(O2–)
= 0.203 (average values for minerals from Mandarino
1976), the ionic k-values are k(Fe2+) = 0.184, k(Mg2+) =
0.198, k(Al3+) = 0.211 and k(Si4+) = 0.214.

REFINING kION VALUES OF REFRACTIVITY

Values of kion can be refined for any change in index
of refraction or density �n/�D due to a specific substi-
tution (e.g., Fe2+ for Mg). The iteration is accomplished
most quickly with a spreadsheet; I used Sigma Plot. The
n, a, D data for pure synthetic end-member garnet-group
minerals are given in Table 1 (Skinner 1956). The n, a
data for intermediate compositions were found by lin-
ear interpolation, and D was calculated.

Begin with a balanced equation, the solution in
which each ki = K. Trying a new ki = K + x, n/D remains
invariant if the sum (kiwi) is constant. Across the series
(Fe,Mg)3Al2Si3O12, the values k(Fe2+) and k(Mg2+) can
be resolved by change of aFe and aMg along Mg–1Fe at
constant Al2Si3O12 in the formula unit. Grouping the
Al2Si3O12 components leaves the equations with two
independent variables, k(Fe2+) and k(Mg2+). At fixed
k(Fe2+)w(Fe), increasing k(Mg2+) increases k(Mg2+)
w(Mg), whereas K(Al2Si3O12)w(Al2Si3O12) decreases
by K(Mg2+)w(Mg) – k(Mg2+)w(Mg). Dividing [K(Al2Si3
O12)w(Al2Si3O12) – k(Mg2+)w(Mg)] by the fixed
w(Al2Si3O12) gives the new k(Al2Si3O12). A linear rela-
tion is found in a plot of k(Al2Si3O12) versus k(Mg2+).
The slope m1 of the linear equation k(Al2Si3O12) =
m1k(Mg2+) + b1 is solved using two values of k(Mg2+),

whereas the intercept b1 remains variable, dependent on
the choice of k(Fe2+) (Fig. 2).

Next, with a fixed k(Mg2+), the line k(Al2Si3O12) =
m2k(Fe2+) + b2 is defined. The two lines intersect at a
single value of k(Al2Si3O12), with m1k(Mg2+)+ b1 =
m2k(Fe2+) + b2, indicating that false convergence will
not occur (Fig. 2). This intersection gives a precise set
of k-values to explain n and D in the series pyrope–al-
mandine, even if the three k-values are not unique [in
this example, they are dependent on the choice of the
k(Fe2+) value]. At this stage, there is no practical advan-
tage over n – D – composition determinative curves, but
the ion weight-fractions now directly relate to numbers
of atoms per formula unit in an equation for variation of
n and D specific to the Mg–1Fe vector.

A well-characterized ternary solid-solution defines
accurate k-values, as single values of k(Fe2+) and
k(Al2Si3O12) must satisfy the n/D of all samples along
both Mn–1Fe and Mg–1Fe (Fig. 3). This k(Fe2+) is now
used to solve the equations k(Al2Si3O12) = m1k(Mg2+) +
b1 and k(Al2Si3O12) = m2k(Fe2+) + b2. With one com-
mon element, two exchange vectors give k values for
four variables in five equations, in this case k(Fe2+),
k(Mg2+), k(Mn2+) and k(Al2Si3O12). So the set of k val-
ues is defined for complex (rather than simple) solid-
solutions if the site occupancies are known. One must
try various k-values of the common element that allows
convergence to single k-values of the remaining ele-
ments. Note that the substitutions need not be at the
same crystallographic site, but may be coupled to an-
other site (for example, XCa2+ + ZSi4+ = XY3+ + ZAl3+).

FIG. 2. Variation in the value of refractivity k(Al2Si3O12) with
choice of k(X2+). For each composition (solid lines:
Mg2.7Fe0.3Al2Si3O12; dashed lines; Mg2.4Fe0.6Al2Si3O12),
lines of k(Fe2+) and k(Mg2+) versus k(Al2Si3O12) intersect
at a single value of k(Al2Si3O12). However, the system can-
not be solved to give absolute values because the line inter-
cepts vary with the initial choice of k(X2+).
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With the assumption of constant k-values to explain
the n, D data of all X3Al2Si3O12 garnets, the accuracy of
the convergence is limited. Slightly different values of
k(Fe2+), k(Mg2+), k(Mn2+), k(Ca2+) and k(Al2Si3O12) best
suit each end-member. At this stage, I found the assump-
tion of constant k-values good but insufficient to exactly
reproduce the observed covariation of n and D across
wide ranges of composition (within error of measure-
ment; Table 1) across wide ranges of composition. The
best convergence of k values (Table 2) is found for com-
parative samples that differ from the central composi-
tion only by an amount sufficient to produce a
measurable difference in n or D. For example, excellent
convergence was attained between end-member pyrope
and samples with Mg2.7X0.3Al2Si3O12 and Mg2.4X0.6Al2
Si3O12, with X = Fe, Mn, Ca. This convergence repre-
sents agreement of refined k-values with the same accu-
racy as the input data for index of refraction and unit-cell
dimension, potentially exceeding the accuracy of analy-
sis with an electron microprobe.

It is not possible to claim that an inaccurate low
measurement of refraction in a Fe-rich sample contrib-
utes to a low calculated value of refraction in an Fe-
bearing Mg-rich sample. This set of k values for
(Fe,Mg,Mn,Ca)Al2Si3O12 garnets was derived to leave
the observed data invariant. Linear algebraic equations
must exactly return the n, D values, but this is done by
linear variation of k values.

Physically, constant k-values are not expected. A
cation coordinates to an oxygen ion by favorable bind-
ing of electrostatic forces, and this changes the radial

position of the energy level at which a photon refracts.
The ki of a cation decreases with increasing <X–O>
interatomic distance. The Mg2+ ion in Mn-rich garnet
occupies a larger X-site than in pyrope (Novak & Gibbs
1971); it has a slightly decreased power to refract light.
The ki of a cation decreases with decreasing cation–
cation distances.

The ki values are not a direct indication of the re-
fractive power of an ion, but this is given by the ion’s
refracting volume Vr = (ki)AW/AN, where AW is the
atomic weight of an ion, and AN is Avogadro’s number.
The refracting volumes are of appropriate atomic scale
for refraction of 2.15 eV yellow light (Table 3) and in-
dicate a quantity of charge at a specific radius from the
nucleus. The larger cations place 2+ units of charge fur-
ther out from the nucleus, so the refracting volumes in-
crease with ionic radius according to Mg < Fe < Mn <
Ca (Novak & Gibbs 1971).

The linear correction-factors for almandine–
spessartine are k’(Fe2+) = k(Fe2+)Alm + xMn, and
k’(Mn2+) = k(Mn2+)Sps + yMn (apfu). What arises for
the garnet group as a whole is a matrix correction for
varying k-values. The values in this matrix describe the
refraction of 2.15 eV yellow-light photons about each
site through each species of garnet. This matrix must
return the exact values of n, D and composition of the
standards within the quoted limits of precision and ac-
curacy (Table 2).

Once ki values are established for a specific struc-
ture-type, the wi of an unknown mineral is varied along
each fixed ki to give an optical estimate of composition.
Within the constraints of a known structural formula,
an initial composition is proposed and then iterated to
agree with measured indices of refraction and unit-cell
parameters. This composition also must agree with di-
rect measurement of density and with partial or com-
plete analysis of composition by another method. To
attain consistency in index-of-refraction and unit-cell
metrics, composition is altered in the structural formula
by proposing ai atoms per formula unit, finding the cor-
responding weight-fractions wi, and using the ki values
to iteratively minimize differences across the equality
n/�(kiwi) = �(aiAW)/VAN. This approach is rather in-
teresting, because the equation is in essence a compari-
son of low-energy photon refraction (giving values of

FIG. 3. Index of refraction n versus density D. The grand
mean vector (n/D) is the resultant of the vector contribu-
tions of 0.6 Fe, 2.4 Mg and 1 Al2Si3O12 per formula unit to
n and D.
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n) and high-energy photon reflection (giving cell edge
and V).

CONCLUSIONS

If light is refracted to a specific degree by each ion
of a mineral, as shown in this analysis, it is not possible
that the refracting medium be homogeneous. The stag-
gered array of ions in a close-packed structure ensures a
winding non-linear path of light. Any measured reduc-
tion of velocity from entry to exit points is not associ-
ated with reduction in wavelength, but the winding
optical path (l) is increased over the linear geometric
path (d) by l = nd. Now a case is made for a return to the
Newtonian view of light, with refracting particles act-
ing as a probe of atomic structure. Force acts on a local
photon to give continuous refraction toward a specific
level of energy (Teertstra 2003). According to Maxwell,
light is electromagnetic in composition (Iksander 1992),
and the refraction of light takes place mainly by the
action of electrical charge perpendicular to the direc-
tion of propagation. In Einstein’s view (Arons &
Peppard 1965), the electrical charge of proton and elec-
tron remains invariant, but the electric binding energy
E is expressed as change of rest mass by m = E/c2. Re-
fraction is thus not directly affected by inertial atomic
mass, but each atom has a specific contribution of elec-
trical refractive volume (Table 3), radius and atomic
mass, giving the n, V and D of a mineral, respectively.

The advantage of optical analysis is that it places
close constraints on the structural formula of a mineral.
Uncertainty in the structural formula of a mineral can
result from incomplete or inaccurate analysis, lack of
determination of valence, and uncertain distributions of
elements among crystallographic sites. On the basis of
composition alone, the structural formula of a mineral
commonly remains ambiguous; garnet with VIAl and
possible IVAl is an example. Deer et al. (1992) relied on
site preferences to distribute cations among various sites
in the structure and looked for a sensible formula to sub-
stantiate the choices. The result is a reasonable range of
valence states and possible states of cation order. But
these proposed states are further constrained by mea-
surement of n and a or D, by optical analysis. For each
structure-type, distinct k-values are found with respect
to ion valence and coordination number (Eggleton
1991). Most significantly, optical analysis constrains the

concentrations of light elements that cannot be deter-
mined by electron microprobe, namely H, Li, Be, B, C,
N and especially O.

The index of refraction of a mineral can be explained
exactly by the use of kion values of refractivity with lin-
ear variation across series (Table 2). A chemical com-
position need not be complete for application of optical
analysis, as the optical analysis quantifies the contribu-
tion of non-analyzed components (Fig. 3). Furthermore,
the vector-additive qualities of the Gladstone–Dale re-
lation allow examination of the contributions of specific
structural components to the index of refraction. Al-
though the example of X3Al2Si3O12 garnets isolated the
k values of X cations in quaternary solid-solution and
the Al2Si3O12 component, ions need not substitute at the
same site in order to find a solution.

The net change in index of refraction is not solely
due to compositional change at the X site, but also re-
sults from structural changes that are induced in the
Al2Si3O12 unit; as a result, the k(Al2Si3O12) changes.
The refractive power of an X cation increases with in-
creasing proximity of O2–, and k(O2–) also increases;
conversely, ions of like charge act to decrease the k-
values. The refractive power of an ion is directly indi-
cated by the refracting volume Vr (Table 3); it increases
with increasing radius of the cation in the sequence Mg
< Fe < Mn < Ca. A photon in 2.15 eV yellow light re-
fracts along a specific arc about the nucleus of a cation,
depending on the radial distance of 2+ charge extend-
ing from the noble gas core of the cation. In summary,
it is reasonable to consider a local photon as an intact
refracting probe of atomic structure and to develop
methods for refracted-photon analysis of a crystal struc-
ture (Teertstra 2003).
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